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Abstract. Counterfactual explanations assess unfairness by revealing
how inputs must change to achieve a desired outcome. This paper in-
troduces the first graph-based framework for generating group counter-
factual explanations to audit group fairness, a key aspect of trustworthy
machine learning. Our framework, FACEGroup (Feasible and Action-
able Counterfactual Explanations for Group Fairness), models real-world
feasibility constraints, identifies subgroups with similar counterfactuals,
and captures key trade-offs in counterfactual generation, distinguishing
it from existing methods. To evaluate fairness, we introduce novel met-
rics for both group and subgroup level analysis that explicitly account for
these trade-offs. Experiments on benchmark datasets show that FACE-
Group effectively generates feasible group counterfactuals while account-
ing for trade-offs, and that our metrics capture and quantify fairness
disparities.
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1 Introduction

AI-driven technologies increasingly shape critical decisions, making it essential
to understand their underlying reasoning and evaluate their fairness. A variety
of explanation methods have been proposed to enhance transparency [9,1], with
counterfactual explanations (CFs) gaining prominence [34]. Individual CFs reveal
how modifying specific features can alter model decisions, offering actionable
insights. For example, consider a person whose loan application is rejected by a
machine learning model; a CF might indicate that increasing annual income or
reducing the debt-to-income ratio would lead to approval.

Prior work has primarily focused on individual counterfactual explanations
(CFs) [18,16,10,33,27,29,25,31,4,2], with comparatively few studies addressing
counterfactuals for groups of instances [28,23,19,20]. Group counterfactual ex-
planations (GCFs) identify how a group of instances, often defined by shared
characteristics or protected attributes such as sex or race, could collectively alter
their features to achieve favorable outcomes. GCFs are not simply aggregations
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of individual CFs; rather, they reveal common patterns or barriers affecting the
group as a whole, which is critical for understanding systemic disparities and
informing policy or organizational decisions. Previous studies introduce group-
based approaches, by identifying common patterns among individuals with fa-
vorable outcomes [28], learning global translation vectors, and scaling them for
GCFs [23], or constructing decision trees via stochastic local search [19]. In con-
trast, our work is the first to generate GCFs using a graph-based approach that
enforces feasibility, supports subgroup-level analysis, and explicitly addresses the
key trade-offs involved in counterfactual generation.

FACEGroup, our approach for generating Feasible and Actionable Group
Counterfactual Explanations (GCFs), generates GCFs using a density-weighted
feasibility graph [27], where nodes represent data points and edges denote feasible
transitions that comply with real-world constraints. To ensure plausibility, we
restrict connections to allow only small feature changes between data points. A
key property of this graph is that feasibility constraints, cost limitations, and
density weighting naturally partition the data into weakly connected components
(WCCs), effectively dividing each group into subgroups with similar feasible
counterfactual explanations.

The generation of group counterfactual explanations (GCFs) inherently in-
volves balancing several key trade-offs: the proportion of factual instances within
a group that are explained by the selected set of counterfactuals (coverage), the
effort or change required for group members to achieve a counterfactual (cost),
and the number of unique counterfactuals generated for the group (interpretabil-
ity). To address these trade-offs, we introduce two algorithmic formulations based
on the feasibility graph: the cost-constrained approach, which maximizes group
coverage under a cost limitation, and the coverage-constrained approach, which
minimizes the maximum cost required to achieve a specified coverage level. Both
formulations are supported by mixed-integer programming solutions and greedy
heuristics that operate at both the group and subgroup levels. Our approach
also ensures that the generated counterfactuals remain feasible and actionable.

Finally, we introduce novel fairness metrics for group counterfactuals, which
enhance existing fairness measures by capturing the various trade-offs in coun-
terfactual generation and can be applied at both group and subgroup levels.
We evaluate FACEGroup on real-world datasets, showing its effectiveness in
fairness auditing. Compared to existing methods, FACEGroup produces more
feasible and compact counterfactuals that align with the data distribution.

The rest of this paper is structured as follows: Section 2 formalizes the prob-
lem, Section 3 presents our algorithms, Section 4 introduces our fairness mea-
sures, Section 5 details experiments, Section 6 discusses related work, and Sec-
tion 7 concludes.

2 Problem Definition

Let f : Rd → {0, 1} be a binary classifier which maps instances in a d-dimensional
feature space into two classes, labeled 0 and 1. Let U ⊆ Rd denote the in-
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put space. A model prediction on an individual instance x ∈ U , called fac-
tual, is explained by crafting a counterfactual (CF) instance x′ ∈ Rd that is
similar to x but leads to a different outcome, i.e., f(x′) ̸= f(x) [34]. The
changes in feature values from x to x′ should be feasible and comply with real-
world constraints, for instance, changes to immutable features, such as race or
height, should be prohibited. Formally, a counterfactual x′ for x is defined as:
x′ = arg minx′′∈Ax cost(x,x′′) s.t. f(x′′) ̸= f(x), where cost(x,x′′) is a function
measuring the cost of transitioning from x to x′. The feasibility set Ax denotes
the set of counterfactuals attainable from x via feasible changes.

It would be hard to trust a CF if it resulted in a combination of features that
were unlike any observations the classifier has encountered before [34]. Therefore,
CFs should also be coherent with the underlying data distribution. To ensure
both feasibility and plausibility, we adopt a graph-based approach. Following
[27], we construct a weighted directed graph GU = (V,E,W ). Nodes correspond
to instances in U , and an edge from node xi to node xj represents a feasible
transition in the feature space. We call this graph feasibility graph. Transitions
are further constrained by a cost threshold ϵ, ensuring that only small-cost fea-
ture changes are allowed. This ensures that changes between instances are both
feasible and small. The weight function W is defined using a density-based ap-
proach [27] to ensure that CFs lie in dense areas of the input space and avoid
outliers. Each edge in GU is assigned a weight Wij , calculated as the prod-
uct of the density of the instances around the midpoint of xi and xj estimated
using a Kernel Density Estimator (KDE) [8], and the cost between instances:
Wij = KDE

(
xi+xj

2

)
cost(xi,xj).

Given GU , we now formally define the feasibility set Ax of factual x as the
set of instances x′ for which there is a path in GU from x to x′, i.e., the set
of instances that are reachable from x: Ax = {x′ ∈ U|x′ is reachable from
x in GU}. These instances are the feasible CFs for x.

Instead of finding a CF for a single factual x, we are interested in providing
CFs for a set X ⊆ U of instances mapped to the same class. Let X ′ ⊆ U be
the set of instances mapped to the opposite class. Our goal is to identify a small
subset S of X ′ of size k that best explains X. We limit the number of CFs to k
for interpretability. To select S, we consider coverage-cost trade-offs. For a set
of CFs S ⊆ X ′, coverage is:

coverage(X,S) = |{x |x ∈ X and ∃ x′ ∈ S ∩ Ax}| .
We overload the notation for cost to define the cost between an instance and a
set, as well as between two sets:

cost(x, S) = min
x′∈S

cost(x,x′), cost(X,S) = minmax
x∈X

cost(x, S).

The function cost(x,x′) captures the cost of transforming x to x′, offering flexi-
bility to adapt to specific problem requirements. For example, cost can be defined
as the vector distance (e.g., L2 norm), the sum of edge weights along the shortest
path in GU , or simply the number of hops on this path. By emphasizing prox-
imity in feature space and by considering dense paths, these definitions ensure
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that the CFs are closely aligned with the data distribution. Our approach works
with any definition of cost.

A necessary condition for x′ to be a feasible counterfactual for x is that
both x and x′ belong to the same weakly connected component (WCC) of GU .
As a result, GU induces a partition of the set of factual instances X into m
disjoint subsets X1, . . . , Xm, m > 0. Each subset Xi contains instances in X
that belong to the same WCC of GU and thus share a common space of feasible
counterfactuals, denoted X ′

i, which also reside within the same component. This
partitioning of X into subgroups with distinct feasible counterfactual spaces
offers a meaningful perspective for analyzing model behavior at both the group
and subgroup level, highlighting regions of the input space that support similar
feasible explanations.

We now provide two definitions of the FACEGroup problem. Our first defi-
nition prioritizes cost over coverage, setting a threshold on cost, and our second
definition prioritizes coverage over cost, asking for a set that provides a specified
coverage degree c.

Problem 1 (Cost-Constrained). Given X, X ′, k ∈ N∗, and cost threshold d ∈ R+
∗ ,

find S ⊆ X ′ with |S| ≤ k and Q ⊆ X such that for every instance x ∈ Q there
exist an instance x′ ∈ S such that cost(x,x′) ≤ d and |Q| is maximized.

Problem 2 (Coverage-Constrained). Given X, X ′, k ∈ N∗, and coverage degree
c, 0 < c ≤ 1, find S ⊆ X ′ with |S| ≤ k such that coverage(X,S) ≥ c |X| and
cost(X,S) is minimized.

3 Algorithms

Our approach to generating feasible CFs is based on the feasibility graph GU .
Both optimization problems are NP-hard. The cost-constrained problem can be
formulated as an instance of the maximum coverage problem, while the coverage-
constrained problem is similar to the classical k-center problem [32].

In the following, we present two versions for both problems: (a) a global
version that generates CFs for the whole set X and (b) a local version that
generates CFs per subgroup Xi. We also show how the local version can be used
to generate CFs for the whole group X. A common step in both problems involves
computing, for each factual x, the candidate counterfactuals, i.e., the feasibility
set Ax and computing costs. To this end, we use Breadth-First-Search for vector
costs (e.g., L2 distance) and Dijkstra’s algorithm for shortest path costs, with
complexities of O(|V |+ |E|) and O(|V | log |V |+ |E|), respectively.

3.1 The Cost-Constrained FACEGroup Problem

We solve this problem using two approaches: (a) a Mixed-Integer Programming
(MIP) that explicitly models constraints for each factual-counterfactual pair
while optimizing coverage, and (b) a Greedy approach that iteratively selects
CFs to maximize coverage.
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For the MIP solution of the global version of the problem, we define two
binary decision variables. Let rxx′ = 1 if x′ covers x; and rxx′ = 0, otherwise,
and ux′ = 1 if CF x′ covers any instance in X, and ux′ = 0 otherwise. The goal
is to maximize the number of covered factual instances:

max
∑

x′∈X′

∑
x∈X

rxx′ s.t.
∑

x′∈X′

ux′ ≤ k (1)∑
x′∈X′

rxx′ ≤ 1, ∀x ∈ X (2) rxx′ ≤ ux′ , ∀x′ ∈ X ′,∀x ∈ X (3),

ux, rxx′ ∈ {0, 1}, ∀x ∈ X, x′ ∈ X ′. (4)

While constraint (1) limits the number of selected CFs to at most k, constraint
(2) enforces that each factual instance x is assigned to at most one CF x′.
Constraint (3) guarantees that if a CF x′ is assigned to cover a factual instance
x (rxx′ = 1) then x′ must be selected ux′ = 1, and constraint (4) defines the
binary decision variables. This formulation has O(2|X

′|) complexity.
For the global Greedy version of the problem, we iteratively select counterfac-

tuals (CFs) to maximize coverage. Let St be the set of counterfactuals selected at
iteration t. We start with an empty set S0 = ∅. At each iteration t, the algorithm
selects the CF x′ ∈ X ′ that

x′ = arg max
x′′∈X′

(coverage(X,St−1) + coverage(X, {x′′}), (5)

updates St = St−1 ∪ {x′}, and terminates when either |St| = k or all instances
in X are covered.

The worst-case complexity of this algorithm is O(k|X|). Given the submodu-
lar nature of coverage, where the marginal gain of adding a new CF to the set S
decreases as S grows, it adheres to the properties of submodular maximization.
Consequently, the attained coverage is no worse than (1− 1

e ) times the optimal
maximum coverage [17].

The Greedy algorithm can also be used to provide a counterfactual explana-
tion for a subgroup Xi by applying it only to the corresponding WCC. We can
also utilize this local version to provide counterfactuals for the whole group X by
applying the Greedy algorithm iteratively to all m WCC as follows. Initially, we
apply a single step of the Greedy algorithm at each WCC. Then, we select the
CF that provides the best coverage and apply an additional step of the algorithm
to the WCC from which the CF was selected. We repeat this until the maximum
number k of counterfactuals is reached or all factual instances are covered. It is
easy to see that this local version provides the same result as the global one. The
local Greedy selection has the same complexity as the global Greedy approach,
as it follows a similar process while iterating over WCCs, either scanning all |X ′|
candidates or evaluating coverage within each component.

3.2 The Coverage-Constrained FACEGroup Problem

To solve this problem, we employ two algorithms: a mixed-integer program-
ming (MIP) and a Greedy 2-approximation algorithm [13]. While the Greedy
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algorithm provides an efficient yet approximate solution, the MIP guarantees
optimal results [7], but can become computationally expensive for large graphs.

For the MIP formulation, the solution is similar to the Cost-Constrained
problem with the following modifications. The objective function minimizes the
maximum cost d of the farthest instance while ensuring that coverage(X,S) ≥
c |X|. Constraints (1), (2), (3), and (4) still apply, along with:

∑
x′∈X′

cost(x,x′)rxx′ ≤ d, ∀x ∈ X (6),
∑

x′∈X′

∑
x∈X

rxx′ ≥ c |X| (7).

Constraint (6) ensures that the cost of any node to its assigned center does
not exceed d, enforcing the objective function, and Constraint (7) enforces that
the desired coverage percentage is achieved. For full coverage, c = 1, constraint
(2) becomes an equality constraint, and constraint (7) is no longer needed.

For the Greedy algorithm, the process begins by arbitrarily selecting the first
counterfactual x′ and assigning all factuals x within a cost of r to it, where r
is initially set to the maximum cost between any factual and candidate coun-
terfactual. We then iteratively select the counterfactual that is farthest from
those already chosen and assign all factuals within a cost of r to it. This process
continues until we reach the predefined coverage or the number of counterfac-
tuals k. To find the smallest value of r that satisfies the coverage requirement,
we employ a binary search. The complexity of this algorithm is O(k|X|log(d)),
since it assigns up to |X| factuals for each of the k selected counterfactuals and
binary search adds this logarithmic factor log(d), where d is the range of costs
considered.

Both the MIP and the Greedy approaches can be applied globally and locally.
In the global version, we apply the algorithms on the GU graph. In the local
version, for a specific subgroup Xi of X, the algorithms are applied within the
corresponding WCC of GU .

We now describe how the local version can be used to solve the global version.
Consider the case of full coverage (c = 1) with m WCCs ordered arbitrarily as
C1, C2, . . . , Cm. Achieving full coverage reduces to distributing k counterfactuals
among these components. Since at least one counterfactual is required per WCC,
the maximum allocation per WCC is at most k − m. First, we run MIP or
Greedy within each WCC, varying k from 1 to k − m. Let li be the minimum
counterfactuals needed to fully cover Ci. We start by assigning li to each Ci,
then iteratively allocate remaining counterfactuals to the WCC with the highest
cost until the total reaches k.

When c < 1, the task becomes more complex as we have to allocate both
k and coverage c across the WCCs. Let F (1...i, k, n) be the minimum cost of
allocating k counterfactuals that cover a total of n factuals considering con-
nected components WCC1, ....,WCCi, where n = c|X|. Similarly, let F (i, k, n)
represent the minimum cost of allocating k counterfactuals to cover n factuals
within component WCCi. Then, we can solve the problem with time complexity



Feasible and Actionable Counterfactual Explanations for Group Fairness 7

of O(m(kn)2), using dynamic programming as follows:

F (1...i, k, n) = min
1≤n′≤n,1≤k′≤k

{F (1...i− 1, k − k′, n− n′) + F (i, k′, n′)}

For large graphs, solving the MIP at a global level can become computation-
ally demanding, as the number of decision variables and constraints grows expo-
nentially with the dataset size. To improve performance, we add constraints only
for instances x and x′, such that x′ ∈ AX , reducing unnecessary computations.
For full coverage, the complexity of the global Greedy approach is O(|X|k log(d))
while the complexity for the local approach is O(m(k −m)|Xi|k log(d)).

4 FACEGroup for Auditing Fairness

In this section, we examine algorithmic fairness through the lens of FACEGroup.
Group fairness refers to a set of principles designed to ensure that protected
groups, often defined by sensitive attributes such as gender, race, or age, are
treated similarly by a classifier. Broadly, group fairness can be categorized into
demographic parity, which requires that the proportion of positive outcomes
reflects representation of the group in the population, and error-based fairness,
which focuses on equalizing classification errors, such as false negative rates,
across groups [36,9].

To audit fairness for a group X, we generate group counterfactual expla-
nations (GCFs) for relevant subsets of X. For example, we generate GCFs for
the negatively classified instances of X when auditing for demographic parity,
or the false negatives of X when auditing for error-based fairness. Disparities
in the GCFs generated for different groups (e.g., males vs. females) can reveal
potential biases in the model.

Unlike existing approaches, FACEGroup supports multi-level fairness audit-
ing by partitioning each group into subgroups according to the connected com-
ponents of the feasibility graph. This allows us to examine unfair behavior not
only at the group level, but also at the level of subgroups, offering finer-grained
insight into patterns of bias. Furthermore, to capture the key trade-offs in gen-
erating counterfactuals, FACEGroup provides novel fairness metrics that are
parameterized by the number k of counterfactuals, the cost d, and the coverage
c. Introducing the number k in the fairness metrics allows for assessing inter-
pretability, as groups requiring fewer CFs are more interpretable, it promotes
trust, as models that require fewer CFs are more transparent, and it serves in
detecting disparities in CF requirements across (sub)groups, factors previously
overlooked.

Burden-based Fairness Measures. Counterfactuals provide a novel ap-
proach to measuring unfairness by evaluating both the disparities in outcomes
between groups and the effort required by these groups to achieve fairness, i.e.,
to obtain the positive outcome. This effort, also called burden, is often estimated
as the aggregated cost between the factuals in a group and their counterfactuals
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[31,22]. However, measuring burden solely at the group level may obscure dis-
parities within subgroups, as different subpopulations may face varying degrees
of difficulty in achieving favorable outcomes.

We first define the minimum k (k0) and cost (d0) required for full coverage
(c = 1):

k0 = min{k | ∃S, |S| ≤ k, coverage(X,S) = |X|},
d0 = min{d | ∃S, cost(X,S) ≤ d, coverage(X,S) = |X|}.

Note that k0 is lower-bounded by the number of weakly connected components
(k0 ≥ m), and d0 does not exceed the largest WCC diameter.

We now introduce AUC-based fairness measures that assess trade-offs be-
tween cost, number of counterfactuals, and coverage of (sub)groups across a
range of parameter values rather at fixed points, avoiding biases from rigid pa-
rameter settings. The corresponding saturation points identify optimal thresh-
olds for cost, number of counterfactuals, and coverage.

We define the set of counterfactuals Sk,d that maximize coverage under a
cost constraint d as:

Sk,d = argmax|S|≤k, cost(X,S)≤d|coverage(X,S)|

and kAUC(k) as:

kAUC(k) =

∫ dmax

dmin

coverage(X,Sk,d) dd

that measures how efficiently a group can achieve coverage across a range of cost
values for a given number of counterfactuals.

Similarly, we define dAUC(d) to evaluate how coverage improves as the num-
ber of counterfactuals increases under a fixed cost constraint, and cAUC(c) to
quantify the effort required to reach a given coverage level by measuring the
total cost over a range of counterfactual numbers. Figure 1 provides a visual
representation of the AUC-based metrics.

There is also a minimum cost that provides the highest attainable coverage for
k, we call it saturation point for k and denote it as sp(k). Formally, it holds, for
any d ≥ sp(k), coverage(X,Sk,d) = coverage(X,Sk,sp(k)). Similarly, we define,
sp(d) to determine the least number of counterfactuals needed to reach maximum
coverage within a given cost constraint, and sp(c) to represent the minimum
cost needed to achieve a desired coverage level, helping quantify the burden on
different groups. Saturation points are shown in Figure 1.

Attribution Measures. FACEGroup also provides insights into feature im-
portance by measuring how often a feature change is required to alter an out-
come. Concretely, the attribute change frequency (ACF ) metric captures how
frequently a feature A changes between a factual instance x ∈ X and its corre-
sponding counterfactual x′ ∈ S:

ACF (X,S,A) =
1

|X|
∑
x∈X

(1− δ(xA,x
′
A)),
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Fig. 1: AUC scores and saturation points

where δ(xA,x
′
A) is the Kronecker delta, returning 1 if the feature remains un-

changed and 0 otherwise. and xA and x′
A represent the values of A in the

factual and counterfactual instances, respectively. For each factual instance,
we get the corresponding counterfactual instance with the minimum cost, i.e.,
x′ = argminx′′∈Scost(x,x

′′).

5 Experimental Evaluation

The goal of our experimental evaluation is twofold: (a) to demonstrate the ef-
fectiveness of FACEGroup in fairness auditing and (b) to compare FACEGroup
with baseline group counterfactual methods.

For fairness auditing, we use the widely studied Adult4 dataset for income
classification. To benchmark FACEGroup with baselines, we extend evaluations
to additional datasets derived from US Census surveys, AdultCA5, AdultLA2,
and other domains including COMPAS6, Student7, German Credit8, and HELOC9.
Further details on preprocessing, parameter settings, and configurations, as well
as additional experiments on other datasets, are in the supplementary material.
The source code is available online10.

First, we construct the feasibility graph GU . An edge exists from a xi to a xj

if the transition from xi to xj is feasible and within threshold ϵ. We use a small
set of generic feasibility constraints prohibiting unrealistic modifications, such
as changing the values of immutable attributes (e.g., race) or the directionality
of others, such as decreasing the value of the age attribute. The full set of con-
straints used is in the supplementary material. We define groups based on the
sensitive attribute Gender : G0 (females) and G1 (males).

Figure 2 depicts the impact of varying ϵ on graph connectivity metrics, show-
ing values up to the point where nearly all instances are connected, minimizing
singleton nodes. Smaller ϵ values result in sparser graphs, ensuring that con-
nected instances are more similar, leading to more plausible, small-step tran-
sitions. Conversely, larger ϵ values create denser graphs by incorporating con-
nections between more distant instances, allowing for larger transition steps. To
4 Adult 5 Adult-CA-LA Datasets 6 COMPAS 7 Student 8 German Credit
9 HELOC 10 Project Repository

https://archive.ics.uci.edu/dataset/2/adult
https://github.com/socialfoundations/folktables
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://archive.ics.uci.edu/dataset/297/student+performance
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://www.kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc
https://github.com/xristosfrag/FACEGroup-Feasible-and-Actionable-Counterfactual-Explanations-for-Group-Fairness-Auditing
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balance plausibility with connectivity, we select the smallest possible ϵ that main-
tains a highly connected graph while minimizing singleton nodes. For the Adult
dataset, we set ϵ = 0.4. Further results for the selection of ϵ on the remaining
datasets can be found in the supplementary material.

0.1 0.2 0.3 0.4 0.5 0.6

10−1

101

103

ε

Number of SCC
Number of WCC
Connected Nodes (%)
Density (%)

Fig. 2: Feasibility graph connectivity based on the ϵ constraint.

5.1 Auditing Fairness

In this set of experiments, we apply our algorithms to audit fairness. Without
loss of generality, we focus on finding GCFs for the negatives for both groups
G0 and G1. We use an XGBoost classifier optimized via hyperparameter tuning.
We consider only the instances in G0 and G1 for which at least one feasible
candidate CF exists and use the L2 distance as the cost function.

Burden Analysis. A key strength of FACEGroup is its ability to uncover
subgroup behaviors within the groups G0 and G1 through the feasibility graph
GU , which naturally partitions each group into WCCs, representing subpopula-
tions that share feasible CF transformations. Figure 3 visualizes the distribution
of factual instances (X, red) and feasible counterfactual candidates (X’, blue)
across the subgroups (WCCs) of each group. We observe that G1 exhibits a more
fragmented structure, with CFs more widely spread across subgroups compared
to G0, suggesting that G1 has a higher degree of variability in the transforma-
tions required for favorable outcomes. Table 1 depicts the minimum resources
(k0 and d0) needed for full coverage per subgroup (WCC). G1 requires more
CFs (k0 = 12) than G0 (k0 = 9) and higher minimum cost (d0 = 1.04) than G0

(d0 = 0.93), suggesting greater heterogeneity in the CF pathways needed for full
coverage.

Analyzing subgroups is crucial, as group-level fairness assessments can mask
heavily disadvantaged subpopulations, leading to misleading conclusions about
the equitable distribution of the burden. At the subgroup level, the Black sub-
groups (that correspond to WCC1 in both groups) exhibit the highest k0 and d0,
indicating that they face greater barriers to obtain favorable decisions. Notably,
the subgroups with the most factual instances also bear the highest burden,
indicating a disproportionate impact on overall group difficulty.

Table 2 reports kAUC, dAUC, cAUC, saturation points sp, and the min-
imum, or maximum values for coverage and cost, that correspond to each sp.
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Fig. 3: Distribution of X, X′ per WCC of the subgroups G0 and G1.

Table 1: k0 and d0 for each WCC of each group and overall for each group.
WCCs Overall

WCC1 WCC2 WCC3 WCC4 WCC5 k0 d0

k0 d0 k0 d0 k0 d0 k0 d0 k0 d0

G0 7 0.93 1 0.74 1 0.49 – – – – 9 0.93
G1 4 1.04 3 0.61 3 0.78 1 0.46 1 0.20 12 1.04

Scores are normalized by the optimal AUC per metric. Higher kAUC, dAUC
and lower cAUC are preferred.

For kAUC, saturation points (sp) are expected to decrease as more CFs are
provided. Initially, at k = 1, G1 achieves higher maximum coverage, reflect-
ing larger available transitioning costs, enabling more instances to be efficiently
covered at low k. However, as the number of CFs increases, G0 reaches full
coverage first, exhibiting better overall efficiency (higher kAUC) and requiring
fewer resources (lower sp values) compared to G1. For dAUC, saturation points
should decrease as higher-cost connections are allowed. At d = 0.1, G0 has a
lower sp(d), indicating fewer feasible low-cost available transitions, compared to
G1. As cost increases, G0 effectively utilizes connections to reach full coverage
with fewer CFs, while G1 requires higher costs to achieve maximum comparable
coverage. However, when d ∈ [0.8, 1.5], G1 exhibits stronger coverage efficiency
gains, suggesting G0 is more efficient at lower costs while G1 benefits more from
cost relaxations. For cAUC, both groups experience similar cost burdens for
achieving intermediate coverage levels 0.25, 0.5 and 0.75. However, at full cover-
age (c = 1.0), G1 incurs significantly higher costs, as reflected in both cAUC and
minimum cost. The consistently higher sp(c) values for G1 suggest that more CFs
are required to reach cost-efficient solutions, reinforcing a systemic disadvantage
in obtaining full coverage at minimal cost while maintaining interpretability.

Attribution Analysis. To further analyze subgroup disparities, we use the
ACF metric per WCC, quantifying how often specific features are altered in CFs,
providing insights into the different factors driving classification decisions. Fig-
ure 4 presents the frequency of modified attributes for each WCC of G0 and G1,
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Table 2: kAUC, dAUC, cAUC, and saturation points.
Parameter Value G0 G1

kAUC metrics
sp(k) Max Cov. kAUC sp(k) Max Cov. kAUC

k

1 1.1 63.08 0.50 1.3 65.75 0.54
5 1.1 93.85 0.82 1.1 97.49 0.85
9 1.1 100.0 0.90 1.1 99.09 0.89
13 0.7 100.0 0.92 1.1 100.0 0.91

dAUC metrics
sp(d) Max Cov. dAUC sp(d) Max Cov. dAUC

d

0.1 6 12.31 0.10 12 12.78 0.08
0.8 10 100.0 0.89 12 99.31 0.93
1.5 9 100.0 0.93 12 99.77 0.95
2.2 9 100.0 0.93 12 99.77 0.95

cAUC metrics
sp(c) Min Cost cAUC sp(c) Min Cost cAUC

c

0.25 12 0.14 0.10 20 0.12 0.11
0.50 18 0.22 0.17 23 0.20 0.17
0.75 22 0.28 0.25 25 0.30 0.25
1.00 16 0.55 0.56 20 1.40 0.72

respectively, and shows that subgroup-specific variations exist in the importance
of different features. For G1, we include only the three largest WCCs, exclud-
ing those with few factual instances, as they lack representativeness. A common
trend across all WCCs in both groups is that an increase in age is frequently
required for a favorable outcome, suggesting that the model associates age with
work experience or financial stability. Within G0, the Asian-Pacific-Islander in-
dividuals (WCC3) require fewer modifications compared to the Blacks (WCC1)
and Amer-Indian-Eskimos (WCC2) and do not rely on relationship status or
marital status, unlike the others. In G1, despite similar CF difficulty (Table
1), financial interventions differ: Amer-Indian-Eskimos (WCC2) require career-
related changes (employment status, occupation, education), while Asian-Pac-
Islanders (WCC3) depend on increasing capital gain. More broadly, capital gain
is largely absent from both groups of CFs except for G1 − WCC3, highlight-
ing subgroup differences in financials to favorable outcomes. Finally, CFs in G1

rarely modify relationship status, unlike in G0, where it is frequently altered.
Instead, educational and occupational factors are highly important.

5.2 Comparison with Baselines

We evaluate FACEGroup against existing CF generation methods, specifically:
(a) with FACE [27], a graph-based method for individual CFs, and (b) with
AReS [28] and GLOBE-CE [23], two state-of-the-art GCF approaches.

Comparison with Individual CFs Given a group X, FACEGroup gen-
erates a small set S of k counterfactuals to cover X. To evaluate the efficiency
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Fig. 4: ACF across the subgroups of each group

of this approach, we compare the associated cost with the cost of generating
individual counterfactuals for each instance in X, which serves as a lower bound
on the cost when the constraint on k is relaxed. For generating individual coun-
terfactuals, we use FACE, since it is also based on a feasibility graph. For these
experiments, we generate CFs for the full population G = G0 ∪ G1. We assess
how closely GCFs from FACEGroup approximate the optimal costs of individual
CFs from FACE. First, we apply FACEGroup to generate the set S of CFs by
solving the coverage-constrained problem. Then, we apply FACE to all factuals
covered by S using the same cost function. As a cost function, we use both: (a)
the weighted shortest path cost in GU (originally used in FACE), and (b) the
L2 distance.

Figure 5 shows the cost comparison for k CFs from 1 to k0 in 10 equal
steps, with normalized costs. As expected, FACE achieves the lowest costs, while
FACEGroup, which prioritizes group-level explanations, incurs slightly higher
but still near-optimal costs. FACEGroup maintains near-optimal shortest path
costs in datasets like German Credit and HELOC, where feasible transformations
remain efficient. However, in Adult, costs increase due to the challenge of balanc-
ing feasibility with compact group CFs. Similar trends hold across other datasets,
with full results and parameter details provided in the supplementary material.

Comparison with GCF Methods We compare FACEGroup with two
state-of-the-art GCF baselines: AReS [28] and GLOBE-CE [23]. AReS mines
frequent itemsets from individuals who achieved the desired outcome, selecting
a small, interpretable set of rules via a submodular objective. GLOBE-CE defines
global CFs as translation vectors applied to groups, scaling them across a range
of values to adapt to individuals.

Both baselines without feasibility and plausibility constraints achieve at least
70% coverage. AReS generates 3 to 20 rules, while GLOBE-CE produces a sig-
nificantly larger set, ranging from 10 to 612 CFs, due to the multiple scales on
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Fig. 5: Comparison of FACEGroup and FACE on average CF costs.

Table 3: Comparison with baselines.
Dataset ϵ FC AReS GLOBE-CE FACEGroup

r Cov. (%) k Cov. (%) k Cov. (%)

Adult 0.4 all 18 15.68 421 0.24 21 100
0.4 none 18 52.26 421 84.56 10 100

AdultCA 0.7 all 20 11.36 612 11 133 100
0.7 none 20 11.36 612 11.50 15 100

AdultLA 0.5 all 20 12.9 342 12.9 59 100
0.5 none 20 23.11 342 22.63 13 100

Student 3.0 all 3 33.3 10 50 3 100
3.0 none 3 75 10 66.67 2 100

COMPAS 0.3 all 20 11.85 124 20 13 100
0.3 none 20 16.3 124 25.93 13 100

German Credit 2.9 all 4 0 18 26.32 6 100
2.9 none 4 42.11 18 73.68 2 100

HELOC 1.4 all 11 1.98 74 1 4 100
1.4 none 11 71.29 74 72.28 2 100

top of the translation vectors. Detailed results are in the supplementary ma-
terial. To assess feasibility, we integrate CFs into the feasibility graph GU and
measure feasibility coverage as the proportion of CFs with at least one feasible
transition. We analyze this under all feasibility constraints and a relaxed set-
ting with only the plausibility constraint ϵ. Table 3 highlights the limitations
of baselines: with full constraints, AReS and GLOBE-CE remain below 50%
feasibility coverage, indicating that many CFs violate real-world constraints. In
contrast, FACEGroup achieves 100% feasibility coverage with a compact CF set.
Relaxing constraints improves coverage for baselines, particularly for GLOBE-
CE, which benefits from its low-cost translation vectors. However, FACEGroup
still maintains full feasibility coverage with fewer CFs, demonstrating its abil-
ity to generate feasible, actionable CFs without sacrificing interpretability or
plausibility.



Feasible and Actionable Counterfactual Explanations for Group Fairness 15

6 Related Work

Explanations have become central in machine learning research [9,14], particu-
larly in high-stakes domains such as healthcare and education. Among various
explanation methods, CFs have gained prominence for their ability to reveal ac-
tionable changes leading to a desired outcome. Wachter et al. [35] first formulated
CFs as an optimization problem, minimizing the cost between an instance and its
CF while ensuring a prediction change. Subsequent work [15,25,18,12,34,31,27]
refined CF generation, emphasizing properties such as feasibility, actionability,
sparsity [34], and robustness[16]. Several approaches optimize CF search using
genetic algorithms [31,10], integer programming [30,33], and cost-based heuris-
tics [12].

FACE [27] constructs a density-weighted feasibility graph where counterfac-
tuals are generated via shortest paths in the graph, focusing on individual expla-
nations that balance proximity and data manifold alignment. While FACEGroup
builds on this graph structure, and further introduces three key innovations: (1)
multi-level subgroup analysis, where WCCs of the feasibility graph naturally par-
tition groups into interpretable subgroups with shared feasibility constraints, (2)
GCF trade-off-aware algorithms, rather than relying on individual shortest-path
searches, and (3) cost function agnosticism.

While most methods focus on individual CFs, recent work explores GCFs
for multiple instances. AReS [28] defines subgroup-specific CF rules, optimiz-
ing for correctness, coverage, cost, and interpretability. GLOBE-CE [23] learns
global translation vectors, applying them at different scales to generate CFs
that maximize coverage. CET [19] uses decision trees for group actions to en-
hance transparency and consistency, while mixed-integer programming has been
used to optimize collective CFs under linking constraints [5]. CounterFair [21]
generates fair GCFs by selecting a subset via mixed-integer programming to bal-
ance cost and fairness. Unlike these approaches, FACEGroup enforces feasibility
constraints, ensuring GCFs adhere to real-world constraints. Most group-based
methods only prevent changes in sensitive attributes but lack directional con-
straints, leading to CFs that may violate plausible transformations. Notably,
GLOBE-CE selects random feature perturbations, which can result in unrealis-
tic CFs. In contrast to these methods, FACEGroup generates CFs at both group
and subgroup levels, systematically handling the trade-offs in CF generation.

Explanations are utilized to assess algorithmic fairness [9], ensuring deci-
sions are not influenced by protected attributes [26,24,11,6]. Several CF-based
approaches have been proposed to quantify fairness by measuring the burden
quantified as the difficulty individuals face in achieving a favorable outcome per
group [22,31,12,20,28]. Methods like [31,22] generate individual CFs and calcu-
late burden per group as the average sum of pairwise costs to assess fairness.
PreCoF [12] distinguishes between explicit bias, when individual counterfactu-
als require changes only in sensitive attributes, and implicit bias, when, after
removing sensitive attributes from model training, other features disproportion-
ately influence different groups. [28,23] suggest that generated rules and global
translation vectors can be used to manually audit for unfairness in subgroups of
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interest. FACTS [20] builds on AReS and introduces burden-based fairness met-
rics, but evaluates fairness only under specific settings. For instance, its Equal
Cost of Effectiveness metric compares the minimum cost needed for protected
subgroups to reach a fixed aggregate effectiveness level, defined as the proportion
of individuals able to achieve the desired outcome via counterfactuals. In con-
trast, our burden-based fairness metrics assess disparities across a range of costs,
coverage levels, and numbers of counterfactuals, offering a more comprehensive
perspective that captures potential disparities across various combinations of
these factors. Unlike the other approaches, FACEGroup introduces fairness met-
rics that assess fairness at both group and subgroup levels, explicitly accounting
for trade-offs between cost, coverage, interpretability, and feasibility.

7 Conclusions

In this paper, we propose FACEGroup, a novel graph-based framework for group
counterfactual generation that addresses limitations in existing methods by in-
corporating real-world feasibility constraints and managing trade-offs in counter-
factual generation. We also introduce novel fairness measures that allow auditing
fairness both at the group and subgroup levels, offering insights on the trade-offs
between cost, the number of generated counterfactuals, and coverage. In future
work, we plan to extend the use of the feasibility graph to define path-based
fairness metrics. We also aim to adapt our approach to multi-class classification
and regression settings.
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