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Abstract. Fairness in Machine Learning has become a concern, par-
ticularly if models are deployed in high-stakes decision-making. Most
existing approaches aim to enforce fairness during training, but they
face significant challenges for the scalability and the effectiveness of fair-
ness enforcement. To address these limitations, we propose a method for
training fair classifiers under multiple group and intersectional fairness
constraints with high predictive performance. We combine an Augmented
Lagrangian learning procedure with a tunable performance budget, which
regulates the trade-off between fairness and utility. Experiments demon-
strate that our method mitigates bias while scaling efficiently with in-
creasing problem complexity. By adjusting the performance budget, we
provide a flexible mechanism to balance fairness enforcement and pre-
dictive performance, offering a solution for real-world applications.

Keywords: Fairness · Machine Learning · Ethical AI.

1 Introduction

In recent years, Machine Learning (ML) models have been developed and widely
applied across various domains without posing any particular attention on the
model trustworthiness but only optimizing the model utility for the specific task
to be addressed. However, with the advent of new EU AI legislation3, there is
now an increased emphasis on the legal and ethical requirements of ML mod-
els, including, but not limited to, fairness, privacy and transparency [22,21,20].
Fairness seeks to reduce biases in model predictions. Although achieving fair-
ness and model utility simultaneously is ideal, practitioners often face challenges
in balancing the two, as improving one aspect can often undermine the other.
In the literature, to prevent the amplification of unfair behavior of ML models
Multi-Objective Optimization approaches have been proposed considering that
fair ML has the goal of simultaneously minimizing classification error while also
optimizing for one or more fairness criteria [24]. Nevertheless, the state-of-the-
art approaches present some limits related to their scalability and their ability to
3 The AI Act
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find an acceptable trade-off between fairness and model performance, especially
when addressing intersectional fairness.

In this paper, we propose FairLAB (Fairness via Lagrangian Augmented and
performance Budget), a method for learning a neural network (NN) model that
balances predictive performance while satisfying a collection of fairness con-
straints, including intersectional ones. Our method integrates fairness directly
into the learning process by ensuring that fairness violations are addressed dy-
namically while optimizing the predictive objective. It exploits a performance
budget, which enables control over the performance-fairness trade-off. Intersec-
tional fairness further increases the complexity of this task, as multiple sensitive
attributes combine to form a large number of subgroups, making fairness enforce-
ment computationally challenging. To overcome the scalability issue, FairLAB
exploits a divide-et-impera strategy which splits the fairness problem in sub-
tasks addressed by multiple learners. A wide experimentation on three datasets
demonstrates that FairLAB successfully mitigates fairness requirements also in
case of challenging settings while maintaining under control the model utility
and outperforms the state-of-the-art methods.

2 Related Work

Group Fairness. Several studies have explored the group fairness problem,
proposing different mitigation strategies: pre-processing, in-processing, and post-
processing methods [3]. Among them we focus on the in-processing approaches,
which incorporate fairness requirements directly into the model’s training. A
common tactic involves regularization schemes that penalize correlations be-
tween predicted outcomes and sensitive attributes, balancing fairness against
predictive performance [14]. Constraint-based optimization methods similarly
aim to enforce fairness while maintaining overall accuracy, by coupling a perfor-
mance metric with fairness constraints [4]. Cotter et al. [5] propose a primal-dual
Lagrangian approach that can incorporate multiple, potentially non-differentiable
constraints. Lokhande et al. [17] exploit the Augmented Lagrangian Method
(ALM), though their approach is limited to a single fairness constraint and one
binary sensitive attribute. Agarwal et al. [1] introduce Exponentiated Gradi-
ent (ExpGrad), which reduces fair classification to a sequence of cost-sensitive
subproblems. Another category is adversarial debiasing, where an adversarial
network tries to predict sensitive attributes from the model’s outputs. The main
model is trained to defeat the adversary, thus mitigating bias [27,6]. Another re-
search direction addresses fairness under a Multi-Objective Optimization (MOO)
framework, which aims to jointly optimize multiple fairness metrics along with
predictive performance. MOO approaches capture various trade-offs by con-
structing a Pareto front of equivalent models [7], either with gradient-based or
evolutionary algorithms [28,26]. Among the gradient-based methods, Ruchte et
al. [24] introduce COSMOS, an efficient algorithm to approximate the Pareto front
in high-dimensional settings, reducing the computational costs often associated
with naive MOO approaches.
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Intersectional Fairness. These algorithms must address two key challenges:
data sparsity, where certain demographic subgroups contain very few instances,
and computational complexity, which grows exponentially with the number of
protected attributes. As a result, standard fairness metrics may become compu-
tationally intractable [11]. Hence, alternative approaches have been developed,
including subgroup fairness [15] and differential fairness [10], that handle nu-
merous subgroups more efficiently. A prominent line of work adopts an auditing
paradigm: an auditor identifies subgroups exhibiting high unfairness under a
given metric, and a learner then reduces prediction error subject to fairness con-
straints [16]. For instance, in [15], it is proposed a zero-sum game that leverages
a cost-sensitive classification oracle. Another approach combines and extends
group fairness methods, to incorporate differential fairness in intersectional set-
tings, employing a tailored loss function to balance fairness and accuracy, relying
on the correlations between protected and unprotected features [19].

To the best of our knowledge, in the literature there are no methods that
can handle the performance-fairness trade-off directly in the learning process,
addressing simultaneously group and intersectional fairness efficiently.

3 Background

Fairness Fundamentals. Here we describe the group and intersectional fair-
ness metrics used throughout our work. Consider a dataset with a sensitive
attribute a taking values in {v1, v2, . . . , vn} and a binary classifier Ŷ ∈ {0, 1}.
The Demographic Parity (DP) [2] assesses whether the probability of receiving a
positive prediction is independent of the sensitive attribute. Formally, the dispar-
ity in positive prediction rates across subgroups of the attribute a is quantified
as DP (Ŷ ) = max1≤i<j≤n

∣∣Pr(Ŷ = 1 | a = vi) − Pr(Ŷ = 1 | a = vj)
∣∣. The

Equal Opportunity metric [13] measures the maximum gap in true positive rates
across subgroups, while Predictive Equality [13] measures the maximum gap in
false positive rates. Equalized Odds (EOD) [13] enforces fairness simultaneously
in both measures and is defined as the maximum between them. We say that
a classifier Ŷ is fair with respect to metric F if F a(Ŷ ) ≤ τ , where τ is a given
threshold (often set to 0.2).

In practice, fairness concerns often involve not just single sensitive attributes
(e.g., gender or race), but intersections of multiple attributes (e.g., race and
gender). This is known as intersectional fairness, and it aims to protect sub-
groups that may be disadvantaged at the intersection of multiple identities [10].
To evaluate fairness in this setting, the same group fairness metrics (e.g., DP,
EOD) are applied to the cross-product of sensitive attributes, treating each in-
tersectional group (e.g., Black Woman, White Man, etc.) as a distinct subgroup.
This allows for a more fine-grained assessment of disparities that may be hid-
den when attributes are considered in isolation. However, this also increases the
number of groups to monitor, raising statistical and optimization challenges in
both measurement and mitigation.



4 M. Fontana et al.

In the following, we use F a(m) to denote the value of fairness metric F
evaluated on model m w.r.t. to attribute a.

Augmented Lagrangian Method (ALM) [9] is a constrained optimization
technique that extends the Lagrangian formulation. Consider a problem:

min
x∈Rd

f(x) subject to gi(x) ≤ 0 (i = 1, . . . , r), hj(x) = 0 (j = 1, . . . ,m)

ALM introduces a penalty parameter σ > 0 and Lagrange multipliers λ ∈ Rm,
µ ∈ Rr to enforce equality and inequality constraints, respectively. The Aug-
mented Lagrangian LA(x, λ, µ, σ) is defined as:

f(x) +

m∑
j=1

λj hj(x) +
σ

2

m∑
j=1

hj(x)
2 +

1

2σ

r∑
i=1

(
max{0, µi + σ gi(x)}2 − µ2

i

)
At each iteration e, the variable x is updated by minimizing LA, followed by

multiplier updates that correct constraint violations. The multipliers for equality
and inequality constraints are adjusted as

λ(e+1) = λ(e) + ρ h
(
x(e+1)

)
, µ(e+1) = max

{
0, µ(e) + ρ g

(
x(e+1)

)}
(1)

When applied to deep learning, LA is treated as a loss function that accounts for
both predictive objectives and constraints satisfaction. For classification tasks,
the function to be minimized is usually the Cross Entropy. The model parameters
are updated through gradient-based methods. The multipliers are refreshed via
Eq. 1 after each epoch, reducing constraint violations as training proceeds [18].

4 FairLAB method

Our objective is to train a neural network that balances predictive performance
and fairness while satisfying a collection of fairness constraints, even intersec-
tional ones. Our method integrates fairness directly into the learning process
by ensuring that fairness violations are addressed dynamically while optimiz-
ing the predictive objective. We exploit a performance budget that controls
the performance-fairness trade-off. Intersectional fairness increases the compu-
tational complexity, as multiple sensitive attributes create a large number of
subgroups. To mitigate this issue, we adopt a divide-et-impera strategy, wherein
a central orchestrator divides the fairness problem in sub-tasks among multi-
ple learners by partitioning the fairness constraints, reducing the need to han-
dle all intersectional subgroups simultaneously and improving scalability. Fig. 1
provides a schematic representation of the process, which consists of two main
phases: a setup phase, where constraints are assigned to the learners, and a global
learning phase, where fairness violations are iteratively identified and mitigated.

Preliminaries. Before detailing the algorithmic process, we describe its in-
puts and we define the key concepts. The algorithm takes as input (i) a set of
fairness requirements R, (ii) a performance metric P (e.g. accuracy or F1 score)
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Fig. 1. Overview of FairLAB’s main steps in the setup and global learning phases.

Algorithm 1: FairLABOrchestrator(w1, E, P , R, β)
Input: w1, E : the initial parameters, the number of iterations.
Input: P , R : the performance metric to optimize, the fairness requirements.
Input: β : the performance budget.
Output: wbest: the last best parameters.

1 R̃ = BinarizeConstraints(R);
2 L = InitLocalLearners(R̃);
3 wbest = w1; sbest = EvaluateModel(w1, S); p∗ = P (w1);
4 for e← 1 to E do
5 Pe,De = BuildPerformance&ProximityConstraints(we, β, p∗);
6 le = SelectLocalLearner(we, L);
7 we+1, p∗ = UpdateModelLocal(l

e, we,Pe,De) ;
8 se+1 = EvaluateModel(we+1, S);
9 if se+1 > sbest then

10 wbest = we+1; sbest = se+1

11 return wbest

to be maximized and (iii) a performance budget β ≥ 0. The fairness requirement
is defined as R = {(Fi, ai, τi)}|R|

i=1, where Fi is a fairness metric (e.g. DP or EOD),
ai ∈ A is a sensitive attribute (either binary or non-binary) belonging to the
set of sensitive attributes A involved in the fairness requirements R, τi ≥ 0 is
a threshold defining the maximum acceptable violation. Note that, in case of
intersectional fairness an attribute ai might be both a simple attribute e.g., race
or gender, and a combined attribute, e.g., race and gender. Given a ML model m
each constraint takes the form F ai

i (m) ≤ τi, and F ai
i (m) denotes the evaluation

of the fairness metric Fi on the attribute ai for the ML model m. To quantify
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constraint satisfaction, we define the scoring function S, expressed as in Eq. 2:

S(m;R, P ) = λP P (m) − (1−λP )

|R|∑
i=1

max
{
0, F ai

i (m)−τi
} (

F ai
i (m)−τi

)
(2)

where λP ∈ [0, 1] determines the trade-off between performance and fairness.
Since fairness constraints are often defined over categorical attributes that may
have multiple possible values, we introduce a binary partition process that allows
us to compare fairness metrics between pairs of attribute values. Given a sensitive
attribute a with domain dom(a) = {v1, v2, . . . , vn}, we define the binary partition
on an attribute as an operator, that restricts the domain values to any pair
{vi, vj}, denoted as π(a | vi, vj). This binary partition process enables also a
strategy of fairness constraint partition among multiple learners.

Method Description.
To provide a clear understanding of the main steps performed by FairLAB,

we present its pseudo-code in Algorithm 1. The proposed approach operates in
a setup phase (lines 1-3) followed by a global learning phase. During setup, the
orchestrator converts the fairness requirement R into a set of pairwise binary
constraints, using the binary partition process, which we denote as R̃ (line 1).
Specifically, for each constraint (Fi, ai, τi) ∈ R, the orchestrator generates a set
of constraints of the form

(
Fi, π(ai | vj , vk), τi

)
∀(vj , vk) ∈ dom(ai). The result-

ing set R̃ contains all the derived binary constraints and replaces the original
multi-valued fairness constraints in the subsequent optimization process. This
transformation ensures that fairness constraints are enforced, reducing the com-
plexity of handling multi-valued sensitive attributes. Once R̃ is constructed, the
orchestrator initializes a set of learners L = {l1, . . . , l|dom(a)|} (line 2), where
each learner is made responsible for enforcing the fairness constraints that in-
volve a specific value v of attribute a, explicitly assigned by the orchestrator,
i.e., (Fi, π(a|v, vj), τi) ∈ R̃ . As a consequence, we have a number of learners
equal to the |dom(a)|.

After partitioning the fairness constraints, the orchestrator sets up the pa-
rameters for the next phase (line 3). Given the initial parameters of the network
w1 the orchestrator assigns it to wbest. Moreover, given the scoring function
to evaluate the constraint satisfaction S, the orchestrator evaluates the current
model to assign the initial scoring value to sbest and its performance as the best
ones to p∗. Next, FairLAB starts the global learning phase, which is an opti-
mization procedure consisting of a maximum of E iterations (line 4). A generic
iteration e involves the following steps: (i) constraint updates (line 5), (ii) learner
selection (line 6), (iii) model updates (line 7), and (iv) model evaluation (line 8).
In the following, we detail each of these steps.

Constraints updates. In each iteration e, given the model m characterized
by the parameters we, the orchestrator updates two sets of constraints: (i) the
performance constraints Pe and (ii) the proximity constraints De.

The performance constraints Pe ensure that the model maintains high predic-
tive performance throughout the training process, preventing excessive degrada-
tion due to fairness enforcement. However, for converging to acceptable balance
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between fairness and performance we introduce the performance budget β, a key
factor that enables the control of how much performance can be sacrificed to
satisfy fairness constraints. A larger β permits a greater reduction in utility, al-
lowing stronger fairness enforcement, while a smaller β prioritizes performance at
the possible expense of fairness improvements. As a consequence the constraints
are defined as: P (m) ≥ p∗ + ρstep and P (m) ≥ p∗ − β. The first constraint
incentivizes performance improvement at each iteration by requiring the model
to exceed the best observed performance p∗ by at least a small step size ρstep.
This helps prevent stagnation and ensures that fairness constraints do not lead
to a complete neglect of predictive performance. The second constraint prevents
excessive deterioration of predictive performance by ensuring that performance
does not drop more than β units below the highest recorded performance p∗.
The parameter β acts as a performance safeguard, allowing some flexibility for
fairness improvements while preserving overall utility.

The proximity constraints De are designed to ensure that fairness proper-
ties already achieved at a given iteration are preserved in subsequent updates.
Without such constraints, fairness improvements obtained in earlier iterations
could be undone as the model continues to optimize for other objectives. To
prevent this, given the subset of attributes for which we have the fairness con-
straints almost or fully satisfied, we propose to measure how much the model’s
prediction distribution shifts for each subgroup between different iterations us-
ing the 1-Wasserstein distance (also known as the Earth Mover’s Distance) [25].
This distance quantifies the minimal amount of probability mass that must be
transferred to transform one distribution into another. The proximity constraints
then enforce an upper bound on this shift, ensuring that the model’s decision
distribution remains stable across training updates:

De = {W1(w
e−1, we | v) ≤ δ | ∀ai ∈ A ∀v ∈ AS(ai)},

where W1(w
e−1, we | v) represents the 1-Wasserstein distance between the dis-

tribution of model outputs for subgroup v at iteration e and iteration e−1, while
δ is a small tolerance threshold that controls the maximum allowed change in
subgroup-level decision distributions. Note that, given a sensitive attribute a,
such distance is conditioned to its values, named active set AS(a), which either
satisfy or are close to satisfying fairness constraints. More formally, given a sen-
sitive attribute a ∈ A, the value v belongs to AS(a) if and only if there is no
fairness violation or the violation between v and any vj ̸= v does not exceed a
given threshold, i.e, τi − F

π(a|v,vj)
i (m) ≤ νtot. We highlight that De constraints

serve to (i) reduce the risk of fairness violations re-emerging by discouraging
large shifts in subgroup-level decision distributions, which could lead to previ-
ously satisfied fairness constraints being violated in subsequent iterations; and
(ii) regularize subgroup-level decision changes, preventing overfitting to specific
fairness constraints while maintaining consistency in model predictions.

Learner selection. At each iteration, the orchestrator selects a learner to
perform the next model update. To make this selection, each learner li ∈ L
first reports its total fairness violation νi, which quantifies how much the fair-



8 M. Fontana et al.

ness constraints assigned to li are currently being violated. The orchestrator
then assigns a selection probability to each learner, ensuring that learners with
higher fairness violations are more likely to be chosen for updates. The selec-
tion probability follows a softmax-like distribution, defined as e−T νi∑

j e−T νj
, where

T > 0 is a temperature parameter that controls the sharpness of the probabil-
ity distribution. In particular, when T is small, the probability distribution is
concentrated around the learners with the highest fairness violations, strongly
prioritizing them for updates. This mechanism ensures that the optimization
process dynamically focuses on the fairness constraints with higher violation,
while still allowing occasional updates from other learners to maintain overall
stability in the model training process.

Model update. In this phase, the selected learner le receives the updated
model parameters we along with the two sets of constraints Pe,De. The learner
first constructs the full set of constraints that will be optimized in the current
iteration: Kle = Rle ∪ Pe ∪ De, where Rle is the subset of fairness constraints
assigned to the learner le during the setup phase. The learner then constructs
its scoring function LS, which follows a similar formulation to the scoring func-
tion S defined in Eq.2. The key difference is that, while S is computed over
the initial set of fairness constraints R, the local scoring function LS is defined
specifically for the constraints Kle assigned to the selected learner le in the cur-
rent iteration. At this point le proceeds with a learning process based on the
ALM described in Sec. 3, to update the model parameters we. In this process,
we employ a standard task-specific loss function (e.g., cross-entropy for clas-
sification tasks) as the primary objective function in ALM. We precise that,
since all constraints in Kle are formulated as inequality constraints, the Aug-
mented Lagrangian function is defined exclusively over this type of constraint,
without including equality constraints. The goal of this optimization process is
to refine the network parameters we and obtain a new set of parameters we+1

that satisfies the constraints in Kle , while maintaining predictive performance.
Since fairness and performance metrics are often non-differentiable, the learner
le approximates them using soft confusion-matrices. To achieve this, the learner
queries the model m to obtain the logits, which are then processed through the
Entmax function to produce a sparse probability distribution [23]. This probabil-
ity distribution is subsequently used to construct soft confusion matrices, from
which fairness and performance metrics are computed. These soft approxima-
tions allow for the application of gradient-based optimization techniques within
the Augmented Lagrangian framework. To ensure numerical stability and pre-
vent fairness constraints from dominating the optimization process, the learner
employs an early-stopping criterion in ALM. Specifically, the Lagrangian multi-
pliers are updated only if a constraint violation does not improve over multiple
consecutive epochs. This prevents excessive growth of the multipliers relative to
the primary optimization objective and mitigates numerical instability.

Model evaluation. At the end of the model update, the learner le returns
the updated model we+1, corresponding to the one that maximizes LS. If the
new model achieves a higher performance than any previously recorded one, the
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learner also updates the reference performance value p∗ that will be used in the
next performance constraints Pe+1. The orchestrator then evaluates we+1 using
its function S. If the new model we+1 achieves a higher score than the best
recorded so far, the orchestrator updates its reference model, marking we+1 as
the new best model.

This iterative process continues until a stopping criterion is met. Training
stops either when the maximum number of iterations is reached or when an
early-stopping condition is triggered based on S. At that point, the algorithm
outputs the model that attains the highest value of S.

5 Experimental Settings

We present the experimental setup for validating FairLAB4, considering three
benchmarking datasets: FolkTables, Compas, and MEPS5. For each dataset we
remove duplicates, standardize numerical features by removing the mean and
scaling to unit variance, and encode categorical features using one-hot encoding.

FolkTables dataset contains census data from California in 2014, with age,
education level and so on. The task is to classify whether an individual’s income
exceeds 50K. We use 183, 380 samples with 20 features. The sensitive attributes
considered are Job, Race and MaritalStatus.

Compas dataset contains criminal records from Broward County, Florida. It
includes demographic information, criminal history, and risk scores for 6, 172
defendants. The task is to predict whether an arrestee was convicted of violence
within two years. After pre-processing, the dataset consists of 34 features. The
sensitive attributes considered are Gender, Race and Age.

MEPS dataset contains information on healthcare expenditures, medical ser-
vice utilization, and patient demographics from the United States in 2015. It
contains 33, 400 records and over 200 features. After feature selection and one-
hot encoding, we reduce to 132. The classification task is to predict whether
an individual’s total medical expenses exceed the third quantile. The sensitive
attributes considered are Gender, Race and MaritalStatus.

For the hyper-parameters and the other implementation details, we refer the
interested reader to the Supplementary Material.

Competitors We compare FairLAB against: (i) Vanilla, a ML approach that
optimizes only for predictive performance without incorporating fairness con-
straints, serving as a reference to estimate the initial algorithmic bias present in
the data; (ii) FFVAE (Adversarial), an adversarial debiasing method designed
to mitigate unfairness in scenarios involving non-binary sensitive attributes [6];
(iii) Exponentiated Gradient (ExpGrad), a constrained learning approach that
dynamically adjusts constraint weights to balance fairness and accuracy, pro-
ducing a final model by combining multiple reweighted classifiers [1]; and (iv)
4 We performed the experiments on a server having an Intel(R) Xeon(R) Gold 5120

CPU @ 2.20GHz, 16 cores and 64GB of RAM. The code is available at: https:
//github.com/michelefontana92/FairLAB

5 Folk, Compas, Meps

https://github.com/michelefontana92/FairLAB
https://github.com/michelefontana92/FairLAB
https://github.com/socialfoundations/folktables
https://github.com/propublica/compas-analysis/
https://meps.ahrq.gov/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-181
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Table 1. Results of the 2-Ways Intersections. In F1 we highlight in bold the best
performance, while for DP and EOD we report in bold the values below the fairness
threshold (0.20) and underline the lowest value.

Debiasing results on FolkTables

Algorithm
Demopraphic Parity (DP ) Equalized Odds (EOD)

JobRace JobMarital RaceMarital JobRace JobMarital RaceMarital
F1 DP F1 DP F1 DP F1 EOD F1 EOD F1 EOD

Vanilla 0.77 0.39 0.77 0.38 0.77 0.36 0.77 0.37 0.77 0.37 0.77 0.48
Adversarial 0.73 0.28 0.74 0.25 0.71 0.28 0.75 0.28 0.70 0.14 0.70 0.18

ExpGrad 0.75 0.34 0.70 0.19 0.67 0.20 0.73 0.25 0.75 0.24 0.74 0.28
COSMOS 0.70 0.23 0.73 0.29 0.73 0.32 0.74 0.28 0.73 0.20 0.73 0.33

FairLAB (0.05) 0.72 0.20 0.74 0.19 0.72 0.20 0.74 0.20 0.73 0.20 0.74 0.19

Debiasing results on Compas

Algorithm
Demopraphic Parity (DP ) Equalized Odds (EOD)

GenderRace GenderAge RaceAge GenderRace GenderAge RaceAge
F1 DP F1 DP F1 DP F1 EOD F1 EOD F1 EOD

Vanilla 0.69 0.49 0.69 0.62 0.69 0.56 0.69 0.45 0.69 0.64 0.69 0.53
Adversarial 0.65 0.27 0.67 0.30 0.60 0.22 0.65 0.18 0.55 0.09 0.61 0.20

ExpGrad 0.61 0.12 0.65 0.26 0.63 0.26 0.65 0.20 0.65 0.11 0.64 0.27
COSMOS 0.66 0.32 0.64 0.31 0.68 0.38 0.68 0.36 0.69 0.44 0.62 0.29

FairLAB (0.05) 0.66 0.19 0.65 0.20 0.64 0.19 0.66 0.19 0.65 0.20 0.65 0.20

Debiasing results on MEPS

Algorithm
Demopraphic Parity (DP ) Equalized Odds (EOD)

GenderRace GenderMarital RaceMarital GenderRace GenderMarital RaceMarital
F1 DP F1 DP F1 DP F1 EOD F1 EOD F1 EOD

Vanilla 0.81 0.29 0.81 0.45 0.81 0.53 0.81 0.34 0.81 0.57 0.81 0.62
Adversarial 0.78 0.22 0.70 0.10 0.78 0.40 0.78 0.35 0.80 0.42 0.75 0.45

ExpGrad 0.80 0.26 0.79 0.33 0.79 0.33 0.80 0.32 0.79 0.40 0.78 0.52
COSMOS 0.80 0.21 0.79 0.29 0.79 0.37 0.78 0.25 0.80 0.30 0.80 0.40

FairLAB (0.05) 0.80 0.14 0.79 0.18 0.79 0.20 0.75 0.19 0.78 0.15 0.76 0.20

COSMOS, a MOO method that efficiently learns a Pareto front of models with
equivalent trade-offs between fairness and accuracy [24].

6 Experiments

In this section we provide our experimental evaluation of FairLAB, against the
competitors across multiple fairness settings. In the evaluation we use DP and
EOD as fairness metrics, and F1 score for the predictive performance. Our anal-
ysis aims to assess (i) how effectively FairLAB balances fairness and predictive
performance, studying key factors such as the performance budget β and the
proximity threshold δ that influence its behavior, and (ii) its scalability.

In particular, we analyze from simpler to more complex fairness scenarios,
exploring the intersectional fairness with two sensitive attributes in Sec. 6.1 and
with three in Sec. 6.2, highlighting the increasing difficulty of enforcing fairness
as dimensionality grows. Following, Sec. 6.3 examines cases where multiple fair-
ness constraints are applied simultaneously, incorporating both group-level and
intersectional constraints. Sec. 6.4 explores the impact of the proximity thresh-
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old δ on the trade-off between preserving the fairness properties and improving
the performance. Finally, Sec. 6.5 proves that FairLAB is scalable.

6.1 Experiments with Two-Attribute Intersections

We evaluate fairness constraints by enforcing either DP or EOD individually, con-
sidering all intersections of two sensitive attributes for each dataset. We impose
F ai(m) ≤ 0.2 on subgroups defined by ai which intersects two attributes. Here
F is DP or EOD. Table 1 reports the results.

Demographic Parity. FairLAB is the only method that meets fairness ob-
jectives in all cases. While Adversarial often achieves a substantial bias reduc-
tion (as seen by comparing fairness values to Vanilla, the baseline), in some sce-
narios it fails (e.g., JobRace in FolkTables and RaceMarital in MEPS). Similarly,
ExpGrad succeeds for certain intersections (e.g., JobMarital in FolkTables)
but struggles elsewhere (e.g., JobRace in FolkTables). COSMOS has mixed out-
comes, even exceeding fairness by more than 0.18 (e.g., RaceAge in Compas).
Equalized-Odds. FairLAB meets the fairness constraint in every configuration,
demonstrating strong bias mitigation. For FolkTables, all competitors achieve
acceptable fairness and F1 score. For Compas and MEPS, results are mixed: while
Adversarial performs well, the other methods mitigate bias only for certain
attributes, often exceeding the desired bias threshold of 20 by at least 0.10.
Performance Analysis. All fairness-aware approaches have lower F1 than the
unconstrained Vanilla, which achieves the highest performance but significantly
violates fairness. Among the debiasing methods, FairLAB strikes a strong bal-
ance between fairness and utility, maintaining competitive F1 while meeting all
fairness targets. For instance, on MEPS under EOD, FairLAB reduces bias below
0.20 with a slight decrease in F1 (at most 0.06). By contrast, Adversarial some-
times suffers substantial utlity drops (e.g., F1 = 0.55 on Compas, compared to
0.69 for Vanilla and 0.65 for FairLAB). Although ExpGrad and COSMOS often
retain good F1 scores, they do not always meet the fairness constraints.

6.2 Experiments with Three-Attribute Intersections

In this experiment, we evaluate FairLAB by creating attributes combining three
sensitive factors to test its performance in a more complex setting. Specifically,
we consider JobRaceMarital for FolkTables, GenderRaceAge for Compas, and
GenderRaceMarital for MEPS. We enforce DP and EOD separately, each with a
threshold of 0.20. In addition, given the more challenging setting, we evaluate
FairLAB under three different values of β to analyze the trade-off between fair-
ness and F1 score. Table 2 reports the F1 and fairness values for all methods.
Demographic Parity. None of the competitors reduce DP below 0.20 on any
dataset. Adversarial shows significant violations (e.g., 0.65 in Compas), indicat-
ing that it becomes less effective as the dimensionality of the sensitive attribute
increases. Although ExpGrad and COSMOS achieve moderate improvements, with
DP between 0.33 and 0.43, these remain well above the threshold. By contrast,
FairLAB achieves the fairness objectives with bigger values for the performance
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Table 2. Results 3-Ways Intersections. The F1 column highlights in bold the best
predictive performance, while the DP and EOD columns highlight in bold the values
below the fairness threshold (0.20) and underline the lowest value.

Algorithm

FolkTables Compas MEPS
DP EOD DP EOD DP EOD

F1 DP F1 EOD F1 DP F1 EOD F1 DP F1 EOD

Vanilla 0.77 0.50 0.77 0.84 0.69 0.75 0.69 0.82 0.81 0.59 0.81 0.69
Adversarial 0.76 0.45 0.75 0.80 0.67 0.65 0.63 0.67 0.79 0.56 0.80 0.60

ExpGrad 0.74 0.36 0.66 0.50 0.60 0.43 0.60 0.71 0.79 0.36 0.78 0.56
COSMOS 0.71 0.33 0.75 0.67 0.61 0.42 0.67 0.73 0.80 0.43 0.80 0.53

FairLAB (0.05) 0.72 0.30 0.70 0.35 0.64 0.31 0.66 0.42 0.76 0.20 0.75 0.25
FairLAB (0.10) 0.68 0.20 0.68 0.31 0.62 0.25 0.60 0.34 0.75 0.17 0.73 0.20
FairLAB (0.15) 0.65 0.17 0.65 0.28 0.58 0.19 0.56 0.24 0.71 0.18 0.71 0.18

budget β. In addition, with β, it offers tunable trade-offs. For β = 0.05, it attains
DP ≤ 0.20 only in MEPS, implying that a minimal sacrifice in F1 is sufficient there
but not in FolkTables or Compas (where DP remains around 0.30). Increasing
β to 0.10 narrows this gap, dropping DP to 0.20 in FolkTables at the cost of
an F1 reduction from 0.72 to 0.68. Achieving DP ≤ 0.20 in Compas requires
β = 0.15, which drives F1 as low as 0.58. This highlights the data-dependent
nature of intersectional fairness: some datasets (e.g. Compas) demand a larger
performance budget to meet the tighter fairness constraint.
Equalized Odds. A similar pattern emerges for EOD. While ExpGrad and COSMOS
exceed 0.50 in every scenario, FairLAB lowers EOD below 0.20 in MEPS with β ≥
0.10. However, FairLAB still registers EOD values of 0.28 and 0.24 in FolkTables
and Compas, respectively, suggesting that meeting intersectional EOD thresholds
for all subgroups may require even higher budgets.
Performance Analysis. In all three datasets, the unconstrained model Vanilla
achieves the highest F1 scores (e.g., 0.77 in FolkTables and 0.69 in Compas),
albeit with severe fairness violations. Methods like Adversarial, ExpGrad, and
COSMOS typically retain F1 close to Vanilla, but their debiasing effect is in-
sufficient for three-attribute intersections. The pivotal element of FairLAB ’s
performance is the parameter β, which balances accuracy and fairness, explain-
ing why FairLAB with β = 0.05 can satisfy DP in MEPS but not in FolkTables or
Compas: the latter datasets require more significant adjustments to model pre-
dictions to mitigate intersectional biases. For EOD, the same reasoning applies,
further amplified by the metric’s dependence on both true and false positive
rates, which increases data fragmentation when three sensitive attributes inter-
sect. Another factor is the data distribution within each intersectional subgroup.
With three attributes, certain subgroups may contain relatively few samples, so
applying EOD constraints forces the model to adapt its decision boundary more
drastically. As β grows, FairLAB can impose these constraints more effectively,
albeit with a noticeable drop in F1.
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Table 3. Results of Multiple Constraints, with DP . For F1, the best performance
is in bold, while for DP we highlight the values below the fairness threshold (0.20 for
the intersectional and 0.10 for the single attribute) and underline the lowest value.

Debiasing results on FolkTables

Algorithm F1
J ∗R ∗M J ∗R J ∗M R ∗M Job Race Marital

DP DP DP DP DP DP DP

Vanilla 0.77 0.50 0.39 0.38 0.36 0.18 0.21 0.22
COSMOS 0.73 0.36 0.34 0.23 0.27 0.09 0.15 0.18

FairLAB (0.05) 0.72 0.32 0.20 0.16 0.28 0.04 0.12 0.15
FairLAB (0.10) 0.67 0.20 0.14 0.14 0.17 0.03 0.10 0.09
FairLAB (0.15) 0.67 0.19 0.17 0.20 0.18 0.02 0.08 0.09

Debiasing results on Compas

Algorithm F1
G ∗R ∗A G ∗R G ∗A R ∗A Gender Race Age

DP DP DP DP DP DP DP

Vanilla 0.69 0.75 0.49 0.62 0.56 0.31 0.24 0.39
COSMOS 0.66 0.46 0.33 0.27 0.34 0.13 0.20 0.14

FairLAB (0.05) 0.62 0.32 0.17 0.20 0.20 0.09 0.08 0.07
FairLAB (0.10) 0.60 0.27 0.16 0.18 0.18 0.07 0.10 0.08
FairLAB (0.15) 0.61 0.23 0.16 0.14 0.18 0.07 0.07 0.05

Debiasing results on MEPS

Algorithm F1
G ∗R ∗M G ∗R G ∗M R ∗M Gender Race Marital

DP DP DP DP DP DP DP

Vanilla 0.81 0.59 0.29 0.45 0.53 0.09 0.22 0.39
COSMOS 0.76 0.29 0.25 0.15 0.28 0.01 0.09 0.10

FairLAB (0.05) 0.76 0.17 0.09 0.12 0.14 0.01 0.07 0.09
FairLAB (0.10) 0.76 0.17 0.12 0.10 0.17 0.02 0.09 0.06
FairLAB (0.15) 0.75 0.12 0.08 0.07 0.19 0.01 0.05 0.07

6.3 Experiments with Mixed Constraints

We also evaluate FairLAB in a scenario where multiple intersectional fairness
constraints are enforced simultaneously. Specifically, each dataset is subject to
seven constraints which express all the possible intersectional attributes (com-
bining two or three attributes) and the single sensitive attributes (e.g., Gender,
Race). We set the threshold to 0.20 for the intersectional attributes and to 0.10
for the single ones. We compare FairLAB exclusively to COSMOS because it is the
only method capable of handling multiple fairness constraints simultaneously6.

Demographic Parity. Table 3 shows that FairLAB successfully meets all
DP constraints on both FolkTables and MEPS. As already mentioned, the trade-
off between fairness and accuracy depends on the performance budget β, which
value varies across datasets to achieve the required fairness level. On FolkTables,
reducing DP below 0.20 at the three-way attribute JobRaceMarital requires
β ≥ 0.10, which lowers F1 from 0.77 to 0.67. In contrast, MEPS requires a lower
β, with FairLAB satisfying every constraint at β = 0.05 while maintaining a
good F1 of 0.76. The behavior on Compas is more challenging, as FairLAB meets
six out of seven constraints with β in [0.10, 0.15], while GenderRaceAge remains
slightly above 0.20. However, we consider this result acceptable, as the deviation
6 Columns with ∗ are intersectional attributes, where initials indicate their features.
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Table 4. Results of Multiple Constraints, with EOD. For F1 we highlight the best
performance, for EOD we report in bold the values below the fairness threshold (0.20
for intersectional and 0.10 for single attributes) and underline the lowest value.

Debiasing results on FolkTables

Algorithm F1
J ∗R ∗M J ∗R J ∗M R ∗M Job Race Marital
EOD EOD EOD EOD EOD EOD EOD

Vanilla 0.77 0.84 0.37 0.37 0.48 0.18 0.27 0.36
COSMOS 0.75 0.80 0.34 0.33 0.21 0.12 0.19 0.09

FairLAB (0.05) 0.73 0.38 0.24 0.18 0.19 0.18 0.12 0.09
FairLAB (0.10) 0.60 0.29 0.20 0.20 0.19 0.08 0.07 0.08
FairLAB (0.15) 0.59 0.24 0.15 0.10 0.16 0.06 0.10 0.03

Debiasing results on Compas

Algorithm F1
G ∗R ∗A G ∗R G ∗A R ∗A Gender Race Age
EOD EOD EOD EOD EOD EOD EOD

Vanilla 0.69 0.82 0.45 0.64 0.53 0.30 0.22 0.30
COSMOS 0.67 0.71 0.26 0.39 0.43 0.11 0.19 0.16

FairLAB (0.05) 0.63 0.35 0.27 0.20 0.25 0.14 0.07 0.12
FairLAB (0.10) 0.59 0.26 0.18 0.15 0.16 0.07 0.05 0.09
FairLAB (0.15) 0.54 0.22 0.14 0.10 0.12 0.02 0.01 0.06

Debiasing results on MEPS

Algorithm F1
G ∗R ∗M G ∗R G ∗M R ∗M Gender Race Marital

EOD EOD EOD EOD EOD EOD EOD

Vanilla 0.81 0.69 0.34 0.57 0.62 0.10 0.25 0.49
COSMOS 0.69 0.15 0.10 0.12 0.13 0.02 0.08 0.07

FairLAB (0.05) 0.77 0.29 0.20 0.18 0.20 0.07 0.09 0.09
FairLAB (0.10) 0.70 0.19 0.07 0.09 0.17 0.03 0.05 0.05
FairLAB (0.15) 0.69 0.20 0.12 0.14 0.19 0.05 0.02 0.04

is minimal given that it is very close to the target and occurs in a highly complex
setting where all other constraints are successfully satisfied. Regarding the com-
petitor, COSMOS generally preserves higher F1 scores but fails most intersectional
constraints. On FolkTables, for instance, it surpasses 0.30 for JobRaceMarital,
indicating difficulty in handling finer demographic partitions.

Equalized Odds. Table 4 confirms a similar pattern when EOD constraints
are imposed. FairLAB once again reduces the three-way attribute well below the
unconstrained baseline in FolkTables and Compas, but cannot always push EOD
under 0.20 for every subgroup, even at higher performance budgets (e.g., 0.24 on
FolkTables and 0.22 on Compas). Nevertheless, these values are quite close to
the target and represent notable improvements over COSMOS, which reaches 0.70
or 0.80 on the same intersectional group. On MEPS, FairLAB achieves or nears
the threshold in all subgroups when β ≥ 0.10. COSMOS exhibits partial success,
meeting some constraints on MEPS ’s single attributes more easily, yet it remains
less effective for the higher-dimensional partitions.

Performance Analysis. As observed in Sections 6.1 and 6.2, the parameter
β in FairLAB governs the balance between fairness and accuracy. Larger budgets
allow the model to target smaller DP/EOD values but can reduce F1 by up to
10–15 points relative to the unconstrained baseline Vanilla. On FolkTables,
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Fig. 2. Impact of the proximity parameter δ on the fairness and F1 of the final model.

for instance, lowering EOD to around 0.24 at JobRaceMarital requires β = 0.15,
which yields an F1 of 0.59 compared to 0.77 for Vanilla. However, COSMOS, while
retaining a higher F1, remains above 0.70 in EOD for the same attribute, indicating
that the debiasing strategy is not working. On MEPS, FairLAB faces a more
moderate trade-off and meets nearly all constraints with β as low as 0.05 or 0.10,
incurring only a slight drop in F1. Overall, these experiments demonstrate that
meeting multiple constraints—especially at the intersectional level—can demand
a significant performance budget in some datasets, but FairLAB consistently
outperforms COSMOS in reducing unfairness across diverse subgroup partitions.

6.4 Impact of the Proximity Parameter

We also investigate how the proximity threshold δ influences the final model
learned under the three-attribute scenario discussed in Section 6.2. By design,
δ dictates how closely the new model must mimic the orchestrator’s conditional
distributions on specified subgroups, effectively limiting how much the updated
model’s predictions can deviate. We vary δ and record the resulting DP and F1

scores, keeping the performance budget fixed at β = 0.05.
Figure 2 illustrates that increasing δ grants more freedom for the updated

model to diverge from the orchestrator, yielding higher F1 but at the expense
of fairness. When δ becomes large, the new model no longer inherits the or-
chestrator’s fairness properties from previous iterations and instead optimizes
primarily for learner constraints. Consequently, once δ ≥ 0.05, DP surpasses
the 0.20 threshold in FolkTables, Compas, and MEPS, indicating that intersec-
tional fairness can no longer be maintained. In contrast, with smaller values
(e.g., δ = 0.01 or 0.02), the updated model remains sufficiently close to the or-
chestrator’s distribution, keeping DP below 0.20 without incurring a pronounced
performance penalty. This trade-off underscores the importance of calibrating δ
to preserve the orchestrator’s fairness characteristics while allowing for potential
improvements in F1.
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Table 5. Average training times in: (1) Int2 (2-Ways Intersections) (2) Int3
(3-Ways Intersections) (3) Mixed (Multiple Constraints).

Algorithm FolkTables Compas MEPS
Int2 Int3 Mixed Int2 Int3 Mixed Int2 Int3 Mixed

Vanilla 30.3 min 30.3 min 30.3 min 3.5 min 3.5 min 3.5 min 27.2 min 27.2 min 27.2 min
Adversarial 3.7 hrs 2 day - 1.2 hrs 3.5 hrs - 5.2 hrs 1.1 day -

ExpGrad 20.8 min 1.2 hrs - 5.4 min 7.1 min - 14.6 min 40.3 min -
COSMOS 10.7 hrs 2.2 day 4.5 day 3.3 hrs 1.5 day 2.8 day 13.4 hrs 1.7 day 3.9 day

FairLAB (0.05) 1.3 hrs 2.4 hrs 2.7 hrs 6.3 min 9.7 min 12.1 min 30.8 min 45.2 min 48.9 min

6.5 Runtime Analysis

We assess the scalability of FairLAB by measuring its training times in the ex-
perimental settings in Sec. 6.1, 6.2, and 6.3. Each setting involves an increasing
number of fairness constraints and/or more complex intersectional attributes,
allowing us to observe how computational costs scale with the problem com-
plexity. Table 5 shows that FairLAB balances efficiency and fairness constraints,
maintaining moderate training times even in complex settings. Compared to
COSMOS, it achieves faster convergence, while ExpGrad, though faster, often fails
to meet fairness requirements. Adversarial remains feasible in simpler cases
but becomes impractical for larger-scale constraints. Overall, FairLAB offers a
good trade-off between runtime and debiasing performance, making it suitable
for real-world applications.

7 Conclusions

We introduced FairLAB, a method for training fair and high-performing NN un-
der both group and intersectional fairness constraints, exploiting ALM. With
the performance budget, we provide explicit control to the trade-off between
fairness and performance, making FairLAB adaptive. It is also scalable thanks
to a divide-et-impera strategy for decomposing the fairness problem, partic-
ularly when multiple sensitive attributes interact. Experimental results show
that FairLAB mitigates bias across challenging real-world scenarios, where mul-
tiple fairness constraints, must be satisfied simultaneously. Also, our empirical
evaluation shows that FairLAB outperforms state-of-the-art fairness mitigation
methods, striking a balance between fairness and performance, even in high-
dimensional settings. These results highlight the applicability of FairLAB for
fairness-aware real-world applications. As future work, we plan to extend it to
decentralized learning scenarios, such as Federated Learning[8,12], with the chal-
lenge of ensuring fairness across distributed nodes, while preserving user privacy
and model performance.
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