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Abstract. The emergence of AI legislation has increased the need to as-
sess the ethical compliance of high-risk AI systems. Traditional auditing
methods rely on platforms’ application programming interfaces (APIs),
in which responses to queries are examined through the lens of fairness
requirements. However, such approaches put a significant burden on plat-
forms, as they are forced to maintain APIs while ensuring privacy, facing
the possibility of data leaks. This lack of proper collaboration between
the two parties, in turn, causes a significant challenge to the auditor, who
is subject to estimation bias as they are unaware of the data distribution
of the platform. To address these two issues, we present P2NIA, a novel
auditing scheme that proposes a mutually beneficial collaboration for
both the auditor and the platform. Extensive experiments demonstrate
P2NIA’s effectiveness in addressing both issues. In summary, our work
introduces a privacy-preserving and non-iterative audit scheme that en-
hances fairness assessments using synthetic or local data, avoiding the
challenges associated with traditional API-based audits.

Keywords: Algorithm auditing · synthetic data · local differential pri-
vacy · fairness estimation.

1 Introduction

Algorithm auditing refers to the evaluation of algorithmic decision-making sys-
tems. More precisely, it aims at ensuring their privacy, transparency, fairness
and compliance with ethical and legal standards [19, 37]. This field is very ac-
tive, in reaction to algorithms becoming increasingly ubiquitous in our daily
lives in critical areas such as finance, human resources, healthcare or justice [2,
7, 12, 14, 27, 28, 34, 48, 51]. The traditional way to assess if decision-making sys-
tems and models in production satisfy ethical standards is to audit them in the
so-called black-box setting, in which the auditor sends queries to a platform, re-
ceives answers and infers information on its behavior with respect to fairness,
for instance.
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Issues with black-box audits. Unfortunately, it has been shown that, in many real-
world scenarios, black-box audits may not lead to accurate evaluation [5,10,11].
The main reason for this being the non-collaboration of platforms that do not
want to release information about their data distribution, which is kept hidden
for privacy or trade secret motives. Consider, for instance, the scenario of a bank
that decides to lend to whom by using a risk scoring model. The bank uses the
model to predict if clients are likely to repay the loan based on their economic
profile and an auditor wants to assess the fairness of such a model. To realize this,
requests composed of possible profiles are sent to the platform for assessment. In
this scarce data regime, audit results can lead to erroneous conclusions, possibly
due to the auditor’s measurement bias, whether deliberate or subconscious or to
wrong assumptions regarding the audited model. For instance, if the auditor’s
requests do not align with the data distribution used to train the platform model,
it will lead to biased conclusions. In addition, many audit scenarios deal with
sensitive data such as personal health records, income levels or demographic
information like age, gender and ethnicity [29]. Such data is highly critical and
cause platforms to be reluctant to open and maintain APIs to expose them, as
requested by recent legislation such as the AI act [24].

Contributions. We propose a novel scheme to address these issues in a setting in
which the platform and the auditor collaborate for the audit. Our solutions lead
to a mutually beneficial situation in which 1) the auditor can perform an unbiased
estimation of the property of interest (hereafter, we focus on fairness), and 2) the
platform does not need to maintain APIs while ensuring the privacy of its data.
More precisely, we first demonstrate both theoretically and with an example
that in a non-collaborative audit setup, in which the auditor faces a black-box
setting (i.e., without being provided the data distribution of the platform), an
auditor obtains a biased estimate of the model under scrutiny. This motivates our
scheme P2NIA (which stands for Privacy-Preserving Non-Iterative Auditing), in
which the platform collaborates with the auditor by releasing a synthetic dataset
mimicking its behavior, allowing for unbiased audits while ensuring privacy. In
summary, our contributions are as follows.

– We demonstrate and illustrate that an audit outcome can be biased in a
black-box setting due to the population bias.

– To circumvent this issue, we propose P2NIA, a novel collaborative auditing
scheme benefiting both the platform and the auditor by enabling accurate
audits while being privacy-preserving and non-iterative.

– We have designed several ways to implement P2NIA and experimentally eval-
uate their performance.

Outline. First, we present the challenges associated with black-box auditing
schemes in Section 2 before introducing P2NIA as an alternative approach to
address them in Section 3. Then, we evaluate our proposal on two datasets and
compare it to a standard audit scheme in Section 4. Afterward, we review related
works in Section 5 before concluding in Section 6.
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2 Auditing Black-Box Models

After formalizing the audit objective in this section, we focus on the potential
bias in black-box fairness estimation. In particular, studying a common hypoth-
esis that an auditor needs to have knowledge of the platform distribution, we
theoretically show that imperfect knowledge of this distribution can lead to a lin-
ear estimation bias on the statistical distance between the two distributions. We
also illustrate how such bias will likely appear in practice through a simulation.

2.1 Auditing Fairness Setup

Fairness Definitions. The concept of fairness refers to the property that algo-
rithms should not discriminate against people based on sensitive characteristics,
such as ethnical origin or gender [5]. Fairness can be defined in many ways, but
we focus on group fairness metrics, which compare the statistics of predictions
between two groups, one of which is considered potentially discriminated and is
called the protected group. In particular, we focus on demographic parity, equal-
ity of opportunity and equalized odds, as these are arguably the most studied
group fairness notions [43].

Formally, we aim at auditing model m ∈ H : X → Y, with X is its input
space. Let D be the input distribution and µD the target measure of the audit.
Usually, this notation is shorthanded by µ. However, this notation hides a strong
prerequisite for measuring fairness, namely having access to the input distribu-
tion D. In addition, group fairness requires the definition of a protected group,
usually defined through a protected attribute A ∈ {0, 1}. We denote Y as the
target variable and Ŷ = m(X) as the prediction of model m on input X.

The fairness metrics we study can be formally defined as follows [9, 21,32]:
Demographic parity: µD =

∣∣∣PD[Ŷ = 1|A = 1]− PD[Ŷ = 1|A = 0]
∣∣∣.

Equalized odds: µD = max
y∈{0,1}

∣∣∣PD[Ŷ = 1|Y = y,A = 0]− PD[Ŷ = 1|Y = y,A = 1]
∣∣∣ .

Equality of opportunity: µD =
∣∣∣PD[Ŷ = 1|Y = 1, A = 0]− PD[Ŷ = 1|Y = 1, A = 1]

∣∣∣ .
In a nutshell, each of these metrics addresses different facets of potential

bias and ensures that models perform equitably across groups. For instance,
demographic parity aims at maintaining similar outcome distributions across
groups, while equalized odds and equal opportunity assess fairness by comparing
error rates with the latter, specifically focusing on true positive rates. Note that
the last two fairness metrics require access to the true label Y of samples, which
might be a strong assumption in practice.

Black-Box Auditing Setting. When assessing the fairness of a model, particularly
in usual non-collaborative setups, auditors are unlikely to possess information
about the distribution of training data. Hence, they will have to rely on black-box
auditing strategies, which generally entails crafting a specific finite set of queries
Q = {q1, . . . , qn} in the model input space X , and obtaining the corresponding



4 J. Garcia Bourrée et al.

honest5 model inferred answers m(Q) = {m(q1), . . . ,m(qn)}. The pair (Q,m(Q))
is then processed by the auditor to produce the fairness estimates. In the specific
case of equality of opportunity and equalized odds, the auditor needs domain
expertise to access the true outcome Y of their requests Q.

A crucial assumption for the auditing to work is that Q ∼ D, which is
equivalent to the auditor having sampling access to the input distribution6.
Unfortunately, in a non-collaborative audit, the platform will likely keep this
information confidential for privacy and trade secret reasons, as observed with
recent legislation enforcing the opening of APIs [24].

2.2 Estimation Discrepancy Due to Population Bias

When the auditor does not have access to D, they must rely on a different distri-
bution D′ to generate their audit queries. For instance, when auditing platforms
such as TikTok or Snapchat, already known user profiles from other platforms
like LinkedIn or Facebook can be used. Unfortunately, such distributions differ
substantially, for example in terms of users’ average age [33]. Another possible
approach is to generate data from statistics published by the platforms them-
selves. However, public statistics are often insufficient to generate realistic data,
particularly due to correlations between attributes [1]. The ignorance of D thus
lead to an inaccurate fairness estimation µD(m) ̸= µD′(m). Hereafter, we refer
to this as a form of population bias. This term was initially introduced to qualify
the bias arising when a population x ∼ D uses a classifier trained using samples
drawn from a distribution D′ ̸= D [43]. In our setting, population bias is used
to qualify the bias due to the evaluation of models using a biased query set,
i.e. from a trained model on the platform using x ∼ D, then audited with a
population D′. While this form of bias has been known in other contexts, to
the best of our knowledge it has not been studied in the field of model audits
in the black-box setting. For instance, Casper and co-authors [11] acknowledge
the possible presence of bias in the black-box setup but without identifying the
precise bias cause. To highlight the impact of such population bias in black-box
audits, we first construct pathological examples demonstrating to which extent
the estimation can be biased, before showing through simulation that population
bias also has practical impacts, even in simpler scenarios.

Theorem 1. Population bias in black-box audit. Estimating the fairness
metric ( e.g., demographic parity, equality of opportunity or equalized odds) of a
model m using a distribution D′ at a (total variation) statistical distance α from
the true distribution D can lead to an approximation error linear in α. Formally:
∃D,D′,m s.t. δ(D,D′) = supF∈F |D(F )−D′(F )| = α and m ∈ H : X 7→ Y s.t.
|µD(m)− µD′(m)| = α.

5 Previous works have shown that manipulative platforms may impede fairness assess-
ment [30].

6 In some settings, the auditor may want to deviate from D to optimize his sam-
pling strategy and obtain more accurate estimates [53], but this nevertheless requires
knowing D.
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Proof. First, we look at the case of demographic parity and proceed by con-
structing the situation considered. Let X = a ∈ {0, 1}× b ∈ {0, 1}× c ∈ [0, 1] be
the input space and Y = {0, 1} the binary output space. In the following, a will
play the role of the protected attribute, b will enable the tuning of the statistical
distance between D and D′, and c represents additional data used by the model
to construct its decision. We now describe two distributions D,D′ on X:

– for both D and D′ we have: c ⊥⊥ (a, b), c ∼ U(0, 1) and a ⊥⊥ b.
– ED(a = 1) = ED′(a = 1) = 1/2
– ED(b = 1) = 0 and ED′(b = 1) = α

As a table:

x ∼ a = 1, b = 1 a = 0, b = 1 a = 1, b = 0 a = 0, b = 0

D 0 0 1/2 1/2
D′ α/2 α/2 (1− α)/2 (1− α)/2

Clearly, with F being a sigma-algebra of X, we have

δ(D,D′) = supF∈F |PD(F )− PD′(F )| = PD′(b = 1)− PD(b = 1) = α.

In other words, the total variation distance between D and D′ is α.
The model M : X 7→ Y is defined as follows: M(x) = (1− b).(c > 1/2)+ b.a.

The rationale here is that b drives two distinct behaviors of M , only one of which
is unfair. The demographic parity can be expressed as given D: µx∼D(M) =
|P (Y |a)− P (Y |ā)| = P (c > 1/2)− P (c ≤ 1/2) = 0. Conversely, given D′, using
the law of total probability on the partitions induced by b: µx∼D′ = (P (Y |a, b)−
P (Y |ā, b))P (b) + (P (Y |a, b̄) − P (Y |ā, b̄))(1 − P (b)) = (1 − 0)α + 0 = α. Hence,
|µx∼D(M)− µx∼D′(M)| = α.

Second, we can generalize the previous proof to equality of opportunity and
equalized odds by assessing that for all input, Y = 1. In such case, for all binary
a, y, PD[Ŷ = 1|Y = y,A = a] = PD[Ŷ = 1|Y = 1, A = a] = PD[Ŷ = 1|A = a]
and the three metrics are equals. □

Intuitively, this result states that if the auditor has a bias in their prior
about the distribution at play at the platform (i.e., imperfect knowledge of
the distribution), then the outcome is also a biased estimation. This is highly
undesirable as it undermines the strength and legal impact of the audit.

While Theorem 1 corresponds to a crafted extreme scenario, we now study
experimentally the impact of population bias on real data. To this end, we use the
standard Folktables dataset commonly used in fairness settings [16]. Consider a
platform that trained a model on data collected from a specific state (California)
to predict whether an individual’s income is above $50, 000 [16]. We consider a
black-box auditor that has no access to this training distribution, which uses
the distribution of another state among the remaining fifty in the dataset. One
might expect that the auditor and model distributions are sufficiently similar to
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estimate the platform fairness accurately. However, as demonstrated by Figure 1,
this is not the case. Thus, no matter the state the auditor selects for reference,
there will be a considerable population bias in the auditor’s estimation. More
concretely, on average, the absolute error in estimating the demographic parity
with a different state is around 0.13, which is high considering that the clas-
sical 80% rule translates into a maximal tolerated value of 0.2. Concretely, as
the true demographic parity in this example is 0.01, using the distribution of
(NE,SD,WY,ND,ID,UT) would lead the auditor to a wrong conclusion about
the model.
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Fig. 1: Observed population bias on the evaluation of demographic parity with
protected feature “sex” on a model trained in state CA to predict whether an
individual’s income is above $50, 000 and evaluated in other states. These results
confirm the practical impact of Theorem 1.

This population bias is thus a clear impediment for accurate au-
diting in non-collaborative black-box audits, and is at stake even in such
a simple and realistic scenario. To address this, in the following section, we pro-
pose P2NIA, a novel scheme enabling unbiased estimation while adding privacy
protection with respect to the platform.

3 Auditing through a Differentially-Private Dataset

To tackle the aforementioned issues, we propose a collaborative scheme, P2NIA,
which leverages privacy-preserving techniques for the benefit of the privacy pro-
tection of the platform while enabling accurate fairness auditing by the auditor.

3.1 P2NIA: A Non-Iterative Auditing scheme

We first present the P2NIA scheme before describing how it enables a fairness
estimation that is 1) reliably performed and 2) without exposing the privacy of
users (i.e., the released dataset is differentially-private).
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Fig. 2: Description of P2NIA scheme.

The Privacy-Preserving Non-Iterative Auditing scheme (P2NIA) works in six
steps (Figure 2). First, P2NIA starts with the auditor specifying to the platform
the desired number of queries n′, along with A, the group of interest (step 1).

Upon receiving this request, the platform labels a part of its internal data
(called audit dataset in the following) using its proprietary model m. More pre-
cisely the, model m is applied to the dataset D to generate a set of labeled
queries Q, in which each query consists of a profile input X from the dataset,
the target output Y and the corresponding predictions Ŷ (step 2).

To protect sensitive information while still allowing fairness evaluation, the
platform has two options. More precisely, either it anonymizes the dataset by
using a local differential-private mechanism as described in Section 3.2, or it
trains a generative model g build to produce synthetic data based on Q to
reflect the model’s behavior without directly disclosing the training user data
(step 3). Afterwards, the platform creates the audit dataset by generating or
anonymizing n′ synthetic queries Q′ with g (step 4).

Then, the platform releases Q′ to the auditor (step 5). At this stage, the
auditor receives the auditing datasets and evaluates fairness using a predefined
fairness metric µ(Q′), applied to the protected group A (step 6).

Observe that in our scheme, the auditor evaluates the model using Q′, with-
out directly querying the platform model (step 6) but rather by declaring their
number of requests and their group of interest (step 1). Before the generation
with a mechanism g, the queries in D are labeled using the model m (step 2) in
order to reflect the platform’s actual behavior. This step is necessary for certain
mechanisms g that require labeled data as input to achieve better result.

Thus, as the platform has generated Q′ from its audit dataset D with a mech-
anism that ensures differential privacy, the personal data remains confidential
while making it possible to audit the model (steps 2-5). As differential privacy
is immune to post-processing [22] (i.e., it is impossible to compute a function
of the output of the private algorithm and make it less differentially-private),
the assessment of µ by the auditor does not reduce the privacy of the released
data. For example, in the context of the income prediction model discussed in
Section 1, this would amount to accurately auditing the fairness of a platform
based on synthetic demographic data without revealing the record of any user.
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3.2 Implementing P2NIA with Differentially-private Mechanisms

The P2NIA scheme is generic with respect to particular privacy mechanisms
implementations captured as g in Figure 2. In this paper, we focus on differen-
tial privacy and explore two distinct mechanisms to achieve it: local differential
privacy and synthetic data generation. We first present the differential privacy
guarantees that we aim to achieve.

Differential privacy. Differential privacy is a formal privacy model that protects
individuals by bounding the impact any individual can have on the output of an
algorithm [22].

Definition 1. Differential Privacy. [22] A randomized mechanism M sat-
isfies ϵ-differential privacy if for any individual x ∈ X , any dataset Q ⊂ X and
any subset of possible outputs S:

P [M(Q \ {x}) ∈ S] ≤ exp(ϵ)P [M(Q) ∈ S] .

The parameter ϵ is called the privacy budget and is considered public. The
smaller ϵ, the stronger the privacy guarantees. Typical values of ϵ could be 0.01,
0.1, or in some cases, ln(2) or ln(3) [20]. However, in practice, ϵ can vary up to
10 [38], as, for example, Apple reports using values of 4 or 8 [3].

Data anonymization through local differential privacy. One way to share data
while respecting differential privacy is to add noise to the data. For instance, in
the randomized response technique [56], a respondent answers a sensitive binary
question (e.g., “What is your gender”) by tossing a biased coin in secret. If the re-
sult is tail, the respondent answers honestly. Otherwise, the coin is tossed again,
and the answer returned is “Male” if head and “No” if tail. This ensures that the
auditor can reliably estimate the unknown proportions of sensitive attributes
without knowing any individual’s true answer with certainty. With Simple Ran-
dom Sampling With Replacement (SRSWR [15]), this generalized randomized
response method provides an unbiased estimator of these proportions while also
ensuring compliance with the ϵ-differential privacy for any ϵ by adjusting the
bias of the coin. The randomized response technique can be generalized to non-
binary attributes (e.g., age or marital status) or to sets of attributes [13], which
is called Generalized Randomized Response (GRR). In addition, it can be com-
bined with pre-processing techniques [54] (instead of SRSWR) for better pri-
vacy guarantee, and recent advances have further improved the performance of
GRR [6,17,23,55,57].

P2NIA implementation: Since our study aims to highlight how P2NIA can be
applied rather than providing an exhaustive comparison of private data methods,
we proceed with the basic version of GRR: each colmun of the dataset (features,
target and prediction) is independently flipped with a probability p selected to
reach the desired privacy guarantee ϵ: p = eϵ/(eϵ + k − 1), in which k is the
number of values the feature can have.
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P2NIA Fairness Estimation Reliability: As Ŷ is computed by the platform
knowing D, the resulting fairness estimator is only biased by the noise added by
GRR. The auditor knows ϵ and hence p, so they can easily debias the anonymized
results to recover the correct estimator value [13,17].

Mechanisms for Differentially-private Synthetic Data Generation. Instead of
adding noise to existing data, another approach consists of generating synthetic
data that follows the original distribution while protecting the privacy of individ-
ual records for the original dataset. Many differentially-private data generation
approaches have been proposed in the literature to achieve this objective; the
interested reader can refer to [49] or [26] for recent surveys on the subject. In
particular, some synthesis methods offer the possibility to specify which relation-
ship between variables should be maintained, aligning with our goal of reliable
model evaluation. Specifically, we use MST [40] and AIM [41], which are two
methods operating under the select-measure-generate framework. In a nutshell,
both methods work by first selecting a set of low-dimensional marginal queries
(i.e., statistics on small subsets of attributes). Afterwards, each selected marginal
is measured under differential privacy by adding noise to ensure privacy. This
yields a collection of noisy marginal results. Finally, a graphical model called
Private-PGM [42] is constructed from those noisy marginals to infer a consis-
tent high-dimensional data distribution to generate new synthetic data points.
MST and AIM differ in the way marginals are selected. More precisely, MST
performs an initial noisy measurement of marginals using a small portion of the
privacy budget and then selects which one should be measured more precisely.
In contrast, AIM adaptively chooses new queries in iterative rounds, using feed-
back from previous measurements to guide where the privacy budget should be
spent. This adaptive selection can improve accuracy at the expense of increased
computational cost.

P2NIA implementation: We explicitly maintain the relationship between pro-
tected variable A, target variable Y and predictions Ŷ from the audited model
(i.e., the marginals (A, Y ), (A, Ŷ ), (Y, Ŷ ) and (A, Y, Ŷ )) in addition to 12 2-way
marginals chosen randomly to mimic the dataset. The relationship between the
required privacy level ϵ and the noise introduced in the marginals differs between
MST and AIM, which are detailed in the respective original papers.

P2NIA Fairness Estimation Reliability: As we explicitly conserve all marginals
involved in the definition of all three fairness measures, the resulting value is
unbiased.

Hence, we consider three distinct methods to implement P2NIA: GRR, MST
and AIM. While the choice of GRR is driven by its appealing simplicity, MST
and AIM are recent synthetic data generation methods. With each of these
methods P2NIA, the fairness estimation is reliably performed and re-
spects differential privacy on user’s data. While each method guarantees
the achievement of an unbiased fairness estimator (for an audit set Q of infinite
size), as we will see in the next section, each method has a different impact on
the convergence of fairness estimators.
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4 Experimental Evaluation

While involving anonymized or synthetic data in audits has theoretical advan-
tages compared to black-box audits, this section demonstrates the effectiveness
of P2NIA in practice. To assess the performance of the proposed approach, we
conducted experiments on two datasets commonly used in audit studies while
varying the function g within P2NIA. The results demonstrate that our proposed
scheme using anonymized or synthetic data achieves significantly higher accuracy
than black-box audits. We first present our experimental setup before evaluating
the advantage of using anonymized or synthetic data.

4.1 Experimental Setting

Datasets and models. Experiments are performed on two standard benchmark
datasets from the fair and private machine learning literature: Adult [8] and
Folktables [16]. They contain demographic information from the U.S. Census
with respect to 32.561 and 378.816 individuals. In both cases, the task is to
predict whether an individual’s income exceeds $50, 000 per year (with the task
ACSIncome on California, year 2018 for Folktables). The protected attribute is
considered to be the gender.

To solve the tasks outlined above, we employ random forests as implemented
in the Scikit-learn Python Library with its RandomForestClassifier object.
Hyper-parameters were selected using a grid search to minimize the model’s
loss on each dataset. Further experiments using gradient boosting algorithm
(XGBClassifier) are provided in [31].

Experimental parameters. All datasets were split into two parts: 80% of the
dataset as the training set for the model m while the remaining 20% is used as a
test set. Only the test set is used as input of the function g (step 4 in Figure 2).
This process is repeated ten times with the same random seeds for the train/test
split and the same model, with the results averaged across these ten iterations.
All experiments are conducted on a computing cluster of homogeneous nodes
powered by Intel Xeon E5-2660 v2 processors.

Reference. Since the objective is to evaluate the performance of P2NIA in the
audit of fairness, we establish a reference by defining the true fairness value of
the model used by the platform. Specifically, this reference corresponds to the
fairness metrics computed on the test set of the datasets once they have been
labeled by the model in question and is the target value that the auditor wants
to estimate.

Baseline. We compare our approach with the black-box scenario in the follow-
ing manner. The auditor is assumed to have knowledge of the set of possible
values for each attribute (X ), but not to the overall distribution of the data (D).
The auditor draws each attribute uniformly from its possible values to gener-
ate queries. The same approach is also applied to the outputs Y when auditing
fairness metrics such as Equalized Odds or Equality of Opportunity.
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The performance of P2NIA is compared to the black-box audit on the two
binary classification tasks from Adult and Folktables. To realize this, we in-
stantiate P2NIA using locally anonymized data or synthetic data generated by
the methods GRR [13], MST [40] or AIM [41] described in Section 3.2. More
precisely, we used publicly available implementations of those methods [39].

4.2 Impact of Sample Size on Demographic Parity

We study the practical effectiveness of P2NIA by evaluating its performance
depending on the number of samples to assess the demographic parity. The
differential privacy parameter ϵ is arbitrarily set to 10.
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Fig. 3: Demographic parity depending on the number of samples.

Analyzing the demographic parity depending on the number of samples (Fig-
ure 3) shows that the convergence rate of the estimator remains largely unaf-
fected by the method used within P2NIA. This indicates that the selection of the
method within the algorithm does not significantly affect the rate at which the
estimator converges.

It is noteworthy that while increasing the number of samples enables a more
accurate estimation, P2NIA achieves high precision even with a modest
sample size. This contrasts with the black-box approach, in which convergence
is slower and tends towards an incorrect value, resulting in unreliable fairness
assessments. This outcome highlights a significant constraint of the black-box
approach, namely its reliance on a dataset of significant size to achieve even an
approximate solution, which is inherently biased.

4.3 Impact of Differential Privacy on Demographic Parity

We have explored the average error on demographic parity (on 5, 000 samples)
for different levels of differential privacy in Figure 4.
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Fig. 4: Demographic parity depending on the ϵ-differential privacy in P2NIA.

Regardless of the value of ϵ, the black-box audit consistently produces the
worst results for the Adult dataset, highlighting its inefficiency. Specifically, when
the value of ϵ is large, the estimated demographic parity with P2NIA exhibits
high accuracy, but with a low privacy level. Conversely, for small values of ϵ,
the accuracy of the demographic parity estimator decreases, but the privacy
protection increases.

On the Folktables dataset, P2NIA exhibits similar asymptotic behavior to that
observed on the Adult dataset, reinforcing the generalizability of its performance.
However, a key difference emerges in the stability of intermediate values of ϵ,
for P2NIA (MST) and P2NIA (AIM). In these cases, the lack of stability can be
attributed to the complexity introduced by the noisy marginals, affecting the
consistency of the fairness estimates. In contrast, P2NIA (GRR) demonstrates a
more controlled and predictable behavior despite converging more slowly.

These findings reveal the existing trade-off between differential privacy and
estimator accuracy on demographic parity. The optimal balance between these
two metrics is likely to depend on the characteristics of the dataset and the
generation method employed with realistic ϵ Section 3.2. Notably, P2NIA enables
effective platform audit of demographic parity, a capability that the black-
box approach lacks due to its inherent bias.

4.4 Head-to-Head Comparison of P2NIA on Other Fairness Metrics

In this section, we show how P2NIA can be used to audit other fairness metrics,
such as equalized odds and equality of opportunity. We set the differential privacy
parameter ϵ to 10 but additional experiments for ϵ = 1 can be found in [31].

For a constant value of ϵ = 10, Figure 5 demonstrates that the earlier
results extend beyond demographic parity to other fairness metrics, such as
equalized odds and equality of opportunity. Specifically, our scheme with locally
anonymized data (i.e., P2NIA(GRR)) performs comparably to, or even better
than, black-box auditing. Consequently, by releasing locally anonymized data,
the platform makes it possible to reliably estimate fairness. Furthermore, our
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Fig. 5: Absolute difference compared to the reference for the three standard fair-
ness metrics with ϵ = 10.

scheme instantiated with synthetic data (i.e., P2NIA(MST ) and P2NIA(AIM))
also results in a significant error reduction. These findings highlight the use-
fulness of our approach as a fairness auditing tool, demonstrating the ability
of P2NIA to evaluate not only Demographic Parity but also Equalized
Odds and Equality of Opportunity effectively.

5 Related work

Fairness auditing, particularly in black-box settings, has been extensively ex-
plored [4, 14, 19, 46, 48]. These approaches rely on analyzing the outputs of the
model based on a set of queries designed to assess fairness. For black-box audit-
ing, the fundamental lever the auditor relies on is their choice of queries. This
could involve i.i.d. sampling [25], stratified sampling [50] or more complex se-
tups [44]. However, all these methods rely on the central assumption that the
auditor knows the model distribution in advance, which is unrealistic due to the
knowledge asymmetry between non collaborative platforms and auditors.

Thus, there has some been recent work [10,11], arguing for more transparent
ways to evaluate the assessment of algorithms with respect to ethical standards
as audits are imprecise due to the lack of comprehension of these algorithms.
Alternative approaches for fairness auditing include, for instance, the white-
box setting in which the model is provided to the auditor [5, 11, 11] or fairness
certification [18,35,47]. The most closely related work to ours is the recent study
by Yuan and Wang [58] but nonetheless their auditing setting differs significantly
from ours in that the auditor is granted direct access to real labeled data from
the platform. The responsibility for privacy preservation is then delegated to
the auditor, who received data from real users. Although the original data must
be deleted after use, privacy has already been compromised due to the data
disclosure. In contrast, our approach is built to be privacy-preserving by design,
without exposing raw labeled data to the auditor.
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As fairness auditing often requires querying the model on user data, privacy
concerns have also emerged as a fundamental issue. Dwork and co-authors [21]
have already identified and prove the link between individual fairness and lo-
cal differential privacy. It has also been studied in the context of fair learn-
ing [38] (e.g., before model being in production) but not for audit purpose.
However, [36, 45] introduced differential privacy techniques to mitigate the risk
of information leakage during fairness audits. Other methods, such as secure
multi-party computation [52] rely on complex cryptographic techniques to en-
sure the privacy of queries. A key limitation of these previous works is that they
focus on protecting the auditor’s queries rather than the data of the entity be-
ing audited. Our approach, P2NIA, aims to bridge this gap by allowing effective
fairness auditing without compromising user privacy.

6 Conclusion

To summarize, in this paper, we have first underlined an important problem for
black-box audits in real scenarios: population bias due to the lack of a perfect
prior for the auditor on the data distribution of the platform. This bias arises
mainly due to the lack of collaboration between the platform and the auditor.
We then proposed a novel audit scheme, named P2NIA, in which both parties col-
laborate out of mutual benefit, namely accurate estimation for the auditor and
data privacy preservation plus ease of operation for the platform as the scheme
is non-iterative. We empirically show on standard datasets that our scheme op-
erates as intended for three group fairness metrics, with accurate assessment and
controllable privacy guarantees.

Future work includes the study of other forms of collaborations driven by
different benefits at each party. For instance, it might be beneficial for the plat-
form to operate in a “grey-box” setting, in which it will reveal some information
about the internal workings of its model, resulting in a more lightweight querying
procedure by an auditor (e.g., with respect to the number of queries required).
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