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Abstract. Graph Neural Networks (GNNs) are vulnerable to adver-
sarial attacks, leading to a significant performance degradation. Many
current methods guide graph purification or graph structure learning
through predefined robust properties. However, attackers can also apply
the same constraints to these properties, rendering the defenses ineffec-
tive. This paper proposes an adaptive multi-sapce defense framework
that enhances the robustness of GNNs without relying on prior knowl-
edge. The core idea is to generate an estimated graph using clean at-
tribute information and then apply graph convolution to both the per-
turbed graph and the estimated graph to obtain their respective node
embeddings. Common embeddings between the estimated graph and the
perturbed graph is then captured through shared parameters, and an
attention mechanism is utilized to learn the weights of the three spaces.
Extensive experiments demonstrate that our method extracts the infor-
mation most relevant to classification performance where both attack
methods and perturbation rates are unknown, resulting in significant
improvements in both classification accuracy and performance stability.

Keywords: Adversarial robustness · Representation learning · Graph
convolutional networks.

1 Introduction

Graph Neural Networks (GNNs) effectively combine attribute and structural
information within graphs, demonstrating superior performance in node classi-
fication, graph classification, and link prediction tasks. They are widely applied
to recommender systems [1], traffic networks [2], and financial transactions [3].
However, GNNs are vulnerable to adversarial attacks, where small perturbations
mislead the model into making incorrect predictions [4]. For instance, in social
networks, attackers can manipulate the network structure by adding or removing
a small number of edges (social relationships), causing the GNN to misidentify
communities or influence propagation paths. This vulnerability of GNNs in many
critical applications can have serious consequences. Therefore, developing robust
GNN models to defend against adversarial attacks is crucial.

Given the complexity of structural information, the majority of existing ad-
versarial attacks on graph data have focused on modifying graph structure, es-
pecially adding/deleting/rewiring edges [5]. Thus, in this work, we aim to defend
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(a) cora (b) citeseer

Fig. 1: Performance under Metattack with a perturbation rate of 20%

against the most common setting of adversarial attacks on graph data, i.e., poi-
soning adversarial attacks on graph structure.

There is a significant amount of research addressing the issue of adversarial
robustness, among which defense methods based on graph purification are very
effective. These methods eliminate adversarial edges or relearn the graph struc-
ture through intrinsic properties of the graph (low-rank property [11] [9], feature
similarities [11] [6] [7]). However, these methods have two significant drawbacks:
(1) attackers can also impose the same constraints on these predefined robust
properties during the attack process, rendering the defense ineffective; (2) a large
amount of valid information still exists in the perturbed original graph, which is
very important for GNNs, but these methods ignore the structure of the origi-
nal graph. To address these issues, we attempt to design an end-to-end defense
method that does not rely on artificially defined properties and can retain the
valid information of the original graph.

Figure 1 shows the node classification accuracy of GCN and MLP on the
Cora and Citeseer datasets at different perturbation rates. When the pertur-
bation rate is low, the performance of GCN is significantly higher than that
of MLP, indicating that there is still a large amount of useful information in
the structural information despite being contaminated. When the perturbation
rate is very high, MLP, which only uses the attribute information of the graph
data, performs better than GCN in classification. Therefore, when the perturba-
tion rate is unknown, classification performance may be related to the original
graph, the attribute graph, or a combination of them. Therefore, we designed
an adaptive multi-space defense framework that uses graph convolutional net-
works to automatically capture task-relevant node representations in the graph
and can adaptively adjust the weights of the original graph, attribute graph,
and combined parts regardless of the perturbation rate. The results in the figure
show that the method in this paper can maintain excellent performance at all
perturbation rates.
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Specifically, we proposed an Adaptive multi-Space defense framework, AS-
GCN. We use MLP to generate an estimated graph from clean node attributes.
Then, we use two graph convolution modules to extract personalized represen-
tations from the two graphs that are beneficial for classification. Considering
the common features between the two graphs, we designed a general convolu-
tion module with a shared parameter strategy to extract the common embed-
dings they share. We further utilize an attention mechanism to automatically
learn the importance weights of different embeddings, thereby adaptively fusing
them. In this way, node labels can supervise the learning process, adaptively
adjust weights, and extract information most relevant to task performance.

Our contributions can be summarized as follows:
(1) We investigated the contributions of the original perturbed graph and

the attribute graph under different perturbation rates, and concluded that task
performance may be related to the perturbed graph, the attribute graph, or a
combination thereof.

(2) We proposed an adaptive multi-space defense framework, ASGCN. Com-
bined with an attention mechanism, two specific GCNs and a common GCN ex-
tract task-relevant information from the original perturbed graph, the attribute
estimation graph, and their combination, respectively.

(3) Our method does not rely on manually defined graph intrinsic properties
as prior knowledge, enabling end-to-end learning.

(4) Our extensive experiments on a series of benchmark datasets clearly show
that MS-GCN outperforms the state-of-the-art GCNs. Furthermore, when the
graph is heavily poisoned, MS-GCN can still maintain excellent classification
performance.

2 Related Work

In recent years, adversarial defense research for GNNs has received increasing
attention. Graph purification-based defense methods identify normal or adver-
sarial edges based on the intrinsic properties of the graph. Jaccard-GCN [6] and
GNNGuard [7] rely on the homophily assumption, with the former calculating
the Jaccard similarity between node pairs and removing edges below a certain
threshold, and the latter using cosine similarity to filter adversarial edges during
message aggregation. STABLE [8] utilizes a similar idea of calculating similarity
based on unsupervised representations instead of features. SVD-GCN [9] recog-
nizes that Nettack [10] tends to attack high-frequency components in graph data.
Therefore, it replaces the adjacency matrix with a low-rank approximation, re-
ducing the impact of adversarial attacks while preserving important information
about the structure of the graph. Graph structure learning-based methods im-
pose regularization terms based on inherent graph properties, constraining the
generated graph structure to conform to standard patterns. ProGNN [11] dis-
covers that real-world graphs are often low-rank and sparse, with adjacent nodes
having similar features. Consequently, it uses these three properties as regular-
ization terms to constrain graph structure generation. TGNN [12] points out that



4 Xiaohui Yu and Qiao Yan

previous methods ignore the connections and balance between different graph
properties, proposing a tensor-based GNN framework that fuses multiple proper-
ties. RGCN [19] also relies on the intrinsic properties of the graph to adaptively
weight edges, using low weights to penalize adversarial edges. DualRGNN [13]
incorporates a node-similarity-preserving graph refining (SPGR) module, where
these node representations contain the similarity relationships of the original
nodes, thereby weakening the poisoning effect of graph adversarial attacks on
graph data. Adversarial training does not rely on prior knowledge, but GOOD-
AT [20] points out that it can lead to models learning incorrect information. It
uses adversarial examples to define an out-of-distribution (OOD) detector as a
classifier to optimize the graph structure. D4A [14] proposes smooth-less message
passing to enhance the tolerance with respect to structure perturbations.

3 Preliminaries

3.1 Notations

We consider an undirected graph G = (V,E) , where V is the set of N nodes,
where V = {v1, v2, . . . , vn} and E = {eij} are the set of nodes and edges. We
use matrix A ∈ {0, 1}N×N to denote the adjacency matrix of G. Furthermore,
we use X = [x1, x2, . . . , xn] ∈ RN×d to denote the node feature matrix where d
is the dimension of the node feature vectors. Y = [y1, y2, . . . , yn] are the labels
corresponding to each node. In this work, we focus on the semi-supervised node
classification, where the model fθ is trained with labeled nodes VL ⊂ V to classify
the other unlabeled nodes VU = V/VL .

3.2 A General Form of poisoning attacks

In poisoning attacks, attackers minimize an attack loss to cause incorrect final
classification results. A general form of the objective for adversarial attacks can
be stated as:

arg min
A∈ϕ(A)

Lattack(f(A, X; θ∗), y) s.t. θ∗ = argmin
θ

Lpredict(f(A, X; θ), y)

(1)
Where y denotes ground-truth labels, Lattack denotes the attacker’s loss

function, and Lpredict denote GNN’s loss. A′ is the perturbed adjacency ma-
trix, and ϕ(A) is a set of adjacency matrices that satisfy the unnoticeability:
∥A′ −A∥0 ≤ ∆ in which ∆ is budget to constrain the number of perturbed
edges.

4 Methodology

The overall architecture of the proposed ASGCN framework is shown in Fig. 2.
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Fig. 2: The framework of the proposed ASGCN. (1) Generating an estimated
graph from clean attributes using an MLP. (2) Extracting embeddings ZP , ZE ,
and ZC from the perturbed graph, estimated graph, and a combination respec-
tively, using two individual GCNs and one common GCN. (3) The attention
mechanism assigns weights to the three spaces.

4.1 Attribute-Estimated Graph Generation

After a graph suffers a structural attack, its edges are perturbed, leading to
significant noise. However, attribute information remains unaffected. We apply
a multi-layer perceptron (MLP) to generate an estimated graph. The l− th layer
of the MLP is defined as:

Z(l)
m = σ

(
Z(l−1)
m W (L)

m

)
(2)

Where Z(0)
m = X, W (l)

m is the learnable weight matrix for MLP, and σ is activation
function. Denote the output of the final layer of MLP as Zm, then we can obtain
the soft assignment matrix B ∈ Rn×C as follows:

B = soft max (Zm) (3)

The element in matrix B represents the probability that the i− th node belongs
to class c. All parameters θmlp of the MLP are optimized using the labels from
the dataset, and the loss function is defined as follows:

θ∗mlp = argmin
θmlp

Lmlp = argmin
θmlp

1

|VL|
∑

va∈VL

J(bmlp
a , ya) (4)

where bmlp
a is the predicted labels of node va by MLP. Based on matrix B, the

probability of two nodes belonging to the same class can be calculated as follows:

S = BBT (5)
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The element Sij in matrix S ∈ Rn×n represents the probability that node i and
node j belong to the same class. Finally, we set a threshold τ to generate the
estimated graph Ge as follows:

Ge(ij) =

{
0, Sij < τ,
1, Sij ≥ τ,

(6)

When the value of Sij is greater than τ an edge is formed in the estimated
graph. After calculating this for all node pairs, we obtain the adjacency matrix
Ae corresponding to the estimated graph, while the feature matrix remains X.

4.2 Specific Convolution Module

Convolutional graph neural networks obtain high-quality node representations
by aggregating neighbor information. Both the perturbed graph and the esti-
mated graph contain substantial information beneficial for node classification.
In this paper, we use two GCNs [16] to obtain node representations from the
perturbed graph and the estimated graph, respectively. The l − th layer output
in the estimated graph can be represented as

Z(l)
e = ReLU(D̃

− 1
2

e ÃeD̃
− 1

2
e Z(l−1)

e W (l)
e ) (7)

Here, Ãe = Ae+I is the adjacency matrix of the estimated graph Ge with added
self-connections. I is the identity matrix, D̃e is the diagonal degree matrix of Ãe,
where D̃e(ii) =

∑
j Ãe(ij). W

(l)
e is the weight matrix of the l− th layer in GCN.

RuLU is the activation function and Z
(0)
e = X. Following the same calculation

method, the output embedding for the perturbed graph after graph convolution
is:

Z(l)
p = ReLU(D̃

− 1
2

p ÃpD̃
− 1

2
p Z(l−1)

p W (l)
p ) (8)

4.3 Common Convolution Module

Perturbed graph and estimated graphs contain a significant amount of corre-
lated information relevant to node classification tasks, and this correlation is
often difficult to know in advance. Therefore, in addition to capturing the indi-
vidual representations of perturbed graph and estimated graph, it is also neces-
sary to capture the common information present in both graphs. We designed
a Common-GCN with a parameter sharing strategy to obtain an embedding
shared between the two graphs. First, we utilize Common-GCN to extract the
node embedding Z

(l)
cp from perturbed graph (Ap, X) as follows:

Z(l)
cp = ReLU(D̃

− 1
2

p ÃpD̃
− 1

2
p Z(l−1)

cp W (l)
c ) (9)

Where W
(l)
C is the l− th layer weight matrix of Common-GCN, and Z

(l)
cp , Z(l−1)

cp

are the node representations of the perturbed graph in the l− th and (l−1)− th
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layers of Common-GNN, respectively. For estimated graph (Ae, X), we share the
same weight matrix W

(l)
C for every layer of Common-GCN as follows:

Z(l)
ce = ReLU(D̃

− 1
2

e ÃeD̃
− 1

2
e Z(l−1)

ce W (l)
c ) (10)

Then we can get the l − th common embedding Z
(l)
c of the two graphs is:

Z(l)
c =

Z
(l)
cp + Z

(l)
ce

2
(11)

Sharing weights allows the two networks to focus more on the common informa-
tion in the data. The node representations obtained from the common convolu-
tional module can filter out the shared characteristics from the two graphs.

4.4 Attention Mechanism

We now have two specific embeddings ZP and ZE , and one common embedding
ZC . Under different perturbation rates, the contributions of the three inputs
to the classification performance are different. We use the attention mechanism
att(ZP , ZE , ZC) to learn their corresponding importance (λp, λe, λc) as follows:

(λp, λe, λc) = att(ZP , ZE , ZC) (12)

Here ap, ae, ac ∈ Rn×1 indicate the attention values of n nodes with embeddings
ZP , ZE , ZC respectively. Taking the embedding ZP in the perturbed graph as an
example, the representation of node i is zip ∈ R1×n. First, a non-linear trans-
formation is performed. Then, the node attention value ξip is obtained after the
operation with the attention vector q ∈ Rh×1. The calculation method is as
follows:

ξip = qT · tanh(W · (zip)T + b) (13)

Using the method in formula (13), we can successively obtain the attention
coefficients ξip, ξ

i
e of node i in ZP , ZE , ZC . Using the softmax function to nor-

malize, we obtain the weights λi
p, λ

i
e, λ

i
c of the node i in ZP , ZE , ZC . After the

above calculation steps, each node obtains the weights on each channel. The
embedding on the three channels are weighted and summed to obtain the final
representation of the node:

Z = λp · ZP + λE · ZE + λC · ZC (14)

4.5 Classifier

The final node representations obtained from the previous three parts are used
for node classification. We employ the softmax function to compute the predicted
label probabilities for each node and use the cross-entropy loss to optimize the
model parameters.

ŷi = softmax (Z) (15)
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Lloss = − 1

|VL|
∑

vi∈VL

Yi log (ŷi) (16)

Yi, ŷi ∈ R|c| is the one-hot embedding of label and the predicted label of i
respectively.

5 Experiments

5.1 Experimental Setup

Dataset. We conduct extensive experiments on four widely used [11] [13] [8]
graph datasets, including Cora, Citeseer, Pubmed [17], and Polblogs [18]. The
Cora, Citeseer, and Pubmed datasets are citation graphs, in which each node
represents scientific literature, and the edges between nodes represent the cita-
tion relationship of scientific literature. The Polblogs dataset is a blog graph, in
which each edge represents the link between blogs. Note that there are no node
features available in the Polblogs dataset, so following the previous work [13] [11],
we set the feature matrix to be a N ×N identity matrix, where N is the number
of nodes. More details of these datasets are summarized in Table 1.

Table 1: Datasets statistics
Datasets Nodes Edges Features Classes Feature type

Cora 2485 5096 1433 7 Binary
Citeseer 2110 3668 3703 6 Binary
Pubmed 19717 44338 500 3 Continuous
Polblogs 1222 16714 / 2 /

Baseline.To highlight the outstanding performance in resisting various graph
adversarial attacks of our method, we compare the DualRGNN with representa-
tive and state-of-the-art graph neural networks and robust graph neural network
models. More detailed descriptions of the baselines are as follows:

– GCN-Jaccard [6]. GCN-Jaccard purifies the graph structure by calculating
the Jaccard similarity of node features and removing edges below a similarity
threshold.

– RGCN [19]. RGCN models the l− th layer hidden representation of nodes
as a Gaussian distribution and applies an attention mechanism to penalize
nodes with high variance.

– GCN-SVD [9]. Enhancing the robustness of GCNs by low-rank approxi-
mation of perturbed graphs is also a strategy to defend against adversarial
attacks through preprocessing.

– GNNGuard [7]. GNNGuard employs the theory of network homophily to
assign higher scores to edges connecting similar nodes while pruning edges
between unrelated nodes.
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– ProGNN [11]. ProGNN generates a clean graph structure using three con-
straints: low-rank, sparsity, and feature similarity of neighboring nodes.

– STABLE [8]. STABLE utilizes a similar idea of calculating similarity based
on unsupervised representations instead of features.

– Good-AT [20]. Good-AT defines an OOD detector as a classifier to filter
adversarial edges using adversarial examples.

Parameter settings. We randomly choose 10% of nodes for training, 10%
of nodes for validation and the remaining 80% of nodes for testing. To obtain the
three representations in our model, we simultaneously train three 2-layer GCNs.
These GCNs share the same hidden layer dimension (nhid1) and the same output
dimension (nhid2), where nhid1 ∈ {512, 768} and nhid2 ∈ {32, 128, 256}. The
MLP pre-training was performed for 100 epochs, with a single hidden layer of
size nhid = nhid2. We explore weight decay in {5e− 3, 5e− 4} and use a dropout
rate of 0.5. The learning rate is searched within the range of 0.01 to 0.05. τ is an
important parameter in the ASGCN. Too large a value will cause the estimated
graph to be too dense, while too small a value will lead to underlearning. In
this paper, based on the number of edges in each dataset, the (n * number of
edges) node pairs with the greatest similarity, Sij , are chosen to form edges.
n is searched in{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. To ensure a fair comparison with the
baseline methods, we adopt the same set of hyperparameters as recommended
by their respective authors across all our models. All results were performed five
times, and the results were averaged.

5.2 Performance on clean graph

Excellent defense methods should not only demonstrate robustness on perturbed
graphs but also maintain comparable performance on clean graph data. Table 2
shows the classification results of baselines and our proposed method on clean
datasets. The results demonstrate that our method maintains competitive per-
formance across all four datasets, indicating that it does not sacrifice excessive
original data accuracy in order to improve robustness against adversarial attacks.
This is because, even when the data is unperturbed, our method can adaptively
adjust the weights of the three representations to obtain the most task-relevant
information.

Table 2: Performance on clean graph. The top two performances are highlighted
in bold and underline.
Datasets GCN-Jaccard RGCN GCN-SVD GNNGuard ProGNN STABLE Good-AT Ours

Cora 82.45±0.32 83.09±0.15 80.63±0.46 79.51±0.30 83.45±0.41 83.54±0.40 84.30±0.16 84.65±0.15
Citeseer 72.43±0.24 71.20±0.31 70.65±0.19 71.83±0.45 73.87±0.31 73.95±0.37 74.08±0.28 74.64±0.12
PubMed 85.06±0.08 85.16±0.06 83.44±0.14 83.88±0.05 87.24±0.13 85.79±0.04 84.14±0.08 86.24±0.06
Polblogs − 94.79±0.15 95.06±0.20 - 94.68±0.19 94.96±0.07 93.79±0.20 94.46±0.16
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Table 3: Node classification performance under non-targeted attack(metattack).
The top two performances is highlighted in bold and underline.
Datasets Ptb

Rate
GCN-

Jaccard
RGCN GCN-

SVD
GNN
Guard

ProGNNSTABLE Good-
AT

Ours

Cora

5% 79.13 77.42 78.39 78.27 82.27 81.49 79.82 82.80
10% 75.16 72.22 71.47 78.03 79.03 80.06 70.26 81.79
15% 71.03 66.82 66.69 78.18 76.40 78.45 67.80 80.84
20% 65.71 59.27 58.94 77.15 73.32 78.01 55.60 79.93
25% 60.82 50.51 52.06 76.34 69.72 71.22 51.23 78.47
Avg. 70.37 65.25 65.51 77.59 76.15 77.85 64.94 80.77

Citeseer

5% 70.51 70.50 68.84 71.32 73.09 73.61 72.39 73.99
10% 69.54 67.71 68.87 70.86 72.51 73.13 69.46 73.58
15% 65.95 65.69 63.26 70.83 72.03 72.13 66.78 72.15
20% 59.30 62.49 58.55 70.97 70.02 72.43 60.27 71.09
25% 59.89 55.35 57.18 71.08 68.95 70.21 57.90 71.50
Avg. 65.04 64.35 63.34 71.01 71.32 72.30 65.36 72.46

PubMed

5% 85.44 82.51 83.64 84.24 87.23 87.32 84.02 86.36
10% 85.26 80.36 82.31 84.10 87.21 87.16 83.87 85.82
15% 84.72 75.84 82.26 84.14 87.20 87.24 83.07 85.75
20% 83.65 71.24 83.07 84.22 87.15 87.04 82.41 85.18
25% 83.74 70.12 81.88 84.12 86.76 87.15 82.00 85.54
Avg. 84.56 76.01 82.63 84.16 87.11 87.18 83.07 85.73

Polblogs

5% - 74.34 89.09 - 93.29 93.21 91.45 93.33
10% - 71.04 81.24 - 89.42 92.14 87.26 91.92
15% - 67.28 68.10 - 86.04 90.23 80.88 93.76
20% - 59.86 57.33 - 79.56 88.43 74.14 92.84
25% - 56.02 48.66 - 63.18 84.56 69.51 90.69
Avg. - 65.71 68.88 - 82.30 89.71 80.65 92.51

5.3 Defense Performance

5.3.1 Against Non-targeted Adversarial Attacks The goal of non-targeted
attack is to degrade the overall performance of GNNs on the whole graph.We use
Mettack [21] to perform non-targeted poisoning attacks. , which is an effective
attack method. Mettack needs to compute meta-gradients, which requires huge
memory space to store the computation graphs in all iterations, so we only use
the perturbed graphs provided by ProGNN [11]. We vary the perturbation rate,
i.e., the ratio of changed edges, from 0 to 25% with a step of 5%. Due to the
node features being unavailable on the Polblogs dataset, it is no means of evalu-
ating the baselines methods Jaccard-GCN and GNNGuard on this dataset.The
defense results are shown in Table 3, we have the following observations:

– Our method consistently outperforms all baseline methods across different
perturbation rates on the Cora, Citeseer, and Polblogs datasets, while also
achieving competitive performance on the PubMed dataset.

– Our method exhibits stable performance across varying attack rates. Across
the four datasets, as the perturbation rate increases from 5% to 25%, our
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method’s performance decreases by only 4.33%, 2.49%, 0.57%, and 0.79%,
respectively. In contrast, ProGNN [11] performs well at low perturbation
rates but experiences a sharp decline in performance as the perturbation
rate increases. GNNGuard [7] and STABLE [8] demonstrate good defense
stability, but their accuracy is lower than that of our method. This indicates
that our method is insensitive to the perturbation rate and can adaptively
regulate the coefficients of the three convolutional layers in scenarios where
the perturbation rate is unknown, consistently identifying the most beneficial
components for classification.

– Even when the graph is heavily poisoned, our method maintains superior
classification performance. For example, on the Cora dataset at a 25% per-
turbation rate, our method achieves a node classification accuracy of 78.47%,
significantly higher than Good-AT [20] (51.23%) and RGCN [19] (50.51%).
This demonstrates the robustness of our approach under varying levels of
adversarial perturbations.

(a) cora (b) pubmed

(c) polblogs (d) citeseer

Fig. 3: Results of different models under nettack
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5.3.2 Against Targeted Adversarial Attacks Targeted attack generates
attacks on specific nodes and aims to fool GNNs on these target nodes. we em-
ploy Nettack [10] as the target graph adversarial attack method, and we follow
the default parameter settings in the authors’ original implementation. Follow-
ing [11] [13], we set the number of perturbations made on every targeted node
from 0 to 5 with a step size of 1. The nodes in the test set with a degree larger
than 10 are treated as target nodes. Figure 3 presents the node classification
results under different perturbation rates. From the results, we can make a few
observations as follows:

– On the Cora and Pubmed datasets, our ASGCN method can effectively de-
fend against targeted graph adversarial attacks, outperforming all baseline
methods in most cases. Compared to the ProGNN [11] and STABLE [8]
methods, ASGCN achieves higher semi-supervised node classification accu-
racy. Furthermore, at perturbation rates of 4 and 5, ASGCN maintains per-
formance of 79.18% and 77.16% on the Cora dataset, significantly exceeding
other baseline methods.

– On the Citeseer and Polblogs datasets, ASGCN does not outperform certain
baseline methods on perturbed graphs. However, the overall performance of
ASGCN remains comparable to most baseline methods, particularly when
the perturbation rate is 5, where ASGCN still exhibits the best performance.

Fig. 4: Attention values under metattack (20% perturbation)

5.4 Analysis of Attention Mechanism

To investigate our proposed model’s ability to adaptively learn the weights as-
signed to the perturbed graph, the estimated graph, and the common space –
under perturbations with arbitrary attack rates – we observed the attention value
distribution across these three components for all datasets under metattack with
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(a) citeseer (b) cora

(c) pubmed (d) polblogs

Fig. 5: Attention distribution under metattack with a perturbation rate of 20%

a 20% perturbation rate. As illustrated in Figure 5, the attention distribution
differs for the three spaces in each dataset. For the PubMed dataset, the infor-
mation contribution from the perturbed graph is significantly greater than that
of the other two spaces. In the Cora dataset, the contributions of the perturbed
graph and the estimated graph are comparable.

Furthermore, Figure 4 illustrates the attention values for the three spaces
(original graph, estimated graph, and common space) when each dataset achieves
its best classification accuracy under Metattack with a 20% perturbation rate. In
Pubmed, the original perturbed graph still provides the most useful information.
However, in Cora and Polblogs, the attention values for the estimated graph
increase. Across all datasets, the common space values are the lowest, but they
are also distinct for each dataset. In summary, the experiment demonstrates that
our proposed ASGCN is able to adaptively assign a larger attention value to the
more important information.
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6 Conclusion

In this paper, we investigate the limitations of methods relying on predefined
robust properties. To address these limitations, we propose an adaptive multi-
space defense framework that leverages the original graph structure to varying
degrees. By incorporating an attention mechanism, two specific convolution mod-
ules, and one conmon convolution module, we can capture task-relevant informa-
tion. Through extensive experiments, we validate the adversarial robustness of
ASGCN against poisoning attacks. Furthermore, even when the graph is heavily
poisoned, ASGCN can still maintain excellent performance.
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