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Abstract. Diffusion models have emerged as powerful generative mod-
els, inspiring extensive research into their underlying mechanisms. One
of the key questions in this area is the loss functions these models shall
train with. Multiple formulations have been introduced in the literature
over the past several years [4,13,7,11] with some links and some critical
differences stemming from various initial considerations. In this paper, we
explore the different target objectives and corresponding loss functions
in detail. We present a systematic overview of their relationships, unify-
ing them under the framework of the variational lower bound objective.
We complement this theoretical analysis with an empirical study pro-
viding insights into the conditions under which these objectives diverge
in performance and the underlying factors contributing to such devia-
tions. Additionally, we evaluate how the choice of objective impacts the
model’s ability to achieve specific goals, such as generating high-quality
samples or accurately estimating likelihoods. This study offers a unified
understanding of loss functions in diffusion models, contributing to more
efficient and goal-oriented model designs in future research.

Keywords: Diffusion Model · Loss Functions · Generative Modeling.

1 Introduction

Diffusion models [4] have become a cornerstone of generative modeling in recent
years, demonstrating remarkable capabilities in generating high-quality data.
Given a sample x0 ∼ q(x) from a data distribution, the forward process in
diffusion models incrementally corrupts the data by adding small amounts of
Gaussian noise over multiple steps T . This process is defined as q(xt | xt−1) =
N (xt;αxt−1, σ

2I), where α controls the scaling of the data xt−1, and σ controls
the magnitude of the added noise. The objective is then to learn the reverse
process q(xt−1 | xt) which enables the generation of new samples by starting
from pure Gaussian noise xT ∼ N (0, I) and iteratively denoising it to recover
realistic data. This framework of probabilistic modeling allows diffusion models
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to capture complex data distributions, making them highly effective for a wide
range of generative tasks.

The class of diffusion models has seen several notable contributions, particu-
larly in the development of training objectives. In score-based modeling [13], the
reverse process is learned by minimizing a denoising score-matching objective.
Ho et al. [4], in their work on DDPM, generated high quality images by adopting
noise prediction ϵ as the primary objective. Variational Diffusion Models (VDM)
[7] used the training objective, formulated in terms of the Signal-to-Noise Ratio
(SNR), which achieved the best likelihood estimation. Additionally, the authors
of Progressive Distillation [11] modeled the rate of change in data distribution
over time, presenting a novel loss function that combines the data representa-
tion x and the noise component ϵ. This objective was instrumental in reducing
the number of sampling steps required to generate high-quality samples. These
advancements highlight the critical role of loss function design in improving the
performance and efficiency of diffusion models.

Existing research has explored the theoretical equivalence of various training
objectives used in diffusion models. For instance, [15] established connections be-
tween score matching and diffusion-based generative frameworks by leveraging
stochastic differential equations to model the forward process, thereby aligning it
with continuous distributions that evolve over time. Similarly, [7] introduced the
Evidence Lower Bound (ELBO) objective for diffusion, inspired by Variational
Autoencoders [8]. More recently, [6] demonstrated that diffusion model objectives
are fundamentally equivalent and closely related to the ELBO framework. How-
ever, while these works highlight the theoretical equivalence of the loss functions,
they lack a structured analysis of their formulations under a single framework.
Furthermore, there is no empirical study investigating whether the mathematical
equivalence between objectives persists when training diffusion models with deep
neural networks. Therefore, there is only limited understanding of how these loss
formulations differ in terms of performance. This gap highlights the need for a
systematic exploration of outcomes of these theoretical connections.

In this study, we conduct a comprehensive comparison of different train-
ing objectives, specifically the weighted and the ELBO objectives, formulated
for four different target predictions of the diffusion models: data x , noise ϵ,
rate of change in the data distribution v and score s. We derive the negative
ELBO loss in terms of these targets and establish mathematical relationships
with the most commonly used diffusion loss functions. These relationships help
us to design experiments that evaluate whether the theoretical equivalence be-
tween these objectives holds in practice when used for training over the same
datasets. Our experiments highlight the differences and similarities in the the-
oretical foundations and practical behavior of these loss functions, particularly
in terms of loss convergence during training and the quality of generated sam-
ples. We explore the loss behavior across different diffusion timesteps, providing
insights into the mechanisms that drive their performance and functionality. Ad-
ditionally, we compare the outcomes of these training objectives in terms of data
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density estimation and sample quality, offering a comprehensive understanding
of their roles in optimizing diffusion models.

The paper is structured as follows: section 2 provides the background on
diffusion models. In section 3 we introduce the various target predictions used in
diffusion models, derive the loss functions under different framework, and show
the relation between them. In section 4 we describe the experiments we perform
and give insights on the results obtained. Finally, we conclude by summarizing
our findings and suggesting directions for future research. The code used in this
study is available at: https://github.com/dibyanshu100/LFDM.

2 Model

In this section, we provide an overview of the forward and reverse processes used
in diffusion models.

2.1 Forward diffusion process

The forward process in diffusion models is a Markov process, where the infor-
mation in a given data x is progressively destroyed by adding noise in a series of
timesteps, producing intermediate latent variables, denoted as zt, where t ∈ [0, 1]
represents the corresponding timestep. To achieve this, a schedule is used to de-
fine the amount of noise to be added and the signal to be removed at each
timestep, regulated by parameters αt and σt. The distribution of latent vari-
ables and the Markov transition distribution in the forward process is defined as
follows:

q(zt | x) = N (zt;αtx, σ
2
t I)

q(zt | zs) = N (zt;αt|szs, σ
2
t|sI)

(1)

where 0 ≤ s ≤ t ≤ 1, αt|s =
αt

αs
and σ2

t|s = σ2
t − α2

t|sσ
2
s

The scheduling parameters, αt and σt are strictly positive, smooth, mono-
tonically decreasing and increasing functions of time respectively. Based on this
we can define the Signal-to-Noise ratio SNR(t) as:

SNR(t) =
α2
t

σ2
t

(2)

As time t progresses, the SNR decreases. This implies that for s < t, we have
SNR(s) > SNR(t). At t=0 the data is least noisy and at t=1 there is no more
signal left in the data, hence q(z1 | x) = N (z1; 0, I).

The choice of schedule significantly impacts the performance of diffusion
models, and there are several ways of noise scheduling. DDPM [4] employed a
linear schedule to add noise over 1000 discrete timesteps. Nichol and Dhariwal
[9], used cosine scheduling and found it to perform better due to its smooth tran-
sition between low and high levels of noise. In VDM [7], the authors learned the
forward noise schedule, moreover they demonstrate that increasing the number

https://github.com/dibyanshu100/LFDM
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of timesteps resulted in a decrease in loss, thereby achieving good results with a
continuous-time model. The schedules used in the above mentioned works were
variance preserving (α2

t = 1 − σ2
t ), which ensures that the variance of the data

remains constant throughout the forward process. Alternatively, in the case of
variance-exploding schedules [15,14], α2

t = 1. It was demonstrated by Kingma et
al. [7] that the variance preserving and variance exploding formulations can be
considered equivalent in continuous time.

2.2 Reverse generative process

The reverse diffusion process q(zs | zt) is also a Markov chain with Gaussian
transition probability and aims to recover the original data x from the noisy data
zt. Since the true reverse process q(zs | zt) is intractable, it is approximated with
a learned distribution pθ(zs | zt). This forms a hierarchical generative model that
samples a sequence of latent variables zt, with time progressing from t=1 to t=0,
gradually denoising the data over T steps to recover the original distribution.
For discrete time case number of steps T is finite and is discretized into uniform
timesteps of width 1/T , with s(i) = i−1

T and t(i) = i
T ,

The overall reverse process is defined as,

pθ(x) =

∫
z

p(z1)pθ(x | z0)
T∏

i=1

pθ(zs(i) | zt(i))dz (3)

To approximate the true data distribution we need to minimize the negative
log likelihood. However, that is intractable and we minimize the tractable nega-
tive variational lower bound also called negative evidence lower bound (NELBO)
instead, which is standard in latent variable models and is expressed as,

− log pθ(x) ≤ NELBO(x) = DKL (q(z1 | x) ∥ p(z1))︸ ︷︷ ︸
Prior Loss

+

Eq(z0|x) [− log pθ(x | z0)]︸ ︷︷ ︸
Reconstruction Loss

+

T∑
i=1

Eq(zt(i)|x) DKL
[
q(zs(i) | zt(i),x) ∥ pθ(zs(i) | zt(i))

]
︸ ︷︷ ︸

Diffusion Loss (LT (x))

(4)

Based on the assumptions of the forward process, z0 is nearly identical to x
because only a small amount of noise is added, making the reconstruction loss
in the equation (4) negligible and therefore can be dropped from the objective
in practice. Moreover, as discussed in section 2.1, q(z1 | x) approaches a pure
Gaussian distribution at the end of the forward process which matches our fixed
prior p(z1) = N (z1; 0, I). As a result, the KL divergence DKL

(
q(z1 | x) ∥ p(z1)

)
tends to zero, hence this term is also dropped. The remaining term is the diffusion
loss LT (x) which depends on the number of timesteps T determining the depth
of the generative model.
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3 Loss formulations

In the previous section, we defined the NELBO objective (4). For the denoising
model there are several options for the target prediction in addition to the data
x. For example, some approaches focus on predicting the noise ϵ added during
the forward process [4,12,9]. Another approach predicts the rate of change in
the data distribution over time, also known as v-prediction [11]. Some methods
target the score function ∇x log p(x) [13,15], which is the gradient of the log-
probability density of the data.

For each of these targets, we can derive the NELBO loss formulation (L)
from equation (4). In addition, other loss formulations are also proposed in the
literature, typically designed to prioritize perceptual sample quality or compu-
tational efficiency. We call these weighted loss functions (L) as they can all be
shown as a weighted function of the NELBO where the weight w(t) is a suitable
chosen weighting function.

L = w(t)L (5)

In the following sections, we explore the various target predictions and corre-
sponding loss formulations in detail. We present a systematic review of these re-
lationships, unifying them under the framework of the NELBO objective. Specif-
ically, we derive the NELBO in terms of these alternative targets and show that
all the different objectives, whether predicting the original data x, noise ϵ, rate
of change in the data distribution v, or score s can be expressed as weighted
functions of the NELBO. For clarity, we refer to different target objectives as
x-space, ϵ-space, v-space, and s-space throughout this paper.

3.1 x-space

As shown in section 2.2, the NELBO reduces to diffusion loss which is the last
term of equation (4). This can be further simplified to the following form (a
detailed derivation of these steps is provided in appendix B.1).

LT (x) =
T

2
Eϵ∼N (0,I),i∼U{1,T}

[
(SNR(s(i))− SNR(t(i))) ∥x− x̂θ(zt; t)∥22

]
(6)

where x̂θ(zt; t) is the prediction of the original data x by our denoising model
given the noisy data zt = αtx+ σtϵ at timestep t.

For the continuous-time case, T → ∞. Here, the timestep t is treated as a con-
tinuous variable, and the transition process is referred to as the continuous-time
diffusion process [7]. In this setting, equation (6) transforms into the following
form,

L(x) = −Et∼U(0,1),ϵ∼N (0,I)

[
SNR′(t) ∥x− x̂θ(zt; t)∥22

]
(7)
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where we prove that for cosine noise schedule, SNR′(t) = −παt

σ3
t

(see appendix
B.1). Note that we use U{1, T} to denote sampling from a discrete uniform dis-
tribution, while U(0, 1) denotes sampling from a continuous uniform distribution
in the continuous-time setting.

Moreover we can define the weighted loss as,

L(x) = −Et∼U(0,1),ϵ∼N (0,I)

[
wx(t) SNR′(t) ∥x− x̂θ(zt; t)∥22

]
(8)

By choosing wx(t) = − 1
SNR′(t) , this further simplifies as an expected value of

the mean squared error between the original data and the predicted data,

L(x) = Et∼U(0,1),ϵ∼N (0,I)

[
∥x− x̂θ(zt; t)∥22

]
= wx(t)L(x) (9)

3.2 ϵ-space

The ϵ-space loss formulation is one of the most commonly used objective in
diffusion models, as proposed in DDPM[4]. Instead of directly reconstructing
the original data x, we model the noise component ϵ that was added to the data
in every time step during the forward diffusion process. The authors of the paper
claimed that this approach simplifies the learning task, as the prediction of noise
aligns with the stochastic nature of the diffusion process.

We derive the NELBO loss in ϵ-space, as detailed in the appendix B.2,

L(ϵ) = −Et,ϵ

[
SNR′(t)

SNR(t)
∥ϵ− ϵ̂θ(zt; t)∥22

]
(10)

The loss proposed in DDPM is different from the NELBO loss. They used
the weighted ϵ loss, which implies that the model learns to predict the noise
sampled from the unit Gaussian and not the scaled noise which was added to
the original data x at every timestep during the forward diffusion process. The
weighted ϵ-loss is given as below and can be seen as a weighted function of (10)
with weight wϵ(t) = − SNR(t)

SNR′(t) :

L(ϵ) = Et,ϵ

[
∥ϵ− ϵ̂θ(zt; t)∥22

]
= wϵ(t)L(ϵ) (11)

3.3 v-space

The v-space loss, introduced in [11], combines the data x and noise ϵ. This for-
mulation is particularly beneficial for model distillation to reduce the number
of sampling steps, as while sampling the standard noise objective becomes un-
stable when the SNR approaches zero. In such cases αt tends to zero, leading
to instability in reconstructing the data from the predicted noise as x̂θ(zt) =
1
αt

(zt − σtϵ̂θ(zt)). The authors showed that this issue has less impact in con-
ventional diffusion models, where clipping the reconstructed data in the desired
range and using a large number of sampling steps can mitigate errors but be-
comes a key factor in distillation, where efficient sampling is essential in a limited
number of steps.
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This approach expresses the noisy data using an angular parameter ϕt, where
zϕt = cos(ϕt)x + sin(ϕt)ϵ, and ϕt = arctan

(
σt

αt

)
. The target vϕt is then calcu-

lated as vϕt
=

dzϕt

dϕt
= cos(ϕt)ϵ − sin(ϕt)x, which represents the instantaneous

direction and rate of change required to transform the noisy data zϕt along a
circular trajectory parameterized by the angle ϕt.

The NELBO loss in v-space as derived in appendix B.3 is given as,

L(v) = −Et,ϵ

[
σ2
t

α2
t + σ2

t

SNR′(t) ∥v − v̂θ(zt; t)∥22
]

(12)

The weighted v loss can be formulated as the weighted function of NELBO
with weight wv(t) = − (α2

t+σ2
t )

σ2
t SNR′(t)

L(v) = Et,ϵ

[
∥v − v̂θ(zt; t)∥22

]
= wv(t)L(v) (13)

3.4 s-space

Score modeling, introduced by Song et al. [13] uses denoising score matching
[17] to approximate the score function and then use a neural network to learn
it. The idea behind score matching is to add a small amount of noise to the
data, which makes the score calculation tractable, and therefore learn the score
of perturbed distribution instead of the original distribution, which is expressed
as ∇zt

log q(zt | x). The authors demonstrate that minimizing the denoising
score matching objective across multiple noise scales enables high quality sample
generation. This theory is closely aligned with the diffusion process, as both
approaches aim to refine the noisy data toward its original distribution.

In [15], the authors bridged the gap between score modeling and diffusion
models by proposing score based modeling using stochastic differential equations
(SDE). They showed that the forward diffusion process can be interpreted as a
discretization of a continuous-time SDE, and the reverse process corresponds to
solving the reverse-time SDE using the learned score function.

We demonstrate here that the NELBO loss can once again be formulated in
s-space and can be expressed as below (see in appendix B.4),

L(s) = −Et,ϵ

[
σ4
t

α2
t

SNR′(t) ∥∇zt
log q(zt | x)− ŝθ(zt; t)∥22

]
(14)

The weighted loss in s-space can be formulated as the weighted function of
NELBO with weight ws(t) = − α2

t

σ4
t SNR′(t)

L(s) = Et,ϵ

[
∥∇zt

log q(zt | x)− ŝθ(zt; t)∥22
]
= ws(t)L(s) (15)

Furthermore, for Gaussian noise perturbation the score simplifies to:

s = ∇zt
log q(zt | x) = − (zt − αtx)

σ2
t

(16)
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3.5 Equivalence of loss functions

All the NELBO loss formulations across different parameter spaces are derived
from same equation (7), therefore, they are fundamentally equivalent. However,
to derive the weighted loss from the NELBO loss, we need to apply different
weights, which essentially removes the SNR scalings associated with the ℓ2 dif-
ference between the target and the prediction. As a result, these weighted loss
functions are not equivalent, even though they are all initially derived from the
same NELBO formulation.

To establish a relationship between the weighted loss formulations, we rescale
the weighted loss in ϵ, v and s space to make it equal to L(x). We call them
rescaled loss L̃ that is equivalent across all targets and can be easily obtained
using the weights derived in the previous sections,

L̃(ϵ) = σ2
t

α2
t

L(ϵ) = L(x) (17)

L̃(v) = σ2
t

α2
t + σ2

t

L(v) = L(x) (18)

L̃(s) = σ4
t

α2
t

L(s) = L(x) (19)

Table 1 summarizes all the loss formulations across different targets for the
denoising model.

Table 1: Overview of all the loss formulations across different scenarios. While the
NELBO and the rescaled loss are equivalent and comparable, the weighted losses
are not equivalent and are expected to exhibit different empirical performance.
Target NELBO loss

(L)
Weighted loss

(L)
Rescaled loss

(L̃)
x −E

[
SNR′(t) ∥x− x̂θ∥22

]
E
[
∥x− x̂θ∥22

]
E
[
∥x− x̂θ∥22

]
ϵ −E

[SNR′(t)
SNR(t)

∥ϵ− ϵ̂θ∥22
]

E
[
∥ϵ− ϵ̂θ∥22

]
E
[ σ2

t

α2
t
∥ϵ− ϵ̂θ∥22

]
v −E

[ σ2
t

α2
t+σ2

t
SNR′(t) ∥v − v̂θ∥22

]
E
[
∥v − v̂θ∥22

]
E
[ σ2

t

α2
t+σ2

t
∥v − v̂θ∥22

]
s −E

[ σ4
t

α2
t
SNR′(t) ∥s− ŝθ∥22

]
E
[
∥s− ŝθ∥22

]
E
[ σ4

t

α2
t
∥s− ŝθ∥22

]

Although researchers have claimed that some training objectives outperform
others in diffusion models, the reasons behind these differences remain unclear
and are often attributed to empirical observations rather than theoretical foun-
dations. For instance, while some works prefer more complex weights for loss
functions [1,5,3], others [4,9] find that simpler objectives (e.g. ℓ2 loss between
target and prediction) perform just as well or even better in practice. This dis-
crepancy raises questions about the fundamental role of loss formulations in
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training diffusion models and whether the observed performance gaps are due
to the loss functions themselves or other factors such as model architecture,
training dynamics, or noise schedules.

In our theoretical analysis, we formulated the NELBO loss for different de-
noising models. Specifically, we showed that different formulations of the learned
model (i.e. predicting original data x, noise ϵ, rate of change of data distribution
v and score function s) can be mapped to one another, and their corresponding
NELBO objectives are mathematically interchangeable. We also formulated the
relations between the weighted loss formulations.

In principle, the mathematical equivalence we established should hold when
we train the various denoising models with equivalent loss formulations under
similar conditions (e.g., dataset, model architecture etc.). In the next section,
we outline the experiments conducted to validate this hypothesis and provide a
detailed analysis of the results obtained.

4 Experiments

In this section, we outline the experimental setup used to conduct our tests
and present the results obtained from these experiments. Additionally, we give
a detailed analysis and insights into the findings.

4.1 Experimental setup

To conduct our experiments, we first work with 2-dimensional synthetic datasets
that we generated ourselves. These datasets are well-suited for detailed analysis
as it is easy to plot numerous examples and visually analyze the complete data
manifold. To ensure the generalizability of our findings, we select four distinct
2D datasets with 100K samples each. These datasets are: Cluster data, Ring
data, Swiss roll data and Waves data, the scatter plots of these datasets can be
seen in fig. 1. In fig. 2 we show the effect of gaussian noise added in the forward
process for all these datasets.

We also perform experiments on a high-dimensional image dataset, CIFAR-
10, which is a publicly available dataset that contains 32x32 color images across
10 classes. While we present results on an image dataset, our main focus is not
on extensive image generation experiments but understanding the behavior of
different loss formulations. However, this work sets the foundation for future
research to explore their impact on image data more deeply.

We used a variance-preserving cosine schedule for the forward process, com-
bined with a continuous-time reverse model T → ∞. Hence, the noisy data at
time t ∼ U(0, 1), is given as zt = cos(0.5πt)x+ sin(0.5πt)ϵ. To ensure compara-
bility across experiments, for the 2D datasets, we modeled the reverse process
using a simple feedforward neural network architecture consisting of 7 fully con-
nected layers followed by a ReLU activation. In addition, we maintained con-
sistent training dynamics for all datasets. For the image dataset, we used an
architecture inspired by diffusers UNet model [10].
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Fig. 1: Scatter plot for 2D datasets

Fig. 2: Effects of adding cosine scheduled Gaussian noise in the forward process

4.2 Experimental results and discussion

In our analysis, we examine the performance of diffusion model trained with
various loss formulations from three key perspectives: (i) loss convergence over
epochs indicating the training and stability efficiency, (ii) the quality of generated
samples that reveals how well the model produces realistic and high fidelity
samples, and (iii) loss behavior at different timesteps t that give insights into
how different loss formulations influence the reverse diffusion process over time.
Due to space limitations, we present some results only for the ring data, while
results for other datasets follow similar patterns and are provided in the appendix
C for completeness.

Loss convergence vs epochs: We begin by training the denoising model
using the NELBO loss formulations L for different target predictions. Given
their theoretical equivalence as discussed in section 3, we expect them to behave
similarly in experiments. Fig. 3 illustrates the NELBO test loss for different
datasets. The loss curves for predictions in the v and ϵ space are close, and so
is loss in x and s space. However, these two groups differ significantly for all
scenarios indicating a discrepancy in their training dynamics.
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Fig. 3: NELBO test loss for different datasets

We attribute these differences to the different SNR scaling of the targets
within the NELBO formulation which is inversely proportional to the weight-
ing function and is given by 1

w(t) . These scaling factors control how much each
timestep contributes to the overall loss, and therefore have an impact on how
the model learns during training. As shown in fig. 4, the scaling for ϵ and v
space are substantially higher in the early time steps, when the noise added to
the data is minimal. While x space also exhibits large initial scaling, its decay
is more gradual over time. In contrast, the s space has higher scaling at later
timesteps. This pattern suggests that excessively high scaling at early timesteps,
when noise levels are low, may negatively impact the model’s overall likelihood
performance.

Fig. 4: SNR scalings ( 1
w(t) ) with respect to timesteps for various NELBO formu-

lations

Next, we train the model using the weighted loss formulations L for different
datasets as shown in fig. 5 (left). As outlined in section 3.5, the weighted loss
formulations are not equivalent and therefore not comparable. To address this,
we rescale the weighted test loss as defined in equations (17), (18), and (19).
This gives the rescaled loss, L̃, which is mathematically equivalent to L(x). The
rescaled loss is plotted in fig. 5 (right), where we observe that, after rescaling,
the loss curves are very close to each other. This confirms that the mathematical
equivalency holds. Moreover, this indicates that the weighted loss formulation is
more stable compared to the NELBO formulations, as there are no additional
factors influencing the training dynamics.
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Fig. 5: The weighted test loss L (left), is not directly comparable across different
target predictions. However, the rescaled test loss L̃ (right), is comparable and
demonstrates the mathematical equivalence discussed in section 3.5.

Generated samples: The quality of generated samples shows a different trend
compared to loss convergence, indicating that better likelihood estimation does
not necessarily correlate with better sample generation, as also discussed in [16].
To analyze the discrepancy, we compare the sample quality using moment-based
metrics. Specifically, we measure the mean distance (Euclidean distance between
dataset means) and covariance distance (Frobenius norm of the difference be-
tween covariance matrices) between real and generated samples. The results are
shown in table 2. We see that although the NELBO is better for x and s space
the sample quality is better for ϵ and v space. Moreover, the sample quality for
weighted and NELBO loss are similar in most of the cases as also illustrated in
fig. 6 which shows 2K generated samples for the ring dataset using weighted and
NELBO loss formulations, respectively. This suggests that while the scaling in
the NELBO loss functions influences how the model converges, it has little effect
on the quality of the generated samples.

Fig. 6: Comparing 2K samples generated after 512 sampling steps from model
trained using weighted loss formulation (left) and NELBO formulation (right)
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Table 2: Comparison of NELBO and weighted loss formulations for 2D datasets

Data Loss
Form

NELBO Loss
(L)

Weighted loss
(L)

Nelbo↓ Mean
dist.↓

Covar
dist.↓

Loss↓ Mean
dist.↓

Covar
dist.↓

Cluster data x 0.6777 0.1754 0.5746 0.4754 0.4300 0.2715
ϵ 2.3636 0.0364 0.0706 0.3522 0.0634 0.1430
v 2.5396 0.0307 0.0409 0.8264 0.0389 0.0363
s 0.7657 0.2279 0.1498 2.6934 0.2688 0.1633

Ring data x 0.8785 0.2744 0.3807 0.4932 0.2807 0.3974
ϵ 2.5700 0.0914 0.1107 0.4266 0.0983 0.0366
v 2.5452 0.0459 0.0718 0.9227 0.0453 0.0088
s 0.9577 0.2254 0.1563 3.0981 0.2220 0.1637

Swiss data x 0.8640 0.1133 0.2645 0.4934 0.5256 0.6875
ϵ 2.5324 0.0689 0.0941 0.4261 0.0857 0.0824
v 2.4861 0.0418 0.0598 0.9171 0.0427 0.0269
s 0.9493 0.1266 0.1972 3.0274 0.0893 0.1227

Waves data x 0.9104 0.1593 0.5559 0.4939 0.1869 0.6911
ϵ 2.6805 0.0405 0.0757 0.4500 0.0748 0.0778
v 2.6873 0.0447 0.0738 0.9411 0.0131 0.0271
s 1.0210 0.0353 0.1369 3.4165 0.0178 0.1676

Loss vs timesteps: In fig. 7, we illustrate the generation of samples using
different numbers of sampling steps in the reverse process for the model trained
with the weighted loss. The results are similar to those observed with the NELBO
loss (see appendix C.1). It can be seen in the image that for the x-space, sample
quality declines with more sampling steps but outperforms other objectives with
fewer steps, effectively capturing data structure and scale. In contrast, the ϵ-
space produces poorer samples with fewer steps, and the sample quality gradually
increases. The v-space, captures the data structure well even with fewer sampling
steps and the sample quality continues to improve with more steps. The quality
of samples generated in the s-space is not good, however, it improves with the
number of steps.

One of the reasons for this difference is the loss behavior of various target pre-
dictions across timesteps. We visualize the weighted train loss across timesteps
for all target predictions on the ring dataset, as shown in Figure (8). Similar
trends are observed for other datasets, with corresponding graphs provided in
the appendix C.3. In the x-space, the model predicts the original data point
at each timestep during the reverse diffusion. As noise increases in the forward
process fig. 2, the SNR drops significantly, making prediction harder and result-
ing in higher losses at later timesteps. In contrast, for ϵ-space, the task is to
predict the noise that was added to the data at each timestep. As more noise is
introduced, predicting it becomes progressively easier. The v-space formulation
as shown in section 3.3 interpolates between data x and noise ϵ, weighted by
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Fig. 7: Generated samples for ring data for different number of sampling steps
from model trained on weighted loss L

time dependent functions, requiring the model to find a balance between the
two. In s-space the loss is significantly higher in the starting timesteps due to
the sensitivity of score matching to noise variance (σt), as seen in equation (16).
At early timesteps, σ2

t becomes negligible and the score function becomes very
large in magnitude as s ∝ 1

σ2 , leading to a significant rise in the loss.

Fig. 8: Behavior of weighted train loss with respect to timesteps for ring data at
different epochs

4.3 Results on image dataset

The results of different loss formulations in the image dataset are presented in
table 3. We do not include results for score-based metrics because accurately
computing them for continuous-time diffusion models in high-dimensional image
space requires modeling reverse and forward Stochastic Differential Equations
(SDEs), which is beyond the scope of this study and left for future research.

To evaluate the models, we used the NELBO loss to measure how well the
model approximates the data likelihood, and the Frechet Inception Distance
(FID) to assess the quality of generated samples, which were produced using 500
reverse diffusion steps. We found that the NELBO formulation in x-space has
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the best performance both in sample quality and probability density estimation.
For ϵ and v space we found that the weighted loss formulation has better FID
scores compared to NELBO. This again indicates that a more accurate likelihood
estimation does not necessarily correspond to better sample quality. The images
generated from these experiments are provided in the appendix D.

Table 3: Comparison of NELBO and weighted loss formulations for CIFAR10

Data Loss
Form

NELBO Loss
(L)

Weighted loss
(L)

Nelbo↓ FID↓ Loss↓ FID↓
CIFAR10 x 0.0907 17.35 0.0544 19.08

ϵ 0.8499 39.77 0.0605 20.03
v 0.8576 36.84 0.1188 31.21

5 Conclusion

In this work, we explored both the theoretical foundations and empirical be-
havior of various target prediction in diffusion models, with a focus on their
corresponding loss formulations under the NELBO and weighted loss frame-
works. By systematically deriving and relating the loss functions for different
target predictions, that is data x, noise ϵ, rate of change of data distribution v,
and score s, we established a unified understanding of how these objectives are
connected at a theoretical level.

We designed experiments to evaluate whether the mathematical equivalence
of these objectives translates into similar empirical performance. Our results
show that, despite theoretical equivalence, practical performance can differ sig-
nificantly in certain scenarios. In particular, we observed variation in loss conver-
gence, likelihood estimation, and sample quality across loss formulations. Among
the NELBO variants, the formulation in the x-space yielded the best likelihood
estimates. The quality of generated samples was found to be comparable across
both NELBO and weighted loss formulations in most cases for 2D datasets. In
contrast, for image data, the weighted loss showed improved performance in the
ϵ and v-spaces.

While our analysis is primarily conducted on 2D synthetic datasets, the
insights gained offer a foundation for more extensive experiments on high di-
mensional image data. These findings highlight the importance of the choice of
training objective in diffusion models and its impact on both model performance
and sample quality. Overall, our study provides insights into the practical con-
sequences of loss formulations and lays the groundwork for further research on
optimizing training objectives in diffusion models.
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