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Abstract. Generative modeling and clustering are conventionally dis-
tinct tasks in machine learning. Variational Autoencoders (VAEs) have
been widely explored for their ability to integrate both, providing a
framework for generative clustering. However, while VAEs can learn
meaningful cluster representations in latent space, they often struggle
to generate high-quality samples. This paper addresses this problem by
introducing TreeDiffusion, a deep generative model that conditions dif-
fusion models on learned latent hierarchical cluster representations from
a VAE to obtain high-quality, cluster-specific generations. Our approach
consists of two steps: first, a VAE-based clustering model learns a hierar-
chical latent representation of the data. Second, a cluster-aware diffusion
model generates realistic images conditioned on the learned hierarchical
structure. We systematically compare the generative capabilities of our
approach with those of alternative conditioning strategies. Empirically,
we demonstrate that conditioning diffusion models on hierarchical clus-
ter representations improves the generative performance on real-world
datasets compared to other approaches. Moreover, a key strength of our
method lies in its ability to generate images that are both representa-
tive and specific to each cluster, enabling more detailed visualization of
the learned latent structure. Our approach addresses the generative lim-
itations of VAE-based clustering approaches by leveraging their learned
structure, thereby advancing the field of generative clustering.

Keywords: Generative Modeling · Hierarchical Clustering · Conditional
Diffusion.

1 Introduction

Generative modeling and clustering are two fundamental yet different tasks in
machine learning. Generative modeling focuses on approximating the underlying
data distribution, enabling the generation of new samples [15,8]. Clustering, on
the other hand, seeks to uncover meaningful and interpretable structures within
data through the unsupervised detection of intrinsic relationships and depen-
dencies [38,7], facilitating better visualization and interpretation of the data. By
integrating hierarchical dependencies into a deep latent variable model, Tree-
VAE [20] was recently proposed to bridge these two research directions. While



2 J. da Silva Gonçalves et al.

TreeVAE is effective at hierarchical clustering, it falls short in generating high-
quality images. Like other VAE-based models, it faces common issues such as
producing blurry outputs [4]. In contrast, diffusion models [31,12] have recently
gained prominence for their superior image generation capabilities, progressively
refining noisy inputs to produce sharp, realistic images.

Our work bridges this gap by introducing a second-stage diffusion model
that is conditioned on the hierarchical cluster representations learned by Tree-
VAE. The proposed framework, TreeDiffusion, combines the strengths of both
models to generate high-quality, cluster-specific images, achieving improved per-
formance in image generation. The generative process begins by sampling the
root embedding of a latent tree, which is learned during training. From there, the
sample is propagated from the root to one leaf by (a) sampling a path through
the tree and (b) applying a sequence of stochastic transformations to the root
embedding along the chosen hierarchical path. Subsequently, the diffusion model
harnesses the hierarchical information by conditioning its reverse diffusion pro-
cess on the sampled path representations of the latent tree through a path en-
coder. A key strength of TreeDiffusion is its ability to generate images tailored to
each cluster, providing enhanced visualization of the learned representations, as
demonstrated by our qualitative results. For the same sample, our method can
produce leaf-specific images that share common general properties but differ by
features encoded in the latent hierarchy. Moreover, this approach overcomes the
generative limitations of VAE-based hierarchical clustering models like TreeVAE
while preserving their clustering performance.

Generative clustering finds application in domains with abundant unlabeled
data, where both group discovery and synthetic data generation are valuable. In
the medical domain, for example, our model could aid in identifying subgroups
within image data, while simultaneously providing visualizations that enhance
the interpretation of the discovered groupings. Moreover, once meaningful clus-
ters have been identified, the ability to generate representative samples enables
data augmentation for downstream tasks.

1.1 Main Contributions

Our main contributions include (i) a unified framework that integrates hierar-
chical clustering into diffusion models, and (ii) a novel mechanism for controlling
image synthesis based on learned clusters. We demonstrate that our approach
(a) surpasses the generative limitations of VAE-based clustering models, and
(b) produces samples that are both more representative of their respective clus-
ters and closer to the true data distribution than models without hierarchical
clustering integration.

2 Related Work

Variational Approaches for Hierarchical Clustering. Since their introduc-
tion, Variational Autoencoders (VAEs) [15] have been widely used for clustering
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tasks, due to their ability to learn structured latent representations [14]. One
line of work integrates hierarchical Bayesian non-parametric priors into the la-
tent space of VAEs by applying nested Chinese Restaurant Processes to cluster
the data based on infinitely deep and branching trees [9]. Another approach,
TreeVAE [20], models the data distribution by learning an optimal tree struc-
ture of latent stochastic variables. This results in latent embeddings that are
automatically organized into a hierarchy, mimicking the hierarchical clustering
process. Single-cell TreeVAE [34] extends this framework to single-cell RNA se-
quencing data by incorporating batch correction, which facilitates biologically
plausible hierarchical structures. Despite their strong clustering performance,
these models often exhibit limited generative quality, with few providing quan-
titative or qualitative evaluations of their sample generation capabilities. Aside
from generative approaches, discriminative deep hierarchical clustering methods
include DeepECT [21] and CoHiClust [42]. Although not directly designed for
clustering, ClusterNet [5] is a 3D object classification model that leverages hier-
archical clustering to improve the quality of its learned representations. In this
work, however, we focus on generative hierarchical clustering and its use as a
conditioning signal for diffusion models.

Diffusion Models. Diffusion models have become state-of-the-art for image
generation tasks over the past few years [31,12,32,22,6,33,28,26]. One drawback
of diffusion models is that their latent variables lack interpretability compared to
the latent spaces of VAEs. To take advantage of the strengths of both approaches,
researchers have explored architectures that combine the more interpretable la-
tent spaces of VAEs with the advanced generative capabilities of diffusion models.
Notable examples include DiffuseVAE [24], Diffusion Autoencoders [25], and In-
foDiffusion [37]. Furthermore, representation-conditioned image generation [18]
illustrates how self-supervised learning can improve generative diffusion frame-
works in unsupervised settings, reducing the gap between class-conditional and
unconditional image generation.

Connecting Diffusion with Clustering. The research most closely related to
our work focuses on using clustering as conditioning signals for diffusion models
to improve generative quality. One approach [1] utilizes cluster assignments from
k-means or TEMI clustering [2]. Similarly, another one [13] introduces a frame-
work that employs the k-means clustering algorithm as an annotation function,
generating self-annotated image-level, box-level, and pixel-level guidance signals.
Both studies demonstrate the benefits of conditioning on clustering information
to improve generative performance without going into the specifics of clustering
performance itself. In contrast, our work further investigates which types of clus-
tering information are most beneficial for the model, employing learned latent
cluster representations alongside cluster assignments for conditioning. Related
to conditioning on clusters, both kNN-Diffusion [29] and Retrieval-Augmented
Diffusion Models [3] utilize nearest neighbor retrieval to condition generative
models on similar embeddings, minimizing the need for large parametric models
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and paired datasets in tasks like text-to-image synthesis. Diffusion models have
also been applied in incomplete multiview clustering to generate missing views
to improve clustering performance [39,40]. On a different note, recent research
shows that training diffusion models is equivalent to solving a subspace clustering
problem, explaining their ability to learn image distributions with few samples
[36]. Finally, diffusion models have also been applied as a post-hoc method to
enhance the generation quality of multimodal clustering models [23]. However,
to the best of our knowledge, no existing diffusion model explicitly uses hierar-
chical clustering to enhance the interpretability and generative performance of
generative clustering models.

3 Method

We propose TreeDiffusion 1, a two-stage framework consisting of a VAE-based
generative hierarchical clustering model, followed by a hierarchy-conditional dif-
fusion model. In the first stage, TreeVAE [20] serves as the clustering model,
encoding hierarchical clusters within its latent tree structure, where the leaf
nodes represent clusters. We select TreeVAE as it provides structured hierar-
chical latent representations from root to leaf, which are then processed by a
path encoder to create the conditioning signal. In the second stage, a denoising
diffusion implicit model (DDIM) [24], uses this conditioning signal to generate
cluster-conditional samples. Hence, our model enables cluster-guided diffusion
in unsupervised settings, analogously to classifier-guided diffusion [6] in super-
vised settings. Figure 1 illustrates the workflow of TreeDiffusion. The following
sections provide a detailed description of each stage of the model.

3.1 Hierarchical Clustering with TreeVAE

The first part of TreeDiffusion involves a Tree Variational Autoencoder (Tree-
VAE) [20]. TreeVAE is a generative model that learns to hierarchically separate
data into clusters through a latent tree structure. During training, the model
dynamically grows a binary tree structure of stochastic variables. The process
begins with a simple tree composed of a root and two child nodes, and it opti-
mizes the corresponding ELBO over a fixed number of epochs. Afterward, the
tree expands by adding two child nodes to an existing leaf node, prioritizing
nodes with the highest assigned sample count to promote balanced leaves. This
expansion continues iteratively, training only the subtree formed by the new
leaves while freezing the rest of the model. This process repeats until the tree
reaches a predefined depth or leaf count, alternating between optimizing model
parameters and expanding the tree structure.

To formalize the latent tree, we adopt the original notation from TreeVAE
and refer the reader to the original paper [20] for a more comprehensive intro-
duction. Let the set V represent the nodes of the tree. Each node corresponds to
1 The code and supplementary material are publicly available at https://github.
com/JoGo175/TreeDiffusion.

https://github.com/JoGo175/TreeDiffusion
https://github.com/JoGo175/TreeDiffusion


TreeDiffusion: Hierarchical Generative Clustering for Conditional Diffusion 5

    TreeVAE Diffusion Model   

Path 
Encoder

Latent 
Hierarchical

Path Embeddings 

Conditioning
Signal

Fig. 1. Schematic overview of the TreeDiffusion framework: TreeVAE encodes data
into hierarchical latent variables, where a path is sampled from the root to a leaf node.
An encoder network creates a conditioning signal using the sampled hierarchical path
embeddings. The diffusion model leverages this information to condition its reverse
process and generate a cluster-specific image.

a stochastic latent variable, denoted as z0, . . . , zV . The generative process starts
at the root node, where z0 is sampled from a standard Gaussian distribution,
i.e., z0 ∼ N (0, I). The remaining latent variables follow a Gaussian distribution,
whose parameters depend on their parent node through neural network layers.
The set of leaves L, with L ⊂ V, represents the clusters present in the data.
Starting from the root node, z0, a given sample traverses the tree to a leaf node,
zl, in a probabilistic manner. The probabilities of moving to the left or right
child at each internal node are determined by neural networks termed routers.
The decisions of moving to either child node are denoted by ci for each non-leaf
node i and follow a Bernoulli distribution, where ci = 0 indicates the selection
of the left child. The path Pl refers to the sequence of nodes from the root to
one leaf l. Moreover, let zPl

= {zi | i ∈ Pl} denote the set of latent embeddings
for each node in the path Pl. The latent tree encodes a sample-specific prob-
ability distribution of paths. Each leaf embedding, zl for l ∈ L, represents the
learned latent representation for that cluster. In TreeVAE, leaf-specific decoders
use these embeddings to reconstruct or generate new cluster-specific images, i.e.,
given a dataset X, TreeVAE reconstructs X̂ = {X̂(l) | l ∈ L}. In summary, the
generative model (1) and inference model (2) of TreeVAE are defined as follows:

pθ (zPl
,Pl) = p (z0)

∏
i∈Pl\{0}

p
(
cpa(i)→i | zpa(i)

)︸ ︷︷ ︸
decision probability

p
(
zi | zpa(i)

)︸ ︷︷ ︸
sample probability

(1)

q (zPl
,Pl | x) = q (z0 | x)

∏
i∈Pl\{0}

q
(
cpa(i)→i | x

)
q
(
zi | zpa(i)

)
(2)
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3.2 Diffusion conditioned on Hierarchical Clusters

The second part of TreeDiffusion incorporates a conditional diffusion model. We
assume the same forward process as in standard Denoising Diffusion Probabilistic
Models (DDPM) [12], which gradually introduces noise to the data x0 over T
steps. The intermediate states, xt for t = 1, . . . , T , follow a trajectory determined
by a noise schedule β1, . . . , βT that controls the rate of data degradation, whereby
αt = (1− βt) and ᾱt =

∏t
s=1 αs. Hence, the forward process can be summarized

as follows:

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) (3)

q (xt | xt−1) = N
(√

1− βtxt−1, βtI
)

(4)

q (xt | x0) = N
(√
ᾱtx0, (1− αt) I

)
(5)

For the reverse process, TreeDiffusion starts with random noise, similar to
standard diffusion models. Our model relies exclusively on the latent hierarchical
information provided by TreeVAE, which is based on the tree structure learned
during the first stage. The generative process begins by sampling the root em-
bedding of the latent tree. A path is then sampled from the root to a leaf node
l, and a sequence of stochastic transformations is applied to the root embedding
along this path. Specifically, the tree leaf l corresponds to the selected cluster
and represents the unique path through the hierarchical structure. The hierar-
chical conditioning information is derived from zPl

, the set of latent embeddings
along the path from the root node to the chosen leaf. These embeddings are fur-
ther processed by a dedicated path encoder, which aggregates the information
to produce the conditioning signal yl:

yl =
∑
i∈Pl

(fembed(zi) + fnode(i)) .

Here, fembed and fnode are each implemented as projection blocks consisting
of two MLP layers with an activation in-between, and jointly trained with the
diffusion model. For each node in the path, its embedding and corresponding
node index are projected independently into the time embedding dimension of
the U-Net decoder [27,22]. The resulting projections are aggregated into the
unified conditioning signal yl, which is then combined with the time-step em-
beddings to guide the U-Net during the denoising process. Consequently, this
conditioning mechanism directly influences the reverse process. Let ψ denote
the parameters of the denoising model, and let p(l|x0) be the probability that
the sample x0 is assigned to leaf l in the latent tree. The reverse process can
then be summarized as follows:

l ∼ p(l|x0),

pψ(x0:T |yl) = p (xT )

T∏
t=1

pψ(xt−1 |xt,yl),
(6)
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The path sampling ensures that different leaves are considered, prompting
the diffusion model to perform effectively across all leaves. Consequently, our
approach addresses the distinct clusters inherent to TreeVAE, allowing the model
to adapt and encouraging cluster-aware refinements in the images. This guidance
in the image generation process assists the denoising model in learning cluster-
specific image reconstructions. Currently, sampling is limited to paths originating
from the root. We leave partial sampling using subtrees as well as the exploration
of alternative methods for constructing the path embeddings for future work.

The following design considerations are implemented in TreeDiffusion to
achieve computational efficiency without compromising effectiveness. Due to the
large number of denoising steps required, DDPM sampling can be computation-
ally expensive. To address this issue, we opt for the DDIM sampling procedure
[32] instead of the standard DDPM [12]. DDIMs significantly accelerate infer-
ence by using only a subset of denoising steps, making the process more efficient
while maintaining high-quality results. Finally, by employing a two-stage train-
ing strategy, where the conditional diffusion model is trained using a pre-trained
TreeVAE model, TreeDiffusion preserves the hierarchical clustering performance
of TreeVAE. Hence, we can combine the effective clustering of TreeVAE with the
superior image generation capabilities of diffusion models.

4 Experiments

We present a series of experiments to evaluate the performance of TreeDiffusion
across various datasets. The experiments are carried out on MNIST [17], Fash-
ionMNIST [41], CIFAR-10 [16], CelebA [19], and CUBICC [23]. The CUBICC
dataset is a variant of the CUB Image-Captions dataset [35,30], consisting of bird
images grouped into eight distinct species. In Section 4.1, we compare the gen-
erative performance of TreeDiffusion against baseline methods. In Section 4.2,
we evaluate how specific the generated images are to their source clusters and
analyze how distinct images from different clusters are from one another. Finally,
in Section 4.3, we perform an ablation study on conditioning signals, examining
various model configurations to identify which signals most effectively improve
generative performance. Specifically, we compare conditioning strategies based
on hierarchical clustering, flat clustering, and no clustering information.

4.1 Generative Performance

The following analysis compares the proposed TreeDiffusion model with Tree-
VAE [20], and a naive hybrid baseline, referred to as "TreeVAE + Diffusion". In
this hybrid approach, inspired by DiffuseVAE [24], the diffusion model refines the
output image generated or reconstructed by TreeVAE, but it is not conditioned
on any latent information from the hierarchical structure. In contrast, TreeDif-
fusion introduces a key novelty by conditioning the diffusion model on the latent
hierarchical path information extracted from TreeVAE. Moreover, TreeDiffusion
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initiates the denoising process from random noise rather than using the Tree-
VAE image outputs as the denoising starting point. This enables TreeDiffusion
to leverage the structure of the latent tree for cluster-specific generation. Hence,
both TreeVAE + Diffusion and TreeDiffusion use TreeVAE as the first-stage
model, with the main differences lying in the conditioning mechanism and the
starting point of the denoising process.

The evaluation considers both reconstruction and generative performance,
measured using the Fréchet Inception Distance (FID) [11]. Reconstruction per-
formance is assessed by computing the FID score between reconstructed images
and their corresponding test set images. Generative performance is evaluated by
calculating the FID score for 10,000 newly generated images. The results of this
analysis are summarized in Table 1.

The naive approach (TreeVAE + Diffusion) and TreeDiffusion both achieve
substantial improvements over the baseline TreeVAE, their first-stage model, re-
ducing FID scores by approximately an order of magnitude across all datasets.
The naive approach performs better on simpler grayscale datasets, primarily
excelling at image reconstruction rather than generation. This highlights a ten-
dency toward overfitting. Conversely, TreeDiffusion consistently outperforms on
the more complex, real-world color datasets at generating new images. Most
likely, the difference in performance stems from how the denoising process is
initialized. The naive model begins denoising from TreeVAE reconstructions,
thereby making it highly dependent on the reconstruction quality provided by
TreeVAE. Given that TreeVAE struggles more with generating new images than
with reconstruction, this limitation is propagated into the naive approach. TreeD-
iffusion circumvents this issue by initializing the denoising directly from noise, us-
ing only latent representations from TreeVAE. As a result, TreeDiffusion achieves
a better balance between reconstruction and generation quality, leading to better
FID scores on newly generated images. Figure 3 compares image reconstructions
on CIFAR-10, demonstrating that both diffusion-based models significantly im-
prove upon the image quality produced by TreeVAE.

4.2 Cluster-specific Representations

Higher quality cluster-specific generations. In Figure 3, we present ran-
domly generated images for the CUBICC dataset for both TreeVAE and TreeD-
iffusion, where each column corresponds to an independently generated sample.
For each generation, we first sample the root embedding; then, we sample the
path in the tree and the refined representations along the selected path iteratively
until a leaf is reached. The hierarchical representation is then used to condition
the inference in TreeDiffusion. As can be seen, the TreeDiffusion generations
show substantially higher generative quality. In the following, we examine the
first generated sample from Figure 3 in more detail. For this one sample, we
present the generations of all leaves in Figure 4 by propagating the correspond-
ing root representation across all paths in the tree. Note that the selected sample
shown in Figure 3 ended up stemming from leaf 3 in Figure 4. When compar-
ing the generated images across the leaves for both models, it is evident that
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Table 1. Test set generative performances of the compared models. FID scores for
10, 000 samples (lower is better) computed across 10 random model initializations.

Dataset Method FID (rec) ↓ FID (gen) ↓

MNIST TreeVAE 24.0± 0.9 21.8± 0.7
TreeVAE + Diffusion 1.4± 0.0 1.8± 0.1
TreeDiffusion 1.5± 0.0 1.8± 0.1

Fashion TreeVAE 40.7± 2.1 41.9± 2.1
TreeVAE + Diffusion 4.8± 0.2 4.8± 0.2
TreeDiffusion 5.5± 0.6 5.4± 0.4

CIFAR-10 TreeVAE 175.8± 1.4 188.0± 2.0
TreeVAE + Diffusion 12.3± 0.1 19.7± 0.2
TreeDiffusion 12.5± 0.4 17.8± 0.4

CUBICC TreeVAE 232.5± 7.1 255.3± 8.8
TreeVAE + Diffusion 12.7± 6.5 96.0± 2.1
TreeDiffusion 13.4± 0.9 29.0± 5.4

CelebA TreeVAE 75.2± 15.0 77.9± 5.6
TreeVAE + Diffusion 15.4± 3.2 30.1± 7.5
TreeDiffusion 14.1± 6.0 18.4± 7.2

Fig. 2. Ten different CIFAR-10 reconstructions generated by the TreeVAE model, each
obtained by sampling a single path in the tree. Corresponding reconstructions from
TreeVAE + Diffusion, which begins denoising with the TreeVAE reconstructions, are
shown alongside those from TreeDiffusion, which conditions on the same selected path
and embeddings but starts denoising from noise.

TreeDiffusion not only produces sharper images for all clusters but also gener-
ates a greater diversity of images. Note that both models utilize the same latent
information for image generation. While TreeVAE and TreeDiffusion maintain
similar overall color distribution and structural characteristics, TreeDiffusion
significantly enhances cluster specificity, resulting in images with greater clar-
ity and distinctiveness for each cluster. Further examples of leaf-specific image
generations are available in the supplementary material.

https://github.com/JoGo175/TreeDiffusion/blob/main/Supplementary_Material-Appendix.pdf
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Fig. 3. Ten different samples generated by the TreeVAE model, each generated by
sampling one path in the tree, and corresponding samples from the TreeDiffusion model,
conditioned on the same selected path and embeddings from TreeVAE.

Fig. 4. Image generations from every leaf of the TreeVAE and TreeDiffusion model,
both trained on the CUBICC dataset. Each row shows the generated images from all
leaves of the respective model, starting with the same root sample.
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Fig. 5. TreeDiffusion model trained on FashionMNIST. For each cluster, random newly
generated images are displayed. Below each set of images, a normalized histogram
(ranging from 0 to 1) shows the distribution of predicted classes from an independent,
pre-trained classifier on FashionMNIST for all newly generated images in each leaf with
a significant probability of reaching that leaf.
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Fig. 6. Image generations from each leaf of (top) TreeVAE, (middle) TreeVAE + Dif-
fusion which starts denoising with the TreeVAE images, and (bottom) TreeDiffusion
model conditioned on the hierarchical path embeddings, all trained on CUBICC. Each
row displays the generated images from all leaves of the specified model, starting with
the same sample from the root. The corresponding leaf probabilities are shown at the
top of the image and are, by design, the same for all models.

Cluster information is retained across generations. To quantitively assess
whether the newly generated images retain their cluster information, we train a
classifier on the original labeled training data and then use it to classify generated
images of TreeDiffusion. Specifically, we classify the generations for each cluster
separately. The idea is that “pure“ leaves should create samples that are classified
into one or very few classes. For this classification task, we use a ResNet-50 model
[10] trained on each dataset. In Figure 5, we present randomly generated images
from a TreeDiffusion model trained on FashionMNIST, together with normalized
histograms depicting the distribution of the predicted classes for each leaf. For
instance, clusters representing trousers and bags appear to accurately and dis-
tinctly capture their respective classes, as all their generated images are classified
into one group only. Conversely, certain clusters are characterized by a mixture
of classes, indicating that they are grouped together. Overall, we observe that
the leaf-specific generations retain the hierarchical clustering structure found by
TreeVAE, thereby enhancing the interpretability in diffusion models.

On the benefits of hierarchical conditioning. We hereby assess whether
the conditioning on hierarchical representations improves cluster-specific gener-
ative quality. To this end, we compare the generations of TreeDiffusion, which is
conditioned on the hierarchical representation, to the baseline TreeVAE + Dif-
fusion from earlier, which is not conditioned on the latent cluster information.
For this experiment, we use the previously introduced independent classifier to
create the normalized histograms for each leaf to evaluate how cluster-specific
the newly generated images are. As mentioned above, ideally, the majority of
generated images from one leaf should be classified into one or very few classes
from the original dataset. To quantify this, we compute the average entropy for
all cluster-specific histograms. Lower entropy indicates less variation in the his-
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tograms and, thus, more cluster-specific generations. Table 2 presents the results
for all labeled datasets.

Table 2. Cluster-specificity of TreeDiffusion generations comparing cluster-
unconditional and cluster-conditional reverse models, measured by mean entropy.
Lower entropy indicates more cluster-specific generations. The best result for each
dataset is marked in bold.

Dataset Method Cluster Conditioning Mean Entropy
MNIST Diffusion + TreeVAE × 1.24

TreeDiffusion ✓ 0.33
Fashion Diffusion + TreeVAE × 0.66

TreeDiffusion ✓ 0.65
CIFAR10 Diffusion + TreeVAE × 1.12

TreeDiffusion ✓ 0.93
CUBICC Diffusion + TreeVAE × 0.07

TreeDiffusion ✓ 0.20

For most datasets, the conditional model exhibits lower mean entropy, in-
dicating that cluster conditioning indeed helps guide the model to generate
more distinct and representative images for each leaf. However, for the CUBICC
dataset, we observe that the mean entropy is lower for the cluster-unconditional
model. This is because the classifier tends to predict all images into a single class,
a result of model degeneration, where it primarily generates images for only a
few classes. Figure 6 visually presents the leaf generations for one sample of
these models alongside the underlying TreeVAE generations. It can be observed
that both the cluster-unconditional and conditional models exhibit a significant
improvement in image quality. However, the images in the cluster-conditional
model are more diverse, demonstrating greater adaptability for each cluster. No-
tably, across all models, the leaf-specific images share common properties, such
as background color and overall shape, sampled at the root while varying in
cluster-specific features from leaf to leaf within each model.

4.3 Ablation study on conditioning information

Finally, we conduct an ablation study to evaluate the impact of different con-
ditioning signals on the generative performance. Specifically, we compare three
types of conditioning: (i) hierarchical clustering signals derived from the latent
embeddings of the selected cluster path zPl

, (ii) flat clustering signals, including
leaf assignment l, leaf embedding zl, or both, and (iii) an unconditioned setting
where the diffusion model does not utilize any latent cluster representations from
TreeVAE. Additionally, we examine the effect of using the TreeVAE leaf recon-
struction x̂

(l)
0 as the starting point for the denoising process in the second-stage

diffusion model. The results, outlined in Table 3, show the FID score calculated
from 10, 000 samples generated using 100 DDIM steps, averaged over 10 seeds.
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Note that the first row in the table represents the TreeVAE + Diffusion model
from the previous experiments, whereas the last row corresponds to the proposed
TreeDiffusion method.

Table 3. Effect of conditioning signals on generative performance for CIFAR-10. FID
scores for 10, 000 samples (lower is better) computed across 10 random model initial-
izations.

Conditioning Type x̂
(l)
0 l zl zPl FID ↓

No Cluster Conditioning ✓ 19.7± 0.2

Flat Clustering-Based Conditioning

✓ ✓ 19.1± 0.3
✓ ✓ 18.9± 0.3
✓ ✓ ✓ 19.2± 0.2

✓ ✓ 19.1± 0.5

Hierarchical Clustering-Based Conditioning ✓ ✓ 18.2± 0.3
✓ 17.8± 0.4

The findings suggest that incorporating latent leaf information — whether
through leaf assignment, leaf embedding, or both — significantly improves gen-
erative performance compared to relying solely on leaf reconstructions. This
highlights the added benefit of conditioning on flat clustering information. Fur-
thermore, conditioning on the full path zPl

, which integrates all embeddings and
intermediate node assignments from the root to the leaf, leads to an even greater
performance boost. This underscores the effectiveness of hierarchical clustering
information beyond flat clustering. As a result, harnessing zPl

from the hierar-
chical structure not only produces more structured generations, as illustrated in
Figure 4, but also enhances the generative performance of generative clustering
models. Notably, when conditioning on the full path, the model performs better
without relying on TreeVAE reconstructions. Instead, the conditional diffusion
model generates new images from scratch, guided solely by the latent informa-
tion.

5 Conclusion

In this work, we present TreeDiffusion, a novel approach to integrate hierarchi-
cal clustering into diffusion models. By enhancing TreeVAE with a Denoising
Diffusion Implicit Model conditioned on latent hierarchical representations, we
propose a model capable of generating distinct, high-quality images that faith-
fully represent their respective data clusters. This approach not only improves
the visual fidelity of the generated images but also facilitates cluster visual-
ization. TreeDiffusion offers a robust framework that bridges the gap between
clustering and generative performance, thereby expanding the potential appli-
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cations of generative models in areas requiring detailed and more interpretable
visual data interpretation.
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