
Hybrid Cross-domain Robust Reinforcement
Learning

Linh Le Pham Van1 (�), Minh Hoang Nguyen1, Hung Le1, Hung The Tran2,
and Sunil Gupta1

1 Deakin Applied Artificial Intelligence Initiative, Deakin University, Australia
{l.le, s223669184, thai.le, sunil.gupta}@deakin.edu.au
2 Hanoi University of Science and Technology, Hanoi, Vietnam

hungtt@soict.hust.edu.vn

Abstract. Robust reinforcement learning (RL) aims to learn policies
that remain effective despite uncertainties in its environment, which fre-
quently arise in real-world applications due to variations in environment
dynamics. The robust RL methods learn a robust policy by maximiz-
ing value under the worst-case models within a predefined uncertainty
set. Offline robust RL algorithms are particularly promising in scenarios
where only a fixed dataset is available and new data cannot be collected.
However, these approaches often require extensive offline data, and gath-
ering such datasets for specific tasks in specific environments can be both
costly and time-consuming. Using an imperfect simulator offers a faster,
cheaper, and safer way to collect data for training, but it can suffer
from dynamics mismatch. In this paper, we introduce HYDRO, the first
Hybrid Cross-Domain Robust RL framework designed to address these
challenges. HYDRO utilizes an online simulator to complement the lim-
ited amount of offline datasets in the non-trivial context of robust RL.
By measuring and minimizing performance gaps between the simulator
and the worst-case models in the uncertainty set, HYDRO employs novel
uncertainty filtering and prioritized sampling to select the most relevant
and reliable simulator samples. Our extensive experiments demonstrate
HYDRO’s superior performance over existing methods across various
tasks, underscoring its potential to improve sample efficiency in offline
robust RL.1

Keywords: Hybrid cross-domain · Distributionally robust · Offline source
- Online target · Reinforcement Learning · Transfer Learning.

1 Introduction

Reinforcement learning (RL) has shown remarkable success in real-world ap-
plications [20,21], but deploying RL policies is often challenged by fluctuations
in environment dynamics. Many existing methods assume consistency between
training and deployment environments, an assumption frequently violated in
1 https://github.com/linhlpv/Hybrid-Cross-domain-Robust-Reinforcement-Learning
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practice due to such fluctuations. For instance, a robot operating in a dynamic
real-world environment may encounter variations in mass, friction, and sensor
noise compared to its training environment, leading to performance degradation
[11,1]. The Robust Markov Decision Process (RMDP) framework [27] addresses
this challenge by modeling uncertain test environments as a set of possible mod-
els around a training model, which is often called the nominal model. Robust RL
aims to learn an optimal policy that maximizes performance under the worst-
case scenario within this uncertainty set, using only the nominal model.

Since its introduction [27,28], the RMDP framework has been extensively
studied in the context of planning problems [29]. Recently, many robust RL al-
gorithms, learning robust policies from unknown nominal models, have also been
proposed [34,35]. Still, all these works are limited to the online setting, where
policy learning requires online interactions with the environment. Recent suc-
cess in offline RL [25,23,24,?] has motivated the development of offline robust
RL methods [37,38,39,40] to alleviate this restriction. Despite this progress, of-
fline robust RL methods rely on large datasets, and current offline robust RL
struggles when the amount of training data is reduced. As shown in Figure 1,
the robustness performance of the robust RL method drops significantly when
the amount of data decreases. This raises a natural question: Can we reduce
the required offline training data without sacrificing the performance of the learn
policy under uncertain deployment environments?
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Fig. 1: Problem of existing offline robust RL model: Robustness performance
drops significantly when training data decreases. Figure illustrates performance
comparison under ‘front_joint_stiffness’ perturbation of offline robust RL [37]
with different training data sizes from HalfCheetah medium dataset (D4RL).

To address the challenge of scarce data in offline RMDP, we propose a method
that utilizes a simulator (source domain), an imperfect model but a faster,
cheaper, and safer place to collect data for training the agent. We aim to leverage
the interaction with this simulator to mitigate performance degradation caused
by the limited offline nominal (target) dataset. A simulator enables unrestricted
exploration and access to abundant, diverse data, potentially compensating for
limited coverage of offline datasets. The potential of using an additional source
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environment to bring sample efficiency has sparked research interest with nu-
merous methods proposed in the Markov Decision Process (MDP) setting, often
referred to as cross-domain RL [51]. However, naively combining source and
target data may lead to performance degradation due to dynamics mismatches
[6]. Thus, in the normal MDP setting, prior methods measure the domain gap
directly between target and source domains using corresponding datasets. This
approach cannot be directly applied to RMDPs where we optimize for worst-case
performance while only having access to nominal model data. To the best of our
knowledge, our work is the first to study the combination of online source and
offline nominal dataset in the robust RL setting.

In this paper, we introduce HYDRO, the first Hybrid Cross-Domain Robust
RL framework. HYDRO measures the performance gap caused by the dynamics
mismatch between the simulator and the worst-case model in an uncertainty
set around the nominal target model. Using this measurement, HYDRO uses
a novel uncertainty based filtering mechanism and priority sampling scheme to
select reliable and relevant samples from the simulator, minimizing performance
degradations. Our contributions are:
– We are the first to address the Hybrid cross-domain Robust RL setting,

which is a novel problem, and develop a method to improve the sample
efficiency for the offline robust RL.

– We perform a theoretical analysis of our novel problem setting and use it to
propose HYDRO, a practical and effective algorithm for solving this problem
via novel uncertainty filtering and priority sampling.

– Through comprehensive experiments, we demonstrate that our method con-
sistently outperforms existing approaches across diverse tasks.

2 Related Works

2.1 Offline Robust Reinforcement Learning

The RMDP framework was first introduced by [27,28] to address the parameter
uncertainty problem. The initial works mainly focused on planning problems and
have been well-studied [29,30,31]. Recently, robust RL in RMDP has gained much
attention, with many works that have studied this problem in online [34,35],
and offline [36,38,39,40] in both tabular settings [36,32,33] and large state-action
space RMDP setting [39,37]. We focus on offline robust RL in large state and
action spaces. Despite recent successes in such settings [37], offline robust RL
methods rely on the coverage of the offline dataset. This means their robustness
performance, similar to non-robust offline RL algorithms, highly depends on
the amount of available offline data [37]. In practice, obtaining datasets with
extensive coverage is often infeasible. Therefore, improving the sample efficiency
of offline robust RL algorithms is a critical research challenge.

2.2 Cross-domain Reinforcement Learning

Cross-domain RL seeks to improve sample efficiency by leveraging data from ad-
ditional source environments. Domain discrepancies can arise from differences in
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the observation space [42,41], transitional dynamics [7,4]. In this work, we focus
on the mismatch in the transition dynamics. Many approaches have been pro-
posed to deal with dynamics mismatches, such as system identification [14,15,16],
domain randomization [13,12,11], or meta-RL [17,18,19]. However, these meth-
ods often require environment models or careful selection of randomized param-
eters. Recently, several methods attempted to measure dynamics discrepancy
using domain classifiers [7,4], learned dynamics models [5], or feature represen-
tation mismatch [10]. Many approaches to utilize source data have been de-
veloped, such as reward modification [7,10], support constraint [5] for purely
online [8,9], purely offline [5,6], or hybrid setting [2,3]. However, these methods
have primarily focused on standard RL setting. In contrast, we study the hybrid
cross-domain problem in the distributionally robust RL setting, aiming to lever-
age online source simulators to improve sample efficiency for offline robust RL
methods. To this end, we propose a novel approach using uncertainty filtering
and priority sampling specifically designed for this hybrid robust setting.

2.3 Other robust RL

Recently, adversarial robust RL [46,26] and risk-sensitive RL [47,48] in online
and offline settings also address robustness problems under different frameworks
that are independent of RMDP. Additionally, the corruption-robust offline RL
problem, where an adversary can modify a fraction of the training dataset, has
been studied in [49,50]. However, their goal is still to find the optimal policy for
the nominal model.

3 Preliminaries

We denote an MDP as M = (S,A, γ, r, d0, P ), where S,A are the state and
action spaces. The parameter γ ∈ (0, 1) is the discounted factor, r : S ×A → R
is the reward function, d0 is the initial state distribution and P is the transition
dynamics. We denote a policy π : S → ∆(A) as a map from state space S to a
probability distribution over actions space A. Given a policy π and a transition
dynamics (model) P , we denote discounted state-action occupancy as dπP (s, a) =
(1−γ)Eπ,P [

∑∞
t=0 γ

t1(st = s, at = a)]. We define value function V π,P and state-
action value function Qπ,P for a policy π and a transition dynamics P as follows:

V π,P (s) = Eπ,P

[ ∞∑
t=0

γtr(st, at)|s0 = s
]
, and

Qπ,P (s, a) = Eπ,P

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a
]
.

(1)

We adopt the following notation: |X | for the cardinality of a set X , ∆(X ) for
the set of probability distributions over X , (x)+ for max(x, 0) where x ∈ R, and
EP [f(s

′)] as a short notation for Es′∼P (s′|s,a)[f(s
′)].
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3.1 Distributionally Robust Reinforcement Learning

We introduce the distributionally robust MDP (RMDP) as Mr = {S,A, γ, r,
Uσ
ρ (P

o)}. RMDP allows the transition dynamics to be chosen arbitrarily from a
predefined uncertainty set Uσ

ρ (P
o) centered around a nominal model P o w.r.t a

metric ρ. In particular, the uncertainty set is specified as:

Uσ
ρ (P o) := ⊗ Uσ

ρ (P o(.|s, a)) ,
with Uσ

ρ (P o(.|s, a)) := {P (.|s, a) ∈ ∆(S) : ρ (P (.|s, a), P o(.|s, a)) ≤ σ} ,
(2)

where ⊗ denotes the Cartesian product. In RMDP, we focus on the worst-case
performance of a policy π over all the transition models in the uncertainty set.
Formally, we define the robust value functions for all s, a ∈ S ×A as follows:

V π,σ(s) := inf
P∈Uσ

ρ (P o)
V π,P (s), Qπ,σ(s, a) := inf

P∈Uσ
ρ (P o)

Qπ,P (s, a). (3)

We also have the following equations held in RMDP:

Qπ,σ(s, a) = r(s, a) + γ inf
P∈Uσ

ρ (P o)
Es′∼P [V π,σ(s′)] . (4)

In RMDP, there exists at least one deterministic policy that maximizes robust
value function [27]. We denote optimal robust value function, and optimal robust
policy, which satisfies the following:

∀s ∈ S : V ∗,σ(s) := V π∗,σ(s) = max
π

V π,σ,

∀s, a ∈ S ×A : Q∗,σ(s, a) := Qπ∗,σ(s, a) = max
π

Qπ,σ(s, a).
(5)

Similar to the normal MDP, we have the robust Bellman operator as follows:

∀(s, a) ∈ S ×A : T σQ(s, a) := r(s, a) + γ inf
P∈Uσ

ρ (P 0
s,a)
PV, V (s) := max

a
Q(s, a).

(6)
It is known that T σ is a contraction mapping w.r.t. the infinity norm, and has
a unique fix point solution as Q∗,σ. The fitted procedure Qk+1 = T σQk can be
used to find the fixed point solution Q∗,σ.

3.2 RMDP with Offline Data

Offline Robust RL addresses learning robust policies for RMDPs using only an of-
fline nominal datasetD = {(si, ai, ri, s′i)}

N
i=1, where (si, ai) ∼ µ, s′i ∼ P o(.|si, ai).

The fundamental challenge is that applying the robust Bellman operator in Eq
(6) requires computing expectations over all dynamic models P ∈ Uσ

ρ , while only
samples from the nominal model P o are available.

A common approach is to leverage a dual reformulation of the robust Bellman
operator, replacing the expectation over all transition dynamics in Uσ

ρ (P
o) with

one over nominal model P o [37,38,39]. Specifically, [37] studied uncertainty sets
with TV distance and proposed RFQI algorithm. To overcome the difficulty of
estimating the robust Bellman operator, RFQI proposed the dual reformulation
of the second term in the robust Bellman operator.
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Proposition 1 Let DTV be the total variation distance corresponding to the TV
uncertainty set Uσ

TV (P
o), then

inf
P∈Uσ

TV (P o)
EP [V (s)] = − inf

η∈[0, 2
σ(1−γ)

]
(EP o [(η − V (s))+] + σ((η − inf

s̃∈S
V (s̃))+ − η)

(7)

They made the ‘fail-state’ assumption to overcome the issue of finding infs′′∈S
V (s′′) when S is large.

Assumption 1. (Fail-state) The RMDPM has a ‘fail-state’ sf , such that ∀a ∈
A,∀P ∈ Uσ

TV (P
o), r(sf , a) = 0 and P (sf |sf , a) = 1.

Under Proposition 1 and Assumption 1, RFQI reformulates the robust Bell-
man operator as follows:

T σQ(s, a) := r(s, a)− γ inf
η∈[0, 2

σ(1−γ)
]

(
Es′∼P o

s,a
[(η − V (s′))+]− η(1− σ)

)
, (8)

where η ∈ [0, 2
σ(1−γ) ] is the dual variable. To deal with large state and action

space problems, RFQI frames the problem as a function approximation task.
Specifically, they learn the dual variable network gθ via the loss function Ldual =
Es,a,s′∼D[(gθ(s, a) − maxa′ Qϕ(s

′, a′))+ − (1 − σ)gθ(s, a)]. They also define the
operator T σ,gQ(s, a) = r(s, a)− γ(EP o [(g(s, a)−maxa′ Q(s′, a′))+] −g(s, a)(1−
σ)). Then, the value function Qϕ is learned with the following objective LRFQI =

Es,a,s′∼D
[(
T̂ σ,gQ̂ϕ(s, a) −Qϕ(s, a)

)2]
, where Q̂ϕ is the value function from the

last iteration, and T̂ σ,g is the empirical T σ,g that only backs up a single sample.

4 Hybrid Cross-domain Robust Reinforcement Learning

4.1 Problem Setting

We consider the offline RMDP problemMr with the uncertainty set around the
nominal model P o. For clarity, we will refer to this nominal model as the
target model throughout the paper. In our work, we study the RMDPs with
total variation (TV) uncertainty set Uσ

TV (P
o) and in the large state, action spaces

setting. Specifically, we study the setting with limited offline data collected from
the target model, i.e. D = {(si, ai, ri, s′i)}

N
i=1, where (si, ai) ∼ µ, µ is some data

generating distribution, and s′i ∼ P o(.|si, ai). For computational tractability, we
adopt the fail-state assumption established in function approximation settings
[37]. We note that the ‘fail-state’ is natural in many real-world systems such as
robotics [37] where the collapse of the robot can be seen as a fail state.

Along with the offline dataset from the target model, we also have access to
an imperfect online simulator which we call a source environment. The source en-
vironmentMsrc shares the same state space S, action space A, reward function
r, discounted factor γ and initialized state distribution d0 with target domain,
and only differs in its transition model, i.e. Psrc ̸= P o. Our goal is to utilize
online simulatorMsrc and limited offline target dataset D to learn a policy that
is robust under the uncertainty set around target model P o.
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4.2 Domain Gap for Hybrid Cross-domain Robust RL

Naively combining source data to train robust target policies can lead to perfor-
mance degradation due to dynamics mismatch, a challenge also noted in cross-
domain RL [2,6]. Therefore, caution is necessary when utilizing source data from
a different dynamics model. We begin with a theoretical analysis of the perfor-
mance gap caused by this dynamics mismatch between the two domains, followed
by convergence guarantees for value functions in hybrid cross-domain robust RL
settings. We provide detailed proof in Appendix 2 due to the space limit.

Theorem 1 (Performance Bound). LetMsrc andMr be the source MDP
and the target RMDP with different dynamics Psrc and P o respectively. Consider
the RMDP with the TV uncertainty set. Denote:

A = DTV (P
π,Uσ

TV (P o), Pπ,Uσ
TV (P̂ o)), B =

∣∣EPsrc [V
π,σ

P̂ o
(s′)]− inf

P∈Uσ(P̂ o)
EP [V

π,σ

P̂ o
(s′)]

∣∣
where, given a policy π, Pπ,Uσ

TV (P o), Pπ,Uσ
TV (P̂ o) denote the worst case model

w.r.t. the uncertainty set around the target model P o and the estimated target
model P̂ o from offline dataset D, respectively.

The performance difference of any policy π on the source domain and the
RMDP target can be bounded as follows:

Es∼d0
[V π,σ(s)]

≥ Es∼d0
[V π,src(s)]− 2γrmax

(1− γ)2
Edπ

P
π,Uσ

TV
(P̂ o)

[
A
]
− γ

1− γ
Edπ

Psrc

[
B
]
.

(9)

The second term A in the Ineq (9) is caused by the offline dataset and can
be reduced by offline Robust RL algorithms via pessimism [37,38,40]. The third
term B represents the gap between the worst case model Pπ,Uσ

TV (P̂ o) and the
source model Psrc, which can be reduced by our proposed method. Specifically,
Theorem 1 provides the intuition that the robust performance in the target
model could be guaranteed if values of robust value function are consistent when
evaluating in the source environment and the worst-case model.

Next, we analysis the value function’s convergence. Denote the source dataset
as Dsrc, we consider the following approach using both source and target data:

Qk+1 ← argmin
Q

κEs,a,s′∼D[(T̂ σ,gQk −Q)2] + (1− κ)Es,a,s′∼Dsrc
[(T̂ Qk −Q)2],

(10)
where κ ∈ [0, 1] is the combination weight, k denotes training iteration, and T̂
is the empirical Bellman operator. We denote µ and ν as the state-action distri-
butions of target and source datasets. We analyze the convergence guarantee of
the value function. To maintain simplicity, we assume the source and the target
datasets have the same state-action distribution, i.e. µ(s, a) = ν(s, a),∀s, a ∈
S ×A. This assumption can hold easily when the source data Dsrc is generated
via a simulator, as it allows flexibility in selecting the transition starting points.
We note that the source and target dynamics remain distinct (Psrc ̸= P o). Below,
we present the convergence guarantee in the following theorem.
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Theorem 2 (Convergence). Let Q∗ denote the optimal robust value function
for the RMDP of the nominal model P o, and define Q0 = 0. Denote

ξ = max
Q

max
s,a∈S×A

|T σ,gQ(s, a)− T σQ(s, a)| ,

ζ = max
Q

max
s,a∈S×A

|T Q(s, a)− T σQ(s, a)| .
(11)

Assume µ(s, a) = ν(s, a),∀s, a ∈ S ×A, we have the following result holds:

∥∥Q∗ −Qk+1
∥∥
∞ ≤

γk+1rmax

1− γ
+

1− γk+1

1− γ
(
κξ + (1− κ)ζ

)
. (12)

Term ξ arises from offline target dataset and can be reduced via offline ro-
bust RL algorithms, while ζ reflects the gap between worst-case target and source
models. Theorem 2 guarantees that the learned Q function converges near the
optimal robust Q∗, with a bound determined by the domain gaps and the com-
bination weight. Theorem 2 suggests that target robust performance can be en-
sured by carefully using the most relevant, reliable source data that minimizes
domain gaps during training, thus controlling the second term in Ineq (12).

4.3 Incorporating Source Data in Target Robust Training

In this section, we present our proposed method, which involves the priority
sampling method to select relevant source data for training and uncertainty
filtering to keep reliable source samples.
Source Data Selection with Priority Sampling. Motivated by the perfor-
mance bound in Theorem 1, we focus on controlling the third term in Ineq (9).
We propose selecting source transitions that induce minimal value discrepancies
when incorporating the source environment for training. This requires computing
the domain gap between transition pairs starting from the same source state-
action pair (ssrc, asrc). Specifically, given (ssrc, asrc), we aim to estimate the
domain gap between next states s′, defined as follows:

Λ(ssrc, asrc) =
∣∣EPsrc

[V π,σ

P̂ o
(s′)]− inf

P∈Uσ(P̂ o)
EP [V

π,σ

P̂ o
(s′)]

∣∣. (13)

Computing Λ(ssrc, asrc) for a given source state-action pair (ssrc, asrc) requires
the worst-case model w.r.t. uncertainty set Uσ(P̂ o), which is challenging because
we only have offline dataset D. However, using Proposition 1 and Assumption
1, we can rewrite Λ(ssrc, asrc) as follows:

Λ(ssrc, asrc) =
∣∣EPsrc

[V π,σ

P̂ o
(s′)] + inf

η∈[0, 2
σ(1−γ)

]

(
EP̂ o [(η − V π,σ

P̂ o
(s′))+]− η(1− σ)

)∣∣.
(14)

With Eq (14), given (ssrc, asrc) from the source environment, we can approxi-
mately compute Λ(ssrc, asrc) using the offline dataset D. In practice, we compute
Λ(ssrc, asrc) for each source state-action pair (ssrc, asrc) using the robust value
function, estimated target model P̂ o, and dual variable η. We learn the estimated
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dynamics model P̂ o from offline dataset D. For a given (ssrc, asrc), we generate
the next state s′tar using the learned target dynamics model. The learned dual
network gθ gives approximated values for dual variable η. We then introduce a
gap-measurement function approximating Λ(ssrc, asrc) by estimating the value
function for next state s′ as V π,σ

P̂ o
(s′) := Qϕ(s

′, a′)|a′∼π(.|s′):

Λ̂(ssrc, asrc) =
∣∣Qϕ(s

′
src, a

′) + (gθ(ssrc, asrc)−Qϕ(s
′
tar, a

′))+

− gθ(ssrc, asrc)(1− σ)
∣∣. (15)

As our objective is to select the source samples with small gaps to tighten the
bound in Ineq (9), we introduce the following priority score function ψ(s, a) =
1/(1 + Λ̂(s, a)). This priority score guides our sampling process during training.
The sampling probability for each source transition is defined as:

pi(s, a, s′, r) = ψi(s, a)/
∑
k

ψk(s, a), (16)

where ψi(s, a) is the priority score of the source transition.
Uncertainty Filtering. To address the uncertainty of the offline dataset, we
employ a quantifier to compute uncertainty values for each source sample. Source
samples with high uncertainty can lead to unreliable estimation scores, poten-
tially hindering the training process if included. Conversely, reliable source state-
action pairs with low uncertainty can serve as valuable augmented data for train-
ing the dual network gθ. Therefore, we propose removing source samples with
high uncertainty values. Inspired by prior works [45,44], we train an ensemble
of N dynamics model {P̂ o

i (s
′|s, a) = N (µφ(s, a), Σφ(s, a))}Ni=1. Each model in

the ensemble is trained using offline target dataset Dtar via the maximum log-
likelihood (MLE) as follows: Lφ = E(s,a,r,s′)∼D[log P̂

o(s′ | s, a)].
Then, we use the max pairwise difference as our uncertainty quantifier, i.e.

u(s, a) = maxi,j ∥µi
φ(s, a)− µj

φ(s, a)∥2, where ∥.∥2 is the L2-norm and µi
φ(s, a),

µj
φ(s, a), i, j ∈ {1, . . . , N} are the mean vectors of the Gaussian distributions in

the ensemble dynamics model. For the uncertainty threshold, instead of naively
setting a constant threshold, we measure the uncertainty on all samples in the
offline dataset D. Then, we take the maximum uncertainty in the dataset and set
the uncertainty threshold as follows: ϵu = 1

α maxs,a∈D u(s, a), where α ∈ R+ is a
hyperparameter to control the threshold value. Then, for any source transition
(s, a, s′, r)src, we add them to the source replay buffer if its uncertainty value is
less than the uncertainty threshold ϵu. Otherwise, we remove them.

During training, we sample a batch of source data from the source replay
buffer with probabilities defined by Eq. (16). Based on Theorems 1 and 2, we
prioritize the most relevant source samples while carefully controlling combina-
tion weight κ. We recompute scores for these samples, select the top-k highest-
scoring samples to update the value function, and adjust priorities accordingly.
The robust value function is trained using both source and target data as follows:

Qϕ ← argmin
Qϕ

Es,a,s′∼D[(T̂ σ,gQ̂ϕ −Qϕ)
2] + Es,a,s′∼Dsrc

[ω(s, a, s′)(T̂ Q̂ϕ −Qϕ)
2]

(17)
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Algorithm 1 HYbrid cross-Domain RObust RL - HYDRO
1: Input: Source Msrc, offline target dataset D, the source replay buffer Dsrc = ∅,

robust value function Qϕ and dual variable functions gθ.
2: Train {P̂ o

i (s
′|s, a) = N (µφ(s, a), Σφ(s, a))}Ni=1} via MLE on D.

3: for t = 1, . . . , num iterations do
4: for i = 1, . . . , h do
5: Rollout with Msrc, compute ui(si, ai) = maxj,k ∥µj

φ(si, ai)− µk
φ(si, ai)∥2.

6: if ui ≤ ϵu then
7: Dsrc ← Dsrc

⋃
(si, ai, ri, s

′
i).

8: end if
9: end for

10: Sample {(s, a, r, s′)isrc}Ni=1 with probability pi(s, a, s′) via Eq (16) from Dsrc.
11: Sample {(s, a, r, s′)itar}Ni=1 uniformly from D.
12: Update transition priority in {(s, a, r, s′)isrc}Ni=1.
13: Update gθ via Eq (18) using source, target data.
14: Update Qϕ via Eq (17) using {(s, a, r, s′)isrc}Ni=1 and {(s, a, r, s′)itar}Ni=1.
15: end for
16: return Qϕ.

, where source data sampled via priority sampling after the uncertainty filter,
w(s, a, s′) = 1(ψ(s, a) > ψk%) , and T and T σ is the normal and robust Bell-
man operator respectively. We use the offline target data (star, atar, s

′
tar) along

with the augmented sample (ssrc, asrc, s
′
tar), where s′tar ∼ P̂ o(s′|ssrc, asrc), for

training dual network gθ. Specifically, we update the dual network gθ as follows:

θ ← argmin
θ

Es,a,s′∼D
[
(gθ(s, a)− V (s′))+ − (1− σ)gθ(s, a)

]
+ Es,a∼Dsrc,s′∼P̂ 0

[
(gθ(s, a)− V (s′))+ − (1− σ)gθ(s, a)

]
.

(18)

Algorithm. We summarize the above steps as our proposed method HYDRO
in Algorithm 1.

5 Experiments

In this section, we present the empirical evaluation to answer the following ques-
tions: 1) Can HYDRO enhance data efficiency and improve robustness perfor-
mance in scarce data settings? 2) Why is using HYDRO more advantageous
than just naively merging the source data? 3) How do different components of
HYDRO contribute to its performance?
Environments. We conduct our experiments on three MuJoCo environments
(HalfCheetah-v3, Walker2d-v3, Hopper-v3), utilizing the Medium datasets from
D4RL [43] as our offline datasets [37]. To create the scarce data settings, we
only use 10% of these datasets for training, i.e. 100K target transitions from
D4RL. The source environments are created by modifying the morphology of the
agents in the Mujoco XML file. We consider two types of modifications: single-
comp, modifying a single agent component, and multi-comp, altering multiple
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Fig. 2: Cumulative rewards of different methods in three Mujoco benchmarks
under perturbation. The lines are the average returns over 30 different seeded
runs, and the shaded areas represent standard deviation.

components. For robustness evaluation, we perturb each Mujoco environment
by altering its physical parameters.
Metric. In the cross-domain robust setting, we evaluate the agent’s return on
the target domain under perturbations.
Baselines. We compare HYDRO against the following baselines: RQFI [37],
the current state-of-the-art in offline robust RL; H2O [2], an only recent state-
of-the-art method with available public code for non-robust hybrid cross-domain
transfer that uses importance sampling to correct the dynamics shift between
source and target environments; PQL [22], a non-robust offline RL algorithm and
a practical state-of-the-art variant of FQI with neural architecture. Finally, we
train RFQI agent with a full offline target dataset, which we refer to as Oracle.
Due to limited space, we defer more details about the environment and baseline
settings to Appendix 4 and provide more experiment results in Appendix 5.

5.1 Robustness Performance Evaluation

In this section, we answer the first question, showing that our method, HYDRO,
can enhance data efficiency and improve robust performance in scarce data set-
tings. Figure 2 presents the performance of our method and the baselines across
three Mujoco environments under model parameter perturbations. Notably, the
robust performance of RFQI degrades substantially with reduced training data.
In the scarce data setting (10% target data), RFQI’s performance drops notably
with increasing perturbations, resembling the non-robust offline method PQL.
H2O performs poorly across all settings, as its performance is heavily reliant on
the amount of training target data and struggles in scarce data scenarios [2].
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Table 1: Average returns over different environment parameter perturbations for
Mujoco tasks over 30 different seeded runs. We bold the best results (except
Oracle). “-m": multi comp, “-s" single comp, “B-" Back.

Halfcheetah Walker2d Hopper

Front joint
stiffness

B-actuator
ctrlrange Gravity Foot joint

stiffness Gravity Leg joint
stiffness

Oracle 5332±287 4866±184 3150±481 2871±684 1316±373 1804±398

RFQI 4016±1219 4264±557 3062±537 2056±672 1374±358 1769±361

PQL 3644±1437 3508±828 2865±340 2710±506 920±151 1823±323

H2O-m 2814±606 2974±350 1043±778 1208±770 235±3 794±334

H2O-s 1710±1013 2431±854 701±585 733±655 466±47 1187±316

HYDRO-m 4456±872 4480±350 3225±487 2652±703 1858±468 1933±468

HYDRO-s 4781±476 4399±382 3273±284 2790±623 1551±309 1814±469

We believe the lack of target samples causes the inferior performance of H2O,
which also was observed in [52]. In contrast, HYDRO consistently demonstrates
robust performance, surpassing RFQI and non-robust methods across all tasks.
While baseline methods exhibit substantial performance drops with increasing
environmental changes, HYDRO maintains robustness. Table 1 presents the av-
erage returns of all methods under various environment parameter perturba-
tions. As the table illustrates, our method improves upon RFQI across all tasks,
with the most significant improvement reaching approximately 36%. Statistical
testing (please see Appendix 5.1) confirms HYDRO significantly outperforms
all baselines. Importantly, compared to Oracle, HYDRO exhibits the smallest
degradation in robust performance across all tasks.

5.2 Ablation study.

Naively combining source data. To address the second question, we compare
the performance of RFQI trained on target data only versus RFQI trained on
combined target and source data (cross-domain data), as well as our proposed
method. For the cross-domain data experiment, we simply merge target and
source data without any further processing and use this combined dataset to
train RFQI. Figure 3a demonstrates that simply incorporating additional source
data does not enhance robustness and can also lead to poor performance com-
pared to using only the limited target data (100K). We argue that the primary
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Fig. 3: (a) Robust performance comparison between HYDRO, RFQI, and its vari-
ations using naive combination of source and target data. (b-c) Robust perfor-
mance comparison between HYDRO and its variants without priority sampling
and uncertainty filter.
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Fig. 4: Average priority scores of random and priority sampling.

reason for this is the dynamics mismatch between the source and worst-case
model, which hinders the simple merging cross-domain data approach. On the
other hand, our method handles this mismatch by selecting the most reliable
source data with a small gap to tighten Ineq (9) and control the learn robust Q
function as motivated by Theorem 2. The results highlight the effectiveness of
our approach compared to both RFQI and the naive combination strategy.

To address the third question, we perform a comprehensive ablation study
on HYDRO, analyzing the contribution of each component to its performance.
Priority Sampling. To evaluate priority sampling’s impact, we compare against
a variant without this component. Figure 3b shows a significant decrease in ro-
bust performance when priority sampling is excluded. The enhanced performance
stems from the increased utilization of source samples with greater proximity to
the worst-case target model. Figure 4 confirms this hypothesis, demonstrating
that priority sampling significantly increases the mean priority score of selected
samples compared to random sampling. These results confirm that priority sam-
pling plays a crucial role in enhancing the robustness of our method.
Uncertainty Filter. To assess the impact of the uncertainty filter, we compare
our method to a variant that excludes this component. Figure 3c reveals a signif-
icant decrease in robustness when the uncertainty filter is omitted, highlighting
its crucial role in our approach. We hypothesize that the significant performance
gains observed when incorporating the uncertainty filter arise from the strategic
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exclusion of source samples with high uncertainty levels, allowing the model to
focus on more informative data points, leading to improved performance.

5.3 More Experiment Results

We conduct additional experiments to explore the potential of HYDRO. Please
see Appendix 5 for more results.
HYDRO with different domain-gaps measurement. To emphasize the
distinction between HYDRO and standard cross-domain RL methods, we evalu-
ate HYDRO’s performance using an alternative domain-gaps measurement. We
replace our measurement, which quantifies the discrepancy between worst-case
target and source models, with standard cross-domain RL measurements quan-
tifying the discrepancy between nominal target and source models using domain
classifiers from DARC [7]. Results in Appendix 5.4 illustrate this substitution
leads to significant performance degradation. These results underscore the inade-
quacy of standard domain-gap measurement in robust RL settings and highlight
the critical role and effectiveness of HYDRO’s tailored measurement approach.
How HYDRO performs under harder limited target data settings?
To further understand H2O’s performance, we analyze HYDRO’s behavior un-
der increasingly challenging, data-limited target settings. The results in Ap-
pendix 5.5 show RFQI’s robust performance decreases substantially as target
data decreases, while HYDRO maintains consistently strong performance with
only minimal degradation. These results demonstrate HYDRO’s effectiveness in
overcoming data scarcity challenges.

6 Conclusion

In this paper, we have addressed the problem of Hybrid cross-domain robust re-
inforcement learning, which is widely encountered in many real-world problems.
To the best of our knowledge, this is the first work to tackle the hybrid setting of
online source and offline target under Robust MDPs. We introduce HYDRO, a
novel method that effectively leverages source domain data by selecting relevant
and reliable data points with respect to the worst-case model in an uncertainty
set, utilizing priority sampling and an uncertainty filter. We have demonstrated
the superior performance of our method through extensive experiments. The
limitation of our approach is its dependence on an estimated target transition
model. Although we have demonstrated our method’s effectiveness empirically, a
theoretical analysis of how the estimated target model impacts the performance
of the learned policy can be a promising direction for future research. Another
promising research direction is extending HYDRO to fully online settings.
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