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Abstract. De novo generation of hit-like molecules is a challenging task
in the drug discovery process. Most methods in previous studies learn
the semantics and syntax of molecular structures by analyzing molecular
graphs or simplified molecular input line entry system (SMILES) strings;
however, they do not take into account the drug responses of the biological
systems consisting of genes and proteins. In this study we propose a deep
generative model, Gx2Mol, which utilizes gene expression profiles to gen-
erate molecular structures with desirable phenotypes for arbitrary target
proteins. In the algorithm, a variational autoencoder is employed as a
feature extractor to learn the latent feature distribution of the gene expres-
sion profiles. Then, a long short-term memory is leveraged as the chemical
generator to produce syntactically valid SMILES strings that satisfy the
feature conditions of the gene expression profile extracted by the feature
extractor. Experimental results demonstrate that Gx2Mol produces new
molecules with potential bioactivities and drug-like properties. The source
code is available at: https://github.com/naruto7283/Gx2Mol.
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1 Introduction

Exploring the chemical space to discover molecules with therapeutic effects (e.g.,
anticancer drug production) is a time-consuming, costly, and high-risk task in the
drug discovery field. Despite extensive premarket drug testing, the failure rate
is still > 90% [13]. In general, drug development takes over 12 years and costs
greater than $1.3 billion [3]. After identification of therapeutic target proteins for
a disease of interest, researchers search for potential drug candidate molecules
that can interact with the therapeutic target proteins. This process is referred to
as hit identification [29]. The high-throughput screening of large-scale chemical
compound libraries with various biological assays is often performed for the hit
identification, but the experimental approach is expensive.

As an alternative to hit identification, computational methods such as virtual
screening [9] and de novo molecular generation [20] can be used to accelerate the
production of drug candidates. Virtual screening attempts to explore chemical
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databases containing massive volumes of molecules at minimal cost and obtain
hit-like molecules through docking simulation [27]. De novo molecular generation
attempts to generate new molecules with desired chemical properties or similar
to known ligands [24]. Recently, artificial intelligence and deep learning-based
generative models such as variational autoencoders (VAEs) [22] and generative
adversarial networks (GANs) [18] have emerged for the de novo molecular gener-
ation. However, most methods in the previous studies focused on learning the
syntax and semantics of molecular structures by analyzing molecular graphs or
simplified molecular input line entry system (SMILES) strings.

The biological system is perturbed by drug treatment, thus, the use of
biological data in addition to chemical data is desired for drug discovery. Omics
data including transcriptome offer a comprehensive molecular landscape that
can describe the cellular responses of human cells to drug treatment and the
pathological histories of disease patients. Thus, omics data representing drug
activities are important resources for current drug development. For example,
the use of gene expression data in the preliminary stage of drug discovery is
a promising approach [30], because it does not depend on prior knowledge of
ligand structures or three-dimensional (3D) structural information of therapeutic
target proteins [4]. However, omics-based drug discovery approach has severe
limitations. The number of molecules with omics information is quite limited; thus,
the method is applicable only to molecules for which omics data are measured.
Deep learning methods using GANs [21] and VAEs [12] have been applied to
generate molecules from gene expression data, but many generated compounds
are chemically invalid or unrealistic, suggesting accuracy needs improvement.

In this study, we present a deep generative model, Gx2Mol, to analyze omics
data and design new hit-like molecules. Specifically, a VAE is first used to
extract low-dimensional features from gene expression profiles. These features
then condition an LSTM-based generator [16] to produce valid SMILES strings
aligned with the input profile. Gene expression features are used as conditions
during LSTM training to guide the generation of molecules aligned with the
target profile. The main contributions are as follows:

– A novel idea: unlike the previous methods on the generation of molecular
chemical structures (e.g., SMILES strings and graphs), this study attempts to
generate hit-like molecules from scratch using gene expression profiles.

– A concise model: combining simple generative models (i.e., VAE and LSTM)
achieves the goal of molecular generation considering biological information.

– Superior performance: the experimental results demonstrate that the pro-
posed method yields new molecules with potential bioactivities and drug-likeness
properties, which can be utilized for further structure optimization.

2 Related Works

Traditional drug discovery relies on chemical intuition, medicinal chemistry, and
structure-based design [1]. Chemists design molecules, build libraries, and use
structural data for drug development. However, such methods are limited by high
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costs and time demands. Predicting bioactivity remains difficult, as conventional
approaches struggle to capture complex structure-activity relationships [13].

2.1 Graph-based Molecular Generation

Molecular graphs contain rich structural information and are often used for
molecular generation [10]. Typically, a molecular graph is usually represented by
an ensemble of atom vectors and bond matrices. VAEs attempt to approximate the
distribution of molecular graphs to learn latent variables [6]. Generally, VAE-based
models construct molecular graphs with a tree structure and employ an encoder
to extract the molecular graph features and represent them as low-dimensional
latent vectors. Then, the VAE decoder is employed as a molecular generator to
reconstruct atoms in the tree into molecules via the latent vector representation.
The design of graph-based generators is challenging; thus, GAN-based molecular
generation models are rare. MolGAN [5] generates new graphs with the maximum
likelihood of atoms and chemical bonds by sampling atomic features and chemical
bond feature matrices. In addition, an actor-critic [19] reward network is used to
calculate the property scores of the generated graphs. However, MolGAN suffers
from a severe mode collapse, thereby causing its uniqueness to be less than 5%.

Flow-based molecular generative models, exemplified by MoFlow [34], initially
produce bonds (edges) using a Glow-based model. Subsequently, atoms (nodes)
are generated based on the established bonds through a novel graph conditional
flow. Finally, these components are assembled into a chemically valid molecular
graph, with posthoc validity correction. Diffusion models, such as DiGress [31],
are based on a discrete diffusion process. Graphs are iteratively modified with
noise through the addition or removal of edges and changes in categories.

2.2 SMILES-based Molecular Generation

De novo drug design using SMILES strings attempts to generate new molecules
with desired properties. For example, GrammarVAE [14] is a SMILES-based
model that is used to generate molecular structures, where a VAE is used with a
grammar-based decoder that generates syntactically valid SMILES strings. This
model is trained on a dataset of existing molecules and generates new molecules
with high structural diversity. In addition, TransORGAN [17] is a transformer-
based GAN model designed to generate diverse molecules that are similar to the
source molecules. The transformer and a one-dimensional convolutional neural
network are employed as the generator and discriminator, respectively, and the
Monte Carlo tree search-based policy gradient reinforcement learning algorithm
[28] is used to explore new molecules with desired chemical properties.

2.3 Omics Data-driven Molecular Generation

To date, most methods in previous studies generated hit-like molecules based
on a learning set of ligand structures and bioactivities, where the structures are
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represented by graphs or SMILES strings. Diverging from conventional approaches,
omics data-driven hit-like molecular generation endeavors to leverage omics data,
specifically gene expression profiles. The overarching goal is to generate hit
molecules that exhibit promising biological activities against specific targets,
such as proteins associated with particular diseases. To our knowledge, there are
limited studies that have explored drug design directly from omics data [12,21].

Generally, omics-based methods can generate hit-like molecules without prior
knowledge of ligand structures and the 3D structure of the target proteins. A
conditional Wasserstein GAN combined with a gradient penalty was proposed
to generate hit-like molecules from noise using gene expression profile data [21],
which is referred to as ConGAN in this study. However, the validity of the gener-
ated candidate molecules is not guaranteed, thereby limiting the hit identification
ability. In addition, the prediction process of transcriptional correlation between
ligands and targets is unclear. TRIOMPHE [12] is a VAE-based molecular gener-
ation model using transcriptional correlation between the gene expression profile
with the perturbation of a therapeutic target protein and the gene expression
profile with the treatment of small molecules. The most similar molecule is
selected as the source molecule, the source molecule is projected to the latent
space using a VAE encoder, and a decoder is used to sample and decode the
latent vectors into new molecules. However, in their work, gene expression profiles
were solely employed in correlation calculations for selecting SMILES strings
before inputting them into the VAE model. During the molecular generation
phase, gene expression profiles were not utilized to guide the generation of hit-like
molecules. Consequently, the molecules generated using TRIOMPHE exhibited
low Tanimoto coefficients compared to the corresponding known ligands. DRAG-
ONET [33] generates drug candidates from patient gene expression profiles via a
transformer-based VAE, integrating disease-related molecular substructures. It
demonstrated effectiveness for diseases such as gastric cancer, atopic dermatitis,
and Alzheimer’s by producing molecules similar to approved drugs.

Unlike previous approaches, Gx2Mol generates hit-like compounds that exhibit
potential biological activity against specific target proteins or therapeutic efficacy
for particular diseases, leveraging gene expression profiles. Gx2Mol first extracts
biological features from gene expression data using a VAE. Subsequently, these
extracted features are utilized as conditional inputs to an LSTM, guiding the
generation of hit-like molecules.

3 Gx2Mol

3.1 Extraction of Biological Features

The architecture of the Gx2Mol model is illustrated in Figure 1. In phase (A),
we initiate the process by training a VAE model, extracting essential biological
features from gene expression profiles. The encoder network transforms the
features of gene expression profiles into a low-dimensional latent space, which
is subsequently reconstructed by the decoder. Post the training phase, only the
encoder is utilized for subsequent downstream tasks.
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Fig. 1. Architecture of the Gx2Mol model. (A) A VAE is trained to extract the biological
features of gene expression profiles. Here, a VAE encoder attempts to extract the latent
feature vector of a gene expression profile, and a VAE decoder attempts to reconstruct
the gene expression profile from the latent vector. (B) After the VAE training, the latent
vector is utilized as a condition to an LSTM to generate SMILES strings. An extracted
latent vector and a vector representation of a start token are concatenated to generate
the first atom of a SMILES string. Then, the generated atom and the condition generate
the next atom iteratively. This iterative process ends when the defined end token (i.e.,
<EOS>) is generated. Finally, all atoms are assembled into a SMILES string, which
serves as a candidate molecule for hit identification in disease treatment.

Formally, let G = [g1, g2, · · · , gT ] indicate the gene expression profile, where
gi represents the i-th gene with the maximum gene number of T . The VAE
serves as a feature extractor in Gx2Mol, tasked with learning a latent feature
distribution denoted as p(z|G). The objective is to align this distribution as closely
as possible to the reference distribution p(z), characterized as an isotropic normal
distribution. This alignment occurs through the approximation of observed gene
expression profiles, while reinforcing the stochastic independence among latent
variables. The utilization of the VAE in this manner facilitates the extraction of
meaningful latent features from the input data, as demonstrated in Figure 1 (A).
This visualization offers a concrete representation of how the VAE captures key
features within the gene expression profiles. High-dimensional gene expression
profile reconstruction can be modeled by the integration of the low-dimensional
feature space p(z) and conditional distribution pθ(G|z) parameterized by θ:

pθ(G) =

∫
pθ(G|z)p(z)dz. (1)

To address the intractable issue of the posterior distribution pθ(z|G), the feature
extractor replaces pθ(z|G) by an approximate variational distribution qθ′(z|G).
Typically, qθ′(z|G) and pθ(G|z) are used as the encoder and decoder of a VAE,
respectively. According to the evidence lower bound [26], the loss function of the
feature extractor can be formulated as

LF (θ,θ
′) =− Ez∼qθ′(z|G)

[log pθ(G|z)] + β ·DKL(qθ′(z|G)||p(z)), (2)

where E[·] and β indicate an expectation operation and the weight of the Kullback-
Leibler divergence DKL [11], respectively. The VAE encoder generates both a
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mean (µ) and a variance (σ2) for each point in the latent space, typically following
a Gaussian distribution. For a given gene expression profile G, the approximate
posterior distribution can be calculated as follows:

qθ′(z|G) = N
(
µ(G), σ2(G)

)
, (3)

where µ(G) and σ2(G) are the mean and variance functions parameterized by
the encoder. The VAE then samples a point z from this distribution. Finally, the
extracted latent vector of the gene expression profiles is as follows:

FGx = Encoder(G). (4)

3.2 Generation of Hit-like Molecules

Here, an LSTM model is used as the chemical generator to produce syntactically
valid SMILES strings that satisfy the feature conditions of the gene expression
profiles extracted by the feature extractor. During phase (B), we incorporate
the corresponding SMILES strings as inputs for LSTM training. The extracted
features from gene expression profiles are fused with each SMILES token, serving
as input for the model to iteratively generate the subsequent token.

Formally, let X1:n = [x1,x2, · · · ,xn] denote a SMILES string of length n,
where xi is the i-th embedding vector of the SMILES string with the size of M .
Then, xi is concatenated with FGx as the input to the generator. The generator
iteratively generates a character of the SMILES string at the current time step
based on the previous time step. Let Y1:n = [y1, · · · ,yn] indicate the predicted
SMILES string forX1:n. According to the negative log likelihood, the loss function
of the generator can be calculated as follows:

LG(X1:n,Y1:n) = −
n∑

i=1

log p(yi|X1:i−1;φ), (5)

where φ is the parameters of the chemical generator.
During the generation phase, the input to the VAE encoder exclusively

comprises gene expression profiles for feature extraction. The resulting extracted
features are subsequently employed to steer the process of generating hit-like
molecules. Algorithm 1 summarizes the procedure of the Gx2Mol model. Here,
sets of the gene expression profiles and SMILES strings are first used to train
the feature extractor and chemical generator. In the training phase, the features
of gene expression profiles are learned from a VAE-based feature extractor. The
extracted features are used as conditions of the LSTM-based molecular generator.
In the testing phase, the gene expression profile is employed to generate new
hit-like molecules.

4 Experiments

Datasets. In this study, we used chemically induced gene expression profiles as
training data to train the Gx2Mol model. In addition, we analyzed target protein-
perturbed expression profiles with eight knockdown genes and two overexpressed
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Algorithm 1 Procedure for the Gx2Mol model
1: Data: Gene expression profiles G and SMILES strings X1:n

2: Initialization: the feature extractor Fθ, the molecule generator Gφ
3: // Train the feature extractor.
4: for i = 1 → f_epochs do
5: Update Fθ using G according to the loss function of Eq. (2).
6: end for
7: // Train the molecule generator.
8: for i = 1 → g_epochs do
9: Update Gφ using X1:n according to the loss function of Eq. (5).
10: end for
11: // Generate hit-like molecules from scratch.
12: Extract the features FGx using G according to Eq. (4).
13: Generate the corresponding SMILES representation from FGx.
14: // Test the generation task.
15: Calculate the Tanimoto coefficient using known ligands.
16: Select the molecule with the maximum Tanimoto coefficient score as the candidate

molecule.

genes to generate hit-like molecules, and disease reversal gene expression profiles
as a case study to generate therapeutic molecules.

– Chemically-induced gene expression profiles were collected from the
Library of Integrated Network-based Cellular Signatures (LINCS) database [7].
LINCS database stores the gene expression profiles with a dimension of 978 for
77 human cultured cell lines exposed to various molecules. We analyzed the
gene expression profiles of the MCF7 cell line treated with 13,755 molecules
whose SMILES string lengths were less than 80 at a concentration of 10 µM.

– Target protein-perturbed gene expression profiles were collected from
the LINCS database. We analyzed the RAC-alpha serine / threonine-protein
kinase (AKT1), RAC-beta serine / threonine-protein kinase (AKT2), Aurora
B kinase (AURKB), cysteine synthase A (CTSK), epidermal growth factor
receptor (EGFR), histone deacetylase 1 (HDAC1), mammalian target of ra-
pamycin (MTOR), phosphatidylinositol 3-kinase catalytic subunit (PIK3CA),
decapentaplegic homologue 3 (SMAD3), and tumor protein p53 (TP53), which
have been verified to be useful therapeutic target proteins against cancers.
The gene expression profiles for the first eight proteins were obtained from
gene knockdown profiles of the MCF7 cell line, while those for the latter two
proteins were obtained from gene overexpression profiles. When multiple profiles
were measured under different experimental conditions for a single protein,
we averaged the multiple profiles of the same target protein to create target
protein-specific profiles.

– Disease-specific gene expression profiles were obtained from the crowd
extracted expression of differential signatures (CREEDS) database [32], which
contains the expression profiles of 14,804 genes for 79 diseases. The disease-
specific gene expression profiles were acquired by averaging the gene expression
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profiles from multiple patients with the same disease. Here, we extracted the
most relevant 884 genes for gastric cancer, atopic dermatitis, and Alzheimer’s
disease from the disease-specific gene expression for model validation, and
we created the disease reversal profiles by multiplying the disease-specific
gene expression by -1. Note that the disease reversal profiles of a disease are
considered to be associated with a therapeutic effect on that disease.

Hyperparameters. For the feature extractor, the encoder of the VAE included
three feedforward layers with dimensions of 512, 256, and 128. The latent vector
dimension was set to 64. Note that the dimensions of the decoder were the opposite
dimensions of the encoder, i.e., 128, 256, and 512. The dropout probability
and learning rate were set to 0.2 and 1e−4, respectively. The training of gene
expression profiles was conducted with a batch size set at 64. For the generator,
the embedding size was set to 128. The LSTM model contained three hidden
layers with dimensions of 256. The dropout probability and learning rate were
set to 0.1 and 5e−4, respectively. The maximum length of the generated SMILES
strings was fixed to 100. The batch size for training LSTM was set to 64. In
addition, the feature extractor and generator used the Adam optimizer, and the
number of training epochs for the feature extractor and generator was set to 2000
and 300, respectively. All experiments were conducted on GPUs using CUDA.
Dataset splitting and model selection. The dataset was partitioned into
distinct sets for training (80%), validation (10%), and testing (10%) to ensure a
robust evaluation of our Gx2Mol model. This division allows for effective model
training on the training set, tuning of hyperparameters based on the validation
set, and unbiased assessment of model performance on the test set. The selection
of the optimal model was determined by monitoring the convergence of the
total loss function of Gx2Mol during training. Convergence of the loss function
indicates stability and optimal performance. This approach ensures the selection
of a well-performing model based on its ability to minimize the defined loss and
generalize effectively to unseen data.

4.1 Evaluation Measures

In this study, two essential chemical properties (quantitative estimate of drug-
likeness (QED) [2] and synthesizability (SA) [8]) and the Tanimoto coefficient
[25] were employed to assess hit-like molecules generated by the Gx2Mol.

– QED can be calculated by assigning different weights to eight molecular
descriptors (i.e., molecular weight, octanol-water partition coefficient, number
of hydrogen bond donors, number of hydrogen bond acceptors, molecular polar
surface area, number of rotatable bonds, number of aromatic rings, and number
of structural alarms). where di and Wi represent the desirability function and
weight of the i-th descriptor, respectively. Typically, the weights of the eight
molecular descriptors were obtained through chemical experiments. In practice,
the QED score was calculated by a function in the RDKit tool. The larger the
QED score, the more drug-like the molecule.
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Fig. 2. Distribution of fold change values in
the gene expression profile of the molecule
“C17H25ClN2O3" exposed in the MCF7
cell. The original gene expression profile of
“C17H25ClN2O3" (green) and the recon-
structed gene expression profiles (red) have
similar distributions.

Fig. 3. Distribution of fold change values
in the average gene expression profile of
all molecules exposed in the MCF7 cell.
The original gene expression profiles of the
training set (green) and the reconstructed
gene expression profiles (red) have similar
distributions.

– Synthesizability (SA) is assessed through the SA score, denoted as SA =

rs −
∑5

i=1 pi. Here, rs signifies the “synthetic knowledge," representing the
ratio of contributions from all fragments to the total number of fragments
in the molecule. In this study, rs is computed from experimental results [8].
Each pi (i ∈ {1, · · · , 5}) corresponds to the ring complexity, stereo complexity,
macrocycle penalty, size penalty, and bridge penalty, computed using the RDKit
tool [15]. A higher SA score indicates greater ease of synthesizing the molecule.

– Tanimoto coefficient, which is calculated from the ECFP4 fingerprint [23]
with a dimension of 2048. In practice, the ECFP4 and Tanimoto coefficients
were calculated using the “GetMorganfingerprintAsBitVect" and “BulkTanimo-
toSimilarity" functions of the RDKit tool.

4.2 Gx2Mol Training

We evaluated the effectiveness of the VAE model in extracting the biological
features from gene expression profiles and the capability of the LSTM model to
generate new molecules experimentally.

Figure 2 shows a comparison of the distribution of fold change values in the
gene expression profile of a molecule between the training set and the recon-
structed set. Figure 3 shows a comparison of the distribution of fold change values
in the average gene expression profile of all reconstructed molecules between the
original set and the reconstructed set. Note that Figure 2 shows the distribution
of a gene expression profile of the molecule “C17H25ClN2O3" exposed in the
MCF7 cell, whose SMILES representation is denoted as “CCC1=CC(=C(C(=C1
O)C(=O)NC[C@@ H]2CCCN2CC)OC)Cl." The distribution of the original gene
expression profiles was similar to that of the reconstructed gene expression profiles
acquired using the Gx2Mol. In other words, the VAE utilized in the Gx2Mol
captures the biological features of the gene expression profiles and successfully
reconstructs them into the original distribution.
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Table 1. Assessment of QED and SA scores for the top-k generated molecules.

Chemical
Property Data Source Top-1 Top-10 Top-100 Top-1000

Drug-likeness
(QED)

Compounds in
training dataset 0.94 0.92 0.85 0.64

Compounds generated
by Gx2Mol 0.95 0.93 0.84 0.65

Synthesizability
(SA)

Compounds in
training dataset 1.00 0.94 0.85 0.47

Compounds generated
by Gx2Mol 1.00 0.99 0.88 0.48

Figure A.1 in the appendix 1 shows the training loss and the ratio of the gen-
erated valid molecules of the LSTM in the Gx2Mol. The loss decreased smoothly
over the 300 training epochs and finally converges under 0.1. In contrast, the
validity of the molecules generated by the conditional LSTM model gradually
increased as training proceeds, with the final validity ratio converging at approxi-
mately 90%. Overall, the results indicate that the conditional LSTM utilized in
the Gx2Mol can generate valid molecules effectively.

To further explore the ability of the Gx2Mol to generate molecules, we
also compared the distribution of the QED scores of the molecules generated
by Gx2Mol with molecules in the training data. Figure A.2 in the appendix
shows that the generated molecules and the original molecules have similar QED
distributions. The average QED scores of molecules in the training dataset and
molecules generated by Gx2Mol were 0.60 and 0.61, respectively. The violin plots
of the QED scores indicate that the Gx2Mol did not change the potential chemical
property characteristics of the training data during the generation process, which
demonstrates the LSTM’s ability to generate molecules effectively.

Figures A.3 and A.4 in the appendix show the top-12 molecular structures
with their QED scores for molecules in the training dataset and molecules
generated by the Gx2Mol, respectively. It seems that all of the molecules are
chemically valid and exhibit high QED scores.

Furthermore, we evaluated the QED scores for the top-k generated molecules
using the Gx2Mol model. The results are presented in Table 1. The molecules
generated by Gx2Mol exhibited QED scores that were higher yet comparable to
those of the training data. These findings demonstrate that the Gx2Mol model
generated molecules while preserving the QED properties.

Similarly, we present the top-12 molecular structures along with their synthe-
sizability (SA) scores for molecules in the training dataset and those generated
by Gx2Mol in Figures A.5 and A.6 , respectively. The generated molecular
structures indicate that our proposed Gx2Mol can produce valid molecules that
1 Additional appendices are available at: https://yamanishi.cs.i.nagoya-u.ac.jp/
gx2mol/

https://yamanishi.cs.i.nagoya-u.ac.jp/gx2mol/
https://yamanishi.cs.i.nagoya-u.ac.jp/gx2mol/
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Fig. 4. Comparison of newly generated molecules from the baseline models and Gx2Mol
with known ligands for each therapeutic target protein.

are easy to synthesize. Moreover, the SA scores for the top-k generated molecules
in Table 1 show that Gx2Mol effectively generated molecules with high SA scores.

4.3 Gx2Mol Generation

Generally, the gene expression profiles of knockdown and overexpression of target
proteins correlate with the gene expression profiles of inhibitors and activators,
respectively [12]. To generate molecules as candidates for inhibitory and activatory
ligands of target proteins, the gene expression profiles of the eight knockdown
and two overexpressed target proteins were considered in this study. The former
includes AKT1, AKT2, AURKB, CTSK, EGFR, HDAC1, MTOR, and PIK3CA.
The latter includes SMAD3 and TP53.

We conducted experiments on the newly generated molecules by comparing
their molecular structures with those of the known ligands (inhibitors and acti-
vators). If the newly generated molecules are meaningful, the newly generated
molecules should be structurally similar to known ligands of each target protein
to some extent. To ensure a fair comparison with the TRIOMPHE baseline, the
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Table 2. Comparison of structural similarity scores of new molecules with known
ligands for each target protein between baselines and Gx2Mol.

Therapeutic
target protein ConGAN TRIOMPHE Gx2Mol

AKT1 0.32 0.42 0.53
AKT2 0.29 0.35 0.53
AURKB 0.36 0.34 0.67
CTSK 0.31 0.29 0.34
EGFR 0.30 0.31 0.72
HDAC1 0.34 0.30 0.42
MTOR 0.39 0.69 0.46
PIK3CA 0.26 0.32 0.30
SMAD3 0.44 0.48 0.85
TP53 0.46 0.53 0.55

? The values in bold in gray cells are the maximum values.

default sampling number for each gene expression profile of the target protein
was set to 1000, consistent with the setting used in TRIOMPHE. Subsequently,
we only retained the valid molecules from the 1000 generated samples to calculate
structural similarity using Tanimoto coefficients. The results are presented in
Table 2. ConGAN [21] and TRIOMPHE [12] are the two state-of-the-art (STOA)
baselines that are related to the Gx2Mol. For the former eight knockdown target
proteins, six of the calculated Tanimoto coefficients for the molecules generated
by the Gx2Mol with inhibitory ligands (i.e., AKT1, AKT2, AURKB, CTSK,
EGFR, and HDAC1) outperformed the baselines. For MTOR and PIK3CCA,
the Tanimoto coefficients performed second only to TRIOMPHE. In addition, for
both 2SMAD3 and TP53, i.e., the target proteins with gene overexpression per-
turbations, the Tanimoto coefficients of the generated molecules by the Gx2Mol
were higher than those obtained by the baseline methods.

Furthermore, we analyzed the diversity metrics of the newly generated
molecules. The diversity was computed based on molecular fingerprints gen-
erated using the Morgan algorithm (radius = 2, 2048 bits) as implemented in
RDKit. The results are summarized in Table B.1 . Notably, the maximum di-
versity values for all ten target proteins reach 1.0, while the average diversity
values are consistently high (above 0.82) with low standard deviations, indicating
a broad structural variety across the generated molecules.

Figure 4 shows the molecules generated by the baseline and Gx2Mol models
and known ligands for each therapeutic target protein, where the newly generated
molecular structures with the highest Tanimoto coefficients to the corresponding
known ligands are shown. For the 10 target proteins, all generated molecules were
structurally similar to the known ligands, compared with the baseline models. In
summary, the Gx2Mol exhibited superior performance in terms of generating hit-
like molecules from gene expression profiles via deep learning, and the proposed
model outperformed the current SOTA baselines in most metrics.
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Fig. 5. Data processing of gene expression profiles for therapeutic molecular generation.

Fig. 6. Comparison of newly generated therapeutic molecules with approved drugs for
each disease.

4.4 Case Studies

Generally, gene expression profiles are altered in a patient with a disease state.
A molecule that counteracts the disease state is considered to have therapeutic
effects on the disease. As a case study, we generated molecules with therapeutic
effects on a disease by considering disease-specific gene expression profiles.

Figure 5 illustrates the data processing of a gene expression profile for the
generation of molecules with therapeutic effects on a disease. First, as shown
in Figure 5 (A), a disease-specific gene expression profile is constructed by
averaging the gene expression profiles of patients with a certain disease. Then, a
gene expression profile that is inversely correlated with the disease-specific gene
expression profile is constructed and defined as the disease reversal profile, as
shown in Figure 5 (B). Finally, the disease reversal profile is used as an input
to the Gx2Mol to generate molecules with therapeutic effects (Figure 5 (C)).
The disease-specific gene expression profiles were obtained from the CREEDS
database for patients with three diseases, i.e., gastric cancer, atopic dermatitis,
and Alzheimer’s disease.

We examined the validity of the newly generated molecules by comparing the
newly generated molecular structures with those of the approved drugs. If the
newly generated molecules are meaningful, the newly generated molecules should
be structurally similar to the approved drugs of each disease to some extent.
We calculated the structural similarity using Tanimoto coefficients. Figure 6
illustrates the Tanimoto coefficients between approved drugs and newly generated
molecules, comparing the results obtained from the SOTA DRAGONET [33]
and our proposed Gx2Mol model, for each of the three diseases. Our proposed
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Gx2Mol model surpassed the SOTA DRAGONET in the therapeutic molecule
generation for three diseases. Gx2Mol exhibited improved Tanimoto coefficients
to approved drugs, reaching 0.58, 0.60, and 0.53 for gastric cancer, Alzheimer’s
disease, and atopic dermatitis. Additionally, fluorouracil (D04197) can be used in
the treatment of liver metastases from gastrointestinal adenocarcinomas and also
in the palliative treatment of liver and gastrointestinal cancers. When using the
disease reversal profile of gastric cancer patients, the Tanimoto coefficient between
the molecule generated by the Gx2Mol and fluorouracil was the largest. The
Tanimoto coefficient of the Gx2Mol model-generated molecule with floxuridine was
maximum using the disease reversal profile of gastric cancer patients. These results
suggest that the generated molecules effectively capture the structural features
of approved anti-gastric cancer drugs. In addition, the molecules generated for
the other two diseases demonstrate structural features that are similar to those
of the approved drugs. As a result, the molecules generated using the Gx2Mol
have potential drug-like properties.

5 Conclusion

This study introduced the Gx2Mol model, designing to generate potential chem-
ical structures of hit-like molecules from gene expression profiles using deep
learning techniques. In the training phase, the Gx2Mol model first employed a
VAE for feature extraction from high-dimensional gene expression profiles, and
then the low-dimensional extracted features guided the generation of syntactically
valid SMILES strings. In the generation phase, the VAE encoder served as the
sole feature extractor, seamlessly combined with the generator to facilitate the
generation of hit-like molecules. The results demonstrated the effectiveness of
Gx2Mol in generating hit-like molecules from gene expression profiles. Addition-
ally, a case study illustrates the model’s ability to generate potential chemical
structures for therapeutic drugs related to gastric cancer, stress dermatitis, and
Alzheimer’s disease using patients’ disease reversal profiles.

This study has a primary limitation. Since LSTMs are frequently employed
in auto-regressive generation tasks, wherein the token at the next time step is
generated based on the token at the current time step, there exists a potential
constraint on the diversity of generated molecules when using LSTMs as genera-
tors. In future research, we aim to explore strategies to enhance the diversity of
molecular generation within the Gx2Mol. Furthermore, the envisaged application
of the Gx2Mol model involves integration into practical AI systems to assist
chemists in generating diverse drug candidate hit-like molecules tailored for
various diseases. This integration is anticipated to leverage the strengths of the
Gx2Mol model and contribute to the advancement of drug discovery processes.
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