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Abstract. Graph Neural Networks (GNNs) have become a powerful
tool for modeling complex physical simulations, leveraging their abil-
ity to learn from irregular data representations. However, non-uniform
meshes introduce significant challenges, particularly in adaptive multi-
scale sampling, topological reconstruction, and efficient feature aggrega-
tion, often leading to high computational costs. Existing methods strug-
gle to balance efficiency and accuracy due to their inability to dynam-
ically adapt to irregular mesh structures. To address these limitations,
we introduce Multi-Scale Point-Based Graph Neural Networks (MPG),
a framework that combines point-cloud downsampling with topology-
constrained strategies. MPG employs density-aware hierarchical sam-
pling to adaptively retain critical nodes while leveraging a learnable
neighborhood aggregation mechanism to enhance local structural sensi-
tivity. Additionally, we introduce adaptive Constrained Delaunay recon-
struction, which preserves global topology by eliminating invalid edges
and maintaining boundary constraints during coarsening. To further im-
prove efficiency, our model integrates lightweight residual MLPs, en-
abling scalable dimensions on multi-scale features. MPG’s architecture
supports dynamic multi-scale compression across diverse physical do-
mains. Evaluations on fluid dynamics, thermochemical reactions, and
cavity flow demonstrate that MPG reduces parameter count by at least
84.5% and accelerates training by 17.7% ∼ 86.1% per epoch compared
to baseline models, while maintaining high single-step rollout accuracy
(RMSE<10−2). These results establish MPG as a new benchmark for
efficient and accurate simulations on non-uniform meshes, offering a ver-
satile solution for complex physical systems.

Keywords: Non-uniform meshes · Multi-scale · Graph Neural Networks
· Physical simulation · Surrogate model

1 Introduction

Non-uniform meshes are widely used in computational fluid dynamics (CFD)
and other physics-based simulations, as they enhance accuracy in high-gradient
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regions and complex geometries. However, their irregular structure poses signifi-
cant challenges for feature extraction and efficient computation. Traditional nu-
merical solvers, such as finite difference methods[1] and finite element methods[2],
provide accurate solutions but suffer from high computational costs, particularly
in large-scale or real-time applications. To improve efficiency, data-driven meth-
ods have been explored for mesh-based simulations[3,4,5]. For example, convolu-
tional neural networks (CNNs) leverage local receptive fields and weight sharing,
making them effective for structured data[6,7,8]. However, their reliance on uni-
form grids necessitates resampling non-uniform meshes, leading to information
loss and artificial smoothing. Moreover, CNNs struggle to capture the topologi-
cal relationships inherent in non-uniform meshes, limiting their ability to model
connectivity-dependent physical interactions.

Graph-based neural networks (GNNs) offer a more flexible framework for
modeling complex physical systems[9]. By employing edge-node message pass-
ing (MP), GNNs can effectively capture local node interactions without the con-
straints of grid-based representations. As a result, they have been successfully ap-
plied to fluid dynamics[10], solid mechanics[11], and multi-physics coupling[12].
Among these, MeshGraphNets[10] stands out as a foundational end-to-end frame-
work, demonstrating the potential of GNNs in mesh-based simulations. However,
GNNs face notable challenges in large-scale simulations, including quadratic
complexity in message passing[13] and feature oversmoothing[14], which hinder
their scalability and accuracy.

To overcome the limitations of standard GNNs, multi-scale GNNs have been
introduced to improve computational efficiency and enable hierarchical feature
extraction[12,15,16,17,18]. These models construct coarse sub-level graphs to en-
able longer-range interactions and reduce MP iterations. However, existing meth-
ods face challenges in preserving graph connectivity during coarsening. Current
methods primarily rely on spatial proximity[17,18,19], learnable sampling[15],
manual mesh partitioning[13,16], algebraic multigrid algorithms[20], and auto-
mated bi-stride sampling[12], each with inherent limitations. Specifically, learn-
able or random sampling can introduce artificial partitions, hindering infor-
mation exchange. Spatial proximity-based coarsening often generates incorrect
edges, while algebraic multigrid algorithms suffer from cubic complexity. Bi-
stride sampling preserves topology but lacks adaptability in feature dimension
and sampling scale. Crucially, all these methods rely on deep MP stacks for
information propagation, leading to high computational costs.

To overcome these limitations, we propose MPG, an efficient multi-scale
GNN that integrates point-based feature extraction and graph-based topology
preservation. MPG is designed to construct topology-preserving multi-scale graphs,
enhance adaptive neighborhood aggregation, and achieve computational effi-
ciency without deep MP stacking. As illustrated in Fig.1, MPG effectively coarsens
non-uniform meshes while preserving key structural features. By combining hier-
archical density-based sampling, topology-constrained Delaunay reconstruction,
and residual MLP-based feature extraction, MPG sets a new benchmark for scal-
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Fig. 1: Example multi-level graphs produced by our proposed method. The coars-
ening process is particularly challenging for non-uniform meshes with irregular
structures, large holes, and non-convex regions. Our Multi-Scale Graph Con-
struction strategy effectively maintains key features and ensures robust connec-
tivity across arbitrary geometries.

able, high-fidelity simulations of complex physical systems. The contributions of
the proposed MPG are summarized as follows:

– Multi-Scale Graph Construction Strategy: MPG employs a hierarchi-
cal density-aware sampling strategy, inspired by point cloud geometric sam-
pling. It applies random sampling in dense regions and farthest point sam-
pling (FPS) in sparse regions to ensure balanced node distributions. To pre-
serve global topology, we incorporate Constrained Delaunay Reconstruction,
which prevents incorrect topological connections and ensures accurate edge
reconstruction during coarsening. This strategy significantly improves graph
connectivity and leads to higher predictive accuracy, achieving RMSE<10−2

across various physical simulation tasks.
– Robust Neighborhood Aggregation: Instead of relying on a fixed adja-

cency matrix, MPG leverages random multi-hop neighborhoods inspired by
GraphSAGE[21] to improve local feature propagation. We introduce a learn-
able aggregation mechanism, dynamically adjusting neighbor importance to
enhance adaptability across different resolutions. This approach reduces re-
dundant computations while maintaining accuracy, leading to nearly 85%
reduction in model parameters compared to conventional message-passing
GNNs.

– Computational Efficiency and Scalability: Unlike conventional multi-
scale GNNs that rely on deep MP stacking, MPG employs a hierarchical
residual MLP-based feature extraction framework, inspired by point cloud
feature extraction modules[22]. This design allows MPG to scale indepen-
dently of mesh size, reducing redundant feature transformations while main-
taining accuracy. Experimental results show that MPG accelerates training
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by 17.7% ∼ 86.1% per epoch compared to baseline models, while achieving
competitive accuracy with significantly fewer parameters.

2 Related Work

2.1 Graph-Based Method

Non-uniform meshes present significant challenges for traditional CNNs, because
of their irregular structures and varying connectivity. This limitation has mo-
tivated the adoption of graph-based methods, which treat meshes as graphs to
better handle irregular geometries and complex physical system predictions[20].
Pfaff et al. introduced MeshGraphNets[10], demonstrating the effectiveness of
GNNs in capturing both the geometric and topological information inherent
in non-uniform meshes. Building on these insights, Zhao et al. proposed a hy-
brid CNN-GNN model to better capture connectivity and flow pathways within
porous media[23]. Expanding the scope of GNN-driven modeling, Han et al. com-
bined GNNs with transformers architectures to predict latent states in physics
simulations[24]. Meanwhile, TIE[25] departs from traditional graph edges, sim-
plifying the model and enhancing its capacity to capture spatial relationships
through self-attention mechanisms. These works demonstrate the growing po-
tential of hybrid Graph-based models, enhancing their ability to model complex
physical systems with non-uniform meshes.

2.2 Multi-Scale GNNs

While GNNs offer an effective means of handling non-uniform meshes, large-scale
graphs can incur high computational costs. To address these challenges, multi-
scale GNN frameworks have been proposed. Graph U-Net[15] first adapts the
U-Net architecture to the graph domain by introducing learnable sampling and
upsampling opeartions, whereas MS-GNN-Grid[17] relies on voxelization-based
sampling, that leverages spatial coordinates for coarsening. However, depending
solely on spatial positions and raw node features may be inadequate for accu-
rately capturing the inherent complexity of non-uniform mesh distributions. To
further refine multi-scale representations, Yang et al. introduced AMGNET[20],
integrating multiple geometric algebra thchniques for mesh coarsening across
different scales. Cao et al. proposed BSMS-GNN[12], which employs a two-step
breadth-first search (BFS) sampling strategy to preserve vital local information.

2.3 Point Cloud-Based Method

Non-uniform meshes and point clouds share structural similarities, such as un-
structured node distribution and geometric irregularity, making point cloud pro-
cessing techniques relevant for mesh analysis. The primary challenge lies in de-
veloping effective feature aggregation operators, which can be categorized into
local and global approaches[26]. Pioneering works like PointNet[27] introduced
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global feature aggregation using symmetric functions, while PointNet++[28] ex-
tended this with hierarchical local feature learning. Subsequent methods, such
as KPConv[29] and PointConv[30], further advanced local feature extraction
through convolutions and density-adaptive techniques. A notable paradigm shift
was demonstrated by Ma et al.[22] in their PointMLP framework, which achieved
excellent performance using lightweight geometric affine modules within a resid-
ual structure, emphasizing that complex architectures are not always necessary
for effective geometric reasoning. Inspired by these advancements, we propose
leveraging multi-scale fusion and local feature learning techniques from point
cloud processing to enhance mesh node downsampling and improve local infor-
mation capture.
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Fig. 2: A model overview of the Multi-Scale Point-Based GNN(MPG) frame-
work. The top panel illustrates the initial mesh partitioning into dense and
sparse regions, followed by constrained Delaunay reconstruction for topology
preservation. The bottom panel depicts the hierarchical feature extraction and
reconstruction process, utilizing lightweight residual MLPs and KNN-based in-
terpolation for efficient multi-scale processing.

3 Multi-Scale Graph Constructing

In this section, we will introduce the hierarchical density-based sampling strat-
egy, constrained Delaunay reconstruction, and the corresponding neighborhood
definition for local feature aggregation in Sec.4. All algorithms and preprocessing
steps here are completed in one pass, and we can flexibly adjust the sampling
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ratio of each layer, the proportion between different density regions, and the
fixed sizes of neighbor nodes for different physical simulations scenarios.

3.1 Problem Formulation

Multi-scale graph construction aims to generate hierarchical representations of
complex systems while preserving essential distribution characteristics and topo-
logical structure. For non-uniform meshes, this process involves node selection,
feature aggregation, and edge reconstruction, all of which must balance com-
putational efficiency and physical accuracy. An ideal multi-scale graph repre-
sentation should meet three key requirements: 1) Selected nodes should retain
both local geometric details and global distribution characteristics, preserving
key high-gradient regions. 2) Neighborhood aggregation: The model should ef-
ficiently extract and propagate local features, minimizing computational cost
while adapting to variable mesh structures. 3) Edge reconstruction: Connectivity
between coarse and fine graph layers must be structurally consistent, preventing
incorrect edges that distort the underlying topology.

However, existing multi-scale GNN methods exhibit several limitations. Spa-
tial proximity-based methods often generate incorrect edges across boundaries,
distorting topological structures. Learnable sampling methods focus on locally
important nodes, failing to capture global mesh distribution. Automated strate-
gies, such as algebraic multigrid and bi-stride sampling, suffer from high compu-
tational complexity and limited adaptability in adjusting multi-scale resolutions.

To address these challenges, we propose a Multi-Scale Graph Construction
strategy that integrates hierarchical density-based sampling, topology-aware edge
reconstruction, and efficient neighborhood aggregation. As illustrated in Fig.2(top
panel), our approach first partitions the input mesh into dense and sparse re-
gions based on local geometric and topological properties. It then applies adap-
tive sampling techniques to preserve both local details and global structure de-
scribed in Sec.3.2. To prevent incorrect topology, we incorporate a Constrained
Delaunay edge reconstruction strategy in Sec.3.4, ensuring smooth transitions
between scales. The overall process is formalized in Algorithm 1, which outlines
the hierarchical mesh coarsening procedure with Delaunay triangulation.

3.2 Hierarchical Density-Based Sampling Strategy

To simplify non-uniform meshes while preserving geometric and topological fi-
delity, we introduce a density-based hierarchical sampling strategy. This method
classifies mesh regions into dense and sparse regions based on local node degree
and average edge length metrics. Nodes in dense regions, characterized by high
geometric complexity or sharp gradients, require fine-grained sampling to pre-
serve local features, while sparse regions are coarsened to maintain global struc-
ture with reduced computational costs. Given a non-uniform mesh M = (V, E),
we first compute the global average edge length:

l̄ =
1

|E|
∑

e=(u,v)∈E

∥xu − xv∥, (1)
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Algorithm 1 Hierarchical Mesh Coarsening with Constrained Delaunay Trian-
gulation
Require: Mesh M, Positions P, Levels L, Coarsening Ratios U, Neighbor Counts K
Ensure: Coarsened Meshes {Ml}Ll=1, Positions {Pl}Ll=1, Sampling Indices {Il}Ll=1,

Neighbor Indices {Nl}Ll=1

Initialize coarse mesh parameters;
1: while not converged do
2: Sample nodes from mesh M based on ratio U;
3: for each level l = 1, . . . , L do
4: Generate sampling indices Il;
5: Update positions Pl;
6: Construct coarse mesh Ml via Constrained Delaunay triangulation;
7: Compute neighbor indices Nl using fixed-size K;
8: end for
9: Update coarse mesh and parameters;

10: end while

where ∥xu − xv∥ denotes the Euclidean distance between nodes u and v. Edges
longer than l̄ are removed to filter out incorrect long-range connections, creating
a refined edge set E ′ = {e | l(e) ≤ l̄}. On the updated graph M′ = (V, E ′), we
recalculate node degrees to determine local density:

d̄ =
1

n

∑
v∈V

|N ′(v)|, (2)

where n = |V| denote the number of nodes in the mesh and N ′(v) denote the set
of neighbors of node v. Nodes are classified as Vd if d′(v) > d̄, and Vs otherwise.

Given a coarsening ratio U (e.g., U = 0.5 for 50% downsampling) and a
sampling proportion m for dense regions, we define the number of sampled nodes
in dense and sparse regions as:

kd = ⌊U ·m · n⌋, ks = ⌊U · (1−m) · n⌋, (3)

where kd and ks represent the number of nodes sampled from dense and sparse
regions, respectively. The combined sampled node set is then defined as:{

Vd = {vi | vi ∼ U(Vd)}, |Vd| = kd,

Vs = {vi | vi = FPS(Vs)}, |Vs| = ks,
(3)

Here, U(Vd) denotes random sampling from dense regions, and FPS(Vs) denotes
farthest point sampling based on Euclidean distance. Finally, the full sampling
set is Si = Vd ∪ Vs. As illustrated in Fig.3, our hierarchical sampling strat-
egy effectively distinguishes regions requiring detailed local representation from
those reflecting global mesh structure, preserving critical geometric details and
avoiding errors during coarsening.
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Fig. 3: Illustration of the hierarchical density-based sampling strategy applied to
Pipe Turbulence.

3.3 Neighborhood Definition

To reduce computational overhead and enhance local feature aggregation, we
define fixed-size neighborhood structures. In traditional GNNs such as GCN [31],
stacking K message-passing layers causes each node to aggregate information
from an increasingly large receptive field, potentially involving O(dK) nodes,
where d is the node degree. While the per-layer complexity is linear in the number
of edges, this cumulative growth increases per-node cost and can lead to over-
smoothing.

Inspired by GraphSAGE [21], we instead sample a fixed number of neighbors
S per node within 1-hop or 2-hop distance. This constrains the per-node cost to
O(K ·S) and the total model complexity to O(K ·S ·n), where n is the number
of nodes. Fixed-size neighborhoods improve scalability and ensure consistent
computation across varying graph densities.

3.4 Constrained Delaunay Reconstruction

In graph-based mesh processing, accurate edge reconstruction at coarser scales
is crucial for preserving geometric and topological integrity. Traditional methods
rely on spatial proximity[17,18,19] or retain edges from sampled nodes[12], but
often generate incorrect edges across boundaries, disrupting connectivity.

To address these issues, we propose an adaptive Constrained Delaunay Re-
construction method tailored for multi-scale edge reconstruction, inspired by
classical computational geometry techniques that robustly handle non-convex
domains and regions with holes[32]. Specifically, we leverage prior mesh infor-
mation to define a polygonal boundary B, encoding the original mesh’s geometry
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and topology. Given a sampled node set (V ′), we construct edges using standard
Delaunay triangulation T (V ′) and validate each candidate edge e = (u, v) against
the constraints:

E′ = {e | e ⊆ B, e ∈ T (V ′)}. (4)

Only edges completely contained within the constrained polygonal region are
retained. This ensures robust edge reconstruction, preventing invalid connections
and preserving mesh quality.

4 Multi-Scale Point-Based GNN(MPG)

In this section, we will introduce MPGNN, a hierarchical GNN where the multi-
level structure has been determined by the input mesh and the preprocessing in
Sec.3.

4.1 Problem

Conventional GNNs and multi-scale GNNs rely heavily on stacked message pass-
ing (MP) layers to aggregate node and edge features:

h(k)
v = AGGREGATE

(
{h(k−1)

u , e(k−1)
uv | u ∈ N (v)}

)
, (5)

where h
(k)
v is the embedding of node v at layer k, and e

(k−1)
uv is the edge embed-

ding between nodes u and v. However, stacking MP layers significantly increases
computational complexity and redundancy, especially for large-scale non-uniform
meshes. Additionally, the fixed high-dimensional embeddings (e.g., 128 dimen-
sions) further exacerbate computational overhead.

Inspired by PointMLP[22], which achieves efficient feature extraction on point
clouds without complex local operations, we revisit mesh feature learning. Non-
uniform meshes structurally resemble point clouds; thus, heavy reliance on MP
layers may be unnecessary. We aim to replace stacked MP layers with lightweight
residual MLP modules, efficiently extracting node features and improving scal-
ability.

4.2 Encoder

The input is multi-level mesh structure {Ml = (Vl, El)}Ll=1. For each mesh level,
the encoding operation can be formulated as:

gi = Φpos (A (Φpre (Vi,Vij))) , (6)

where Φpre(·) and Φpos(·) represent residual MLP blocks adapted from PointMLP[22].
Specifically, Φpre(·) learns initial node embeddings within local receptive fields,
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capturing preliminary geometric patterns. For neighborhood aggregation A, we
adopt a learnable weighting mechanism inspired by CNN receptive fields:

A(fi) =
∑

j∈N (i)

(Wi,j · wij) · fj , wij =
exp(−||xi − xj ||2)∑

k∈N (i) exp(−||xi − xk||2)
. (7)

where fj denotes neighbor features, W denotes learnable parameters, and wij

dynamically adjusts neighbor importance based on spatial relationships.
Finally, the aggregated features are refined by another residual MLP block

Φpos(·). Formally, the residual MLP block can be expressed as:

Φ(x) = act(W2 · act((W1 · x)))) + x, (8)

where W1 and W2 are learnable parameters, act denotes nonlinear activation
(e.g., PReLU).

By explicitly employing lightweight residual MLP-based feature extraction,
the encoder effectively reduces computational overhead and improves dimension
scalability. This design avoids deep message passing stacks, significantly enhanc-
ing efficiency and generalization on various non-uniform meshes.

4.3 Decoder

For decoder module, we adopt a k-nearest neighbor (KNN) interpolation to effi-
ciently recover fine-level node features[27,28]. For each node xi in the fine-layer
Xf , we identify its k closest nodes from the coarse layer Xc based on Euclidean
distance. The interpolated feature xi is computed by distance-weighted averag-
ing:

xi =
∑

j∈Nk(i)

wijhj∑
j∈Nk(i)

wij
, wij =

1

d(P i
f , P

j
c )

, (9)

where hj denotes the coarse-layer feature of neighbor node j, and d(P i
f , P

j
c )

denotes the Euclidean distance between fine-layer node i and coarse-layer node
j.

Additionally, we incorporate skip-connections between corresponding encoder
and decoder layers, facilitating efficient spatial information transfer. A residual
MLP Φ(x) is further employed to refine interpolated features, enhancing recon-
struction accuracy and ensuring structural consistency across mesh resolutions.
This encoder-decoder architecture is specifically designed for static multi-scale
feature reconstruction, providing a efficient foundation for temporal dynamics
prediction in physical simulations.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate our MPG model on five datasets covering various phys-
ical domains: Cylinder Flow[14] simulates incompressible fluid flow around a
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cylinder. Pipe Turbulence[33] represents turbulent flow dynamicly within a com-
plex pipe. Thermochemical Reaction[34] involves multi-physics complex model
to simulate the flow, including fluid flow, heat transfer, mass transfer, and chem-
ical reaction within a thermochemical heat-storage reactor. Lid2d[35] focus on
incompressible lid-driven cavity flow with varying viscosity and boundary condi-
tions. NSM2d[35] deals with incompressible fluid dynamics with complex bound-
ary conditions and initial states.

Baselines We benchmark MPG against five baselines. MeshGraphNets[10] is a
foundational graph-based model for mesh representation, evaluated with noise
injection(NI). Graph U-Net[15] employs learnable graph sampling within a U-
Net architecture, specifically tailored to graph structure. PointMLP[22] is a
purely point-based method for feature extraction without topology structure.
AMGNET[20] integrates algebraic multigrid algorithms within GNNs graph
coarsening. BSMS-GNN[12] introduces a novel bi-stride sampling strategy for
multi-scale mesh representation. And to our knowledge, it’s the current state-of-
the-art (SOTA) model.

Evaluation Protocol We evaluate MPG through two experiments: 1) Feature
Reconstruction Evaluation: We compare MPG with PointMLP, BSMS - GNN,
and AMGNET on Cylinder Flow, Pipe Turbulence, and Thermochemical Reac-
tion datasets. Based on multi-scale meshes {Mt

l = (V t
l , Et

l )}
t∈(1,T )
l∈(1,L) (L multi-scale

layers, T time steps), MPG encodes features via the Encoder and reconstructs
via the Decoder. 2) Rollout Evaluation: To assess MPG’s generalization in non-
uniform mesh simulations, we conduct rollout experiments on long-trajectory
Cylinder Flow, Lid2d, and NSM2d datasets with MeshGraphNets, AMGNET,
and BSMS-GNN. As MPG focuses on feature reconstruction without explicit
temporal modeling, we use BSMS-GNN’s Message Passing layer for prediction
from Mt

l to Mt+1
l . Both MPG and BSMS-GNN use two multi-scale layers with

a fixed 50% downsampling ratio per layer.
In training process, we use both the L2 loss (Eq.(10)) for model optimization.

In feature reconstruction, y is from the original Mt
0 and ŷ from the reconstructed

one. In rollout, y is the ground truth of Mt+1
l and ŷ its prediction. For evaluation,

RMSE is the primary metric.

Ll2 =
1

D

D∑
k=1

1

T

T∑
t=1

1

m

m∑
i=1

∥ytk,i − ŷtk,i∥2
∥ytk,i∥2

(10)

5.2 Results and Discussion

According to the description of 5.1, we evaluate in two distinct tasks: feature re-
construction and rollout prediction. The key observations from these evaluations
are summarized as follows:
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Table 1: Feature Reconstruction RMSE (×10−4) comparison on three datasets.
Lower is better. Best result highlighted in bold.

Model Cylinder Flow Pipe Turbulence Thermochemical Reaction

PointMLP 52.50 60.52 109.45
AMGNET 15.76 17.63 22.17
BSMS-GNN 3.23 3.32 3.96

MPG (ours) 2.72 1.74 3.94

Feature Reconstruction Accuracy. Tab.1 summarizes the RMSE results
for the feature reconstruction task conducted on Cylinder Flow, Pipe Turbu-
lence, and Thermochemical Reaction datasets. All models demonstrate good
reconstruction performance (RMSE<10−3), while MPG achieves comparable or
better accuracy. This highlights that our proposed multi-scale encoding strat-
egy effectively captures essential geometric and physical features, despite using
significantly fewer parameters.

Fig. 4: Rollout Error Snapshots of MeshGraphNets, AMGNET, BSMS, and Our
Proposed Model (MPG) on the NSM2d Dataset.

Rollout Prediction and Error Accumulation. For the rollout predic-
tion task (Tab.2), conducted on Cylinder Flow, Lid2d, and NSM2d datasets,
our MPG model exhibits notably lower error accumulation over the trajectory
compared to baselines, particularly on complex mesh structures. Even though
single-step prediction errors for Cylinder Flow and NSM2d are similar to BSMS-
GNN, MPG achieves these results with approximately only 15% of its parameter
count. Fig.4 illustrates the error accumulation over the trajectory for different
models, emphasizing the superior performance of MPG in maintaining lower
error rates over time.

Computational Efficiency. Notably, the statistics for training and infer-
ence time exclude the multi-scale construction, which acts as an independent pre-
processing module. As summarized in Tab.2, MPG achieves significant improve-
ments in computational efficiency. Specifically, our method reduces training time



MPG: An Efficient Multi-Scale Point-Based GNN for Non-Uniform Meshes 13

per epoch by 63.1% ∼ 86.1% compared to BSMS-GNN, 17.7% ∼ 65.3% com-
pared to MeshGraphNets, and 45.0% ∼ 73.8% compared to AMGNET across
different datasets. Additionally, MPG exhibits a substantial reduction in infer-
ence time in the Cylinder Flow and Lid2d datasets. Regarding memory usage,
MPG requires less memory than MeshGraphNets and BSMS-GNN. MPG also
maintains a lightweight model size, reducing the parameter count by 87.3% com-
pared to MeshGraphNets and 84.5% compared to BSMS-GNN. Even compared
to the most parameter-efficient AMGNET model, MPG strikes a better balance
between model size and predictive accuracy, as AMGNET’s extreme parame-
ter reduction leads to higher rollout errors. These gains are enabled by MPG’s
hierarchical multi-scale construct strategy, adaptive neighborhood aggregation,
and lightweight residual MLP framework, establishing it as a new benchmark
for scalable and efficient simulations on non-uniform meshes. In summary, the
proposed MPG framework demonstrates superior efficiency and accuracy, effec-
tively balancing model compactness, training speed, and predictive performance,
setting a new standard for efficient multi-scale GNN simulations.

Table 2: Performance comparison on Rollout Task. Best results are in bold,
second-best results are underlined.
Measurements Case MPG (Ours) MeshGraphNets BSMS AMGNET

RMSE-1 (×10−3)
Cylinder Flow 4.98 7.98 4.09 9.71
Lid2d 0.26 1.22 0.35 0.95
NSM2d 5.75 23.50 5.46 45.9

RMSE-50 (×10−2)
Cylinder Flow 3.71 5.05 4.56 7.34
Lid2d 0.95 4.66 1.13 1.76
NSM2d 15.81 21.19 20.29 18.24

RMSE-all (×10−2)
Cylinder Flow 53.16 63.95 57.27 62.82
Lid2d 7.15 12.04 8.76 9.61
NSM2d 30.07 35.33 33.34 32.49

Training time (s/epoch)
Cylinder Flow 160.83 209.26 435.49 440.08
Lid2d 140.13 403.52 647.49 254.96
NSM2d 148.71 180.61 1071.72 568.16

Inference time (ms/step)
Cylinder Flow 14.13 16.74 67.45 56.76
Lid2d 9.54 12.42 72.76 10.42
NSM2d 17.99 17.88 136.59 59.14

Training RAM (MiB) Mean 8964 22583 12572 6882

Params (#) All 296,755 2,331,778 1,917,442 7,168

5.3 Ablation Study

Network Details Study We investigate how network depth and sampling ra-
tios influence reconstruction performance, as illustrated in Fig.5(a). Specifically,
we analyze two key aspects: 1) varying the number of coarse-graining layers while
keeping the overall sampling ratio fixed, 2) adjusting the sampling ratios within
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Fig. 5: (a) RMSE across different datasets under varying multi-scale settings. (b)
RMSE across different hidden state dimensions with various parameters.
a fixed two-layer structure. Results demonstrate that a two-layer structure con-
sistently yields better reconstruction accuracy compared to deeper hierarchical
designs. Furthermore, within the two-layer setting, a 50%− 25% sampling ratio
slightly outperforms the standard 50%−50% ratio, which used for fair and direct
comparisons with some fix-size baselines in main experiments.

Parameter Study We further evaluate how parameters influence MPG’s recon-
struction accuracy. Fig.5(b) demonstrates that MPG achieves better accuracy
and computational efficiency without relying on deep MP stacks. Notably, MPG
consistently outperforms baseline models across all parameter scales, highlight-
ing the effectiveness of our design even at smaller model sizes.

6 Conclusion

In this work, we introduced MPG, a novel multi-scale point-based GNN de-
signed for efficient and accurate simulation on non-uniform meshes. MPG in-
tegrates hierarchical density-based sampling, constrained Delaunay reconstruc-
tion, and lightweight feature aggregation to balance computational efficiency and
predictive accuracy. By drawing inspiration from point cloud processing and con-
strained Delaunay triangulation, MPG constructs robust multi-scale representa-
tions while preserving essential geometric and topological structures. Experimen-
tal results demonstrate that MPG significantly reduces computational overhead,
achieving up to 86.1% faster training, lower inference time, and reduced mem-
ory consumption, while maintaining high single-step rollout accuracy across each
tasks. These results highlight MPG as an efficient and scalable solution for non-
uniform mesh simulations, enabling high-fidelity modeling of complex physical
systems. Future work could focus on optimizing memory-efficient architectures
to support training on even larger-scale meshes with higher resolution.
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