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Abstract. A task of interest in machine learning (ML) is that of ascrib-
ing explanations to the predictions made by ML models. Furthermore,
in domains deemed high risk, the rigor of explanations is paramount. In-
deed, incorrect explanations can and will mislead human decision mak-
ers. As a result, and even if interpretability is acknowledged as an elu-
sive concept, so-called interpretable models are employed ubiquitously
in high-risk uses of ML and data mining (DM). This is the case for rule-
based ML models, which encompass decision trees, diagrams, sets and
lists. This paper relates explanations with well-known undesired facets of
rule-based ML models, which include negative overlap and several forms
of redundancy. The paper develops algorithms for the analysis of these
undesired facets of rule-based systems, and concludes that well-known
and widely used tools for learning rule-based ML models will induce rule
sets that exhibit one or more negative facets.

Keywords: Explainability · Interpretability · Rule-based models · For-
mal Methods.

1 Introduction

Explainable Artificial Intelligence (XAI) is a mainstay of trustworthy AI [1,
20, 7, 13, 42]. Furthermore, in domains that are deemed of high risk, explana-
tions should be trustable [40, 41, 24, 15]. The importance of explanations and
the need to trust those explanations motivated work on so-called interpretable
models [40, 41], even though it is generally accepted that a rigorous definition
of interpretability is elusive at best [29]. Rule-based models, which encompass
decision trees [6], diagrams [21, 14], sets [8, 28, 44] and lists [39, 44], epitomize
interpretable models.

Work on the induction of rule-based models can be traced at least to the
1970s [43, 25], in the concrete case of decision trees.4 Decision trees are widely
used in practice and often exemplify interpretable models [40, 41]. The perceived
4 Although extremely popular in ML and DM, decision trees found earlier uses in other

domains, e.g. https://en.wikipedia.org/wiki/Phylogenetic_tree and https://
en.wikipedia.org/wiki/Decision_tree.

https://en.wikipedia.org/wiki/Phylogenetic_tree
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Decision_tree
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importance of interpretability has recently motivated the development of algo-
rithms for learning optimal decision trees [11, 22]. Decision sets (or rule sets) find
a wide range of uses in different domains [17, 18, 36, 23, 35, 2]. As with decision
trees, there has been recent interest in learning optimal decision sets [28]. De-
cision lists also find many practical uses, but claims about their interpretability
are harder to justify [31]. As a result, this paper studies decision sets, but also
decision trees when viewed as a special case of decision sets.

At present, some of the best-known ML toolkits implement one or more meth-
ods of induction of rule-based models [34, 36, 12]. Nevertheless, it has been ar-
gued [31] that rule-based methods, although easier to fathom by human-decision
makers, still require explanations to be computed. (Otherwise, human decision-
makers would be expected to manually solve NP-hard function problems [31].)
Therefore, a key question is: for rule-based models, when can explanations be
computed trivially, such that a human decision-maker can manually produce an
explanation?

This paper shows that rigorous explanations can be found manually whenever
some undesired facets of decision sets are nonexistent. Concretely, the paper
relates easy-to-compute explanations with the non-existence of negative overlap,
i.e. the existence of cases where two or more rules can fire that predict different
values. Furthermore, the non-existence of redundant literals in rules is shown to
be a necessary condition for minimality of explanations.

Given this state of affairs, the paper then investigates whether existing ML
toolkits are able to learn rule-based models that avoid the aforementioned neg-
ative facets. As the results demonstrate, this is not the case. In addition, the
paper investigates whether model-agnostic methods targeting feature selection
(i.e. that produce rules as explanations) are capable of preventing negative over-
lap (i.e. the most worrisome negative facet). Unfortunately, as the results show,
this is also not the case with the well-known explainer Anchor [38].

Contributions. The paper studies decision sets,5 concretely the problem of
negative overlap, i.e. when two rules that predict different classes fire, but also
the existence of local or global redundancies of literals in rules. The paper de-
velops algorithms for deciding the existence of negative overlap, but also for
deciding local and global redundancy. Furthermore, the results in the paper
take into account possible constraints on the inputs. The paper then relates
these negative facets of decision sets with the ability of human decision-makers
to manually produce rigorous explanations, namely abductive explanations. In
addition, the experiments confirm that implemented rule-learning algorithms in
well-known toolkits exhibit the negative facets of decision sets, thus complicating
(complexity-wise) the computation of rigorous explanations.

Organization. The paper is organized as follows. Section 2 introduces the
notation and definitions used throughout the paper. Section 3 briefly comments
on related work. Section 4 details the paper’s main contributions. Section 5
reports on the experimental results. Finally, Section 6 concludes the paper.
5 Decision trees are a special case of a decision set, and so we also present experiments

on decision trees. However, we opt not to address decision lists due to the intrinsic
difficulties with their explanation [31].
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2 Background

The notation and definitions used throughout the paper are adapted from
past works [28, 4, 27].

Propositional Logic and Generalizations [4]. Let X = {x1, . . . , xn} be
a set of Boolean variables. A literal is a Boolean variable or its negation. A
clause C is a disjunction of literals and a cube L is a conjunction of literals. We
use the notation li ∈ C (respectively li ∈ L) if C = l1 ∨ . . . ∨ lk (respectively
L = l1 ∧ . . .∧ lk). A conjunctive normal form (CNF) formula F is a conjunction
of clauses. That is, F = C1 ∧ . . . ∧ Ck where Cj is a clause. In this case, we
use the notation Cj ∈ F . Note by definition that a clause/cube is a CNF. An
assignment v = (v1, . . . vn) is a point in {0, 1}n. If F = C1 ∧ . . . ∧ Ck is a CNF,
v |= F iff ∀Cj ∈ F,∃xi ∈ Cj such that vi = 1 or ∃ ¬xi ∈ Cj such that vi = 0. If
∃ v ∈ {0, 1}n such that v |= F then F is said satisfiable, otherwise unsatisfiable.
If F1 and F2 are two CNF formulas, F1 |= F2 iff v |= F1 =⇒ v |= F2. Note that
F1 |= F2 iff F1 ∧ ¬F2 is unsatisfiable. Given a CNF formula F , the satisfiability
problem (SAT) asks if F is satisfiable. SAT solvers are highly deployed in practice
to answer SAT related queries, such as finding satisfying assignments or proving
unsatisfiability [4]. Furthermore, extensions of propositional to more expressive
logics can be handled by considering Satisfiability Modulo Theories (SMT) [4].

Machine Learning. We consider rule-based models for classification and re-
gression that can be represented as a set of unordered rules. Let F = {1, . . .m}
be a set of features where each feature i takes values from a domain Di. The
feature space is the Cartesian product of the domains F = Di × . . .×Dm. The
outcome space (i.e., classes for classification and numerical values for regres-
sion) is denoted by V. A dataset is a set {(x, o) | x ∈ F ∧ o ∈ V}, and where
x = (x1, . . . , xm). A literal represents a condition on the values of a feature.
We use L to represent the universe of literals. A background knowledge B is a
propositional formula over literals from L that specifies the conditions that any
arbitrary point in feature space must comply with. In other words, a point in
feature space x is valid iff x |= B. We assume in the rest of the paper that B is
given as a CNF. For example, consider a dataset representing individuals and
the two literals l1 := employed, l2 := salary > 50k. The background knowledge
B can contain the clause l1 ∨¬l2 to model the fact that an unemployed individ-
ual cannot have a salary greater than 50k. Note that B can be a tautology (for
instance when no condition is given). In this case, any arbitrary point in feature
space is a valid. A user can also miss certain constraints she is not aware of. Let
λ /∈ V be a dummy value. A supervised ML (classification or regression) model
κ is a mapping from F to {λ} ∪ V such that κ(x) = λ iff x ̸|= B.

A rule Ri is a pair (Li, oi) such that Li is a conjunction of literals (i.e., cube)
from L ⊆ L and oi ∈ V. Ri fires on x ∈ F iff x |= Li. With a slight abuse of
notation we shall sometimes use Li as the subset of L formed by the literals
in Li. A decision set M is a set of rules M = {R1, . . . , Rr, Rr+1} such that
∀i ≤ r, Li ̸= ∅ and Lr+1 = ∅. Rr+1 is called the default rule. We denote ∆(o)
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the set {Ri|oi = o}. M is used as an ML model κM as follows:

κM(x) =


λ /∈ V if x ̸|= B
or+1 if no rule fires on x

o if {o} = {oi | Ri fires on x}
Tie-breaking strategy otherwise

Note that decision trees (DTs), decision diagrams (DDs), random forests
(RFs) and boosted trees (BTs), can be seen as decision sets where each path
represents a rule. Clearly, in such models the default rule never fires. In the case
of DTs and DDs, each input fires exactly one rule (since it follows exactly one
path). Thus, no tie-breaking strategy is needed. This is not the case with RFs
and BTs since each input fires one rule on each tree. Therefore, a tie-breaking
strategy is needed.

We extend the notion of cover and overlap from [28] by considering the back-
ground knowledge B and the input space.

Definition 1 (Cover). Given X ⊆ F and background knowledge B, Cover(X,B,L) =
{x | x ∈ X ∧ x |= B ∧ x |= L}.

Definition 2 (Overlap). Given a background knowledge B, two rules Ri and
Rj such that i, j ≤ r overlap in X ⊆ F iff Cover(X,B,Li)∩Cover(X,B,Lj) ̸=
∅.

We say that Ri and Rj positively (respectively negatively) overlap if they
overlap and oi = oj (respectively oi ̸= oj). We use the notation Ri ⊖ Rj if Ri

and Rj negatively overlap. Observe that DTs and DDs exhibit no overlap since
each input is captured by exactly one rule. This is not the case for RFs and BTs,
since each input fires exactly one rule from each tree. Thus, overlaps may occur
only between rules from different trees.

Formal Explanations [27, 10]. Most approaches to explainability target at
instance, i.e. a pair (x, c) with x ∈ F and c ∈ V. We use κ throughout the paper
to denote a machine learning model. Given an instance (v, c), with c = κ(v),
a weak abductive explanation (WAXp) is a subset X of the features F which,
if assigned the values dictated by v, is sufficient for the classifier to output
prediction c = κ(v) [27, 10]:

∀(x ∈ F).
[∧

i∈X
(xi = vi) → (κ(x) = c)

]
(1)

A subset-minimal WAXp is an abductive explanation (AXp). Recent work demon-
strated the need for explaining interpretable models, including decision trees [27]
and lists [31]. To the best of our knowledge, past work did not investigate formal
explanations for decision sets.

Furthermore, the definition of WAxp (see (1)) can be generalized to account
for literals involving other relational operators [27] (e.g. relational operators
taken from {∈,≥, >,<,≤}). In addition, constraints on the inputs [19, 3] can
be accounted for by conjoining a set of constraints CB. For example, these con-
straints allow capturing the background knowledge introduced earlier in this
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section. Concretely, we write that CB(x) holds true iff x respects the background
knowledge, i.e. x |= B.

3 Related Work

The learning of rule-based models has been the subject of research since the
1970s [43, 25]. The importance of the topic, especially given their widely accepted
interpretability, has motivated recent work on learning decision sets [36, 35, 2]
and (optimal) trees [11]. These earlier works were motivated by the accepted
belief that decision trees, sets and lists are interpretable [5, 40, 41]. Accounts of
methods for learning decision sets and lists include [17, 18].

Motivated by the elusive nature of interpretability’s definition [29], recent
work [31] uncovered practical difficulties in computing and/or using so-called
interpretable models as explanations. For example, it has been shown that paths
in decision trees can be arbitrarily redundant (on the number of features) when
compared with an AXp [27]. Similarly, the computation of an AXp for a decision
list equates with solving an NP-hard problem [31], i.e. something that is in
general beyond the capabilities of a human decision-maker. Nevertheless, past
work did not address formal explanations for decision sets, arguably because of
the existence of negative overlap.

Although the paper assesses rule-based methods using formal explanations,
XAI is better-known by the use of model-agnostic methods [1, 20, 7, 32, 13, 42].
Well-known examples include LIME [37], SHAP [30] and Anchors [38]. Since
so-called interpretable models have been proposed for high-risk uses of ML, we
focus on rigorous (i.e. formal) explanations.

The main results of this paper, namely the direct relationship between easy-
to-compute explanations and the non-existence of well-known negative facets of
rule-based models, are novel. The observation that rule-based models, obtained
with well-known toolkits, exhibit those negative facets, is also a novel result, to
the best of our knowledge.

4 Overlap and Redundancy

In this section, we let B be a background knowledge and M = {R1, . . . , Rr, Rr+1}
be a decision set where Rr+1 is the default rule such that each rule Ri≤r fires on
at least one valid input (w.r.t. B). As mentioned in the introduction, we provide
a formal framework to address the following questions: (i) How can we generate
all (negative) overlap?; (ii) Is rule Ri redundant in M?; and (iii) Is literal l
redundant in a given rule?.

We use Example 1 throughout the paper to illustrate the different concepts.

Example 1. B is background knowledge that encodes the following constraints
(in a CNF): (salary > 0) ↔ (age ≥ 18); (size = 140) → (size > 120); (weight >
90) → (weight ≥ 85); and (weight ≥ 85) → (weight > 80). The decision set
contains the following rules:

– R1 = ((salary > 0)∧ (size ̸= 140)∧ (age > 10)∧ (color = blue)∧ (weight >
80), 1)
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Algorithm 1 Negative Overlap Pairs
1: Function: Pairs
2: Input: F, O,M = {R1, . . . Rr},B
3: Output: Π = {(i, j) | Ri ⊖Rj}
4: Π = ∅
5: Ψ = GetList(o1, o2, . . . or)
6: g = |Ψ |
7: for a in 1, . . . g − 1 do
8: for b in a+ 1, . . . g do
9: for Ri in ∆(Ψ(a)) do

10: for Rj in ∆(Ψ(b)) do
11: if B ∧ Li ∧ Lj is SATISFIABLE then
12: Π ← Π ∪ {(i, j)}
13: end if
14: end for
15: end for
16: end for
17: end for
18: Return Π

– R2 = ((salary > 0) ∧ (size = 140), 1)
– R3 = ((salary > 0) ∧ (weight > 90), 1)
– R4 = ((size > 120) ∧ (weight < 85), 0)

4.1 Overlap

We start by giving a sufficient and necessary condition to check if two rules
negatively overlap.

Lemma 1 (Overlap Check). Two rules Ri and Rj overlap iff B ∧Li ∧Lj is
satisfiable.

Proof. B ∧ Li ∧ Lj is satisfiable iff ∃x ∈ F, x |= B ∧ Li and x |= B ∧ Lj . This is
equivalent to ∃x ∈ F, {x} ∈ Cover(F, B, Li)∩Cover(F, B, Lj). The latter means
that Ri and Rj overlap. ⊓⊔

In Example 1, one can use Lemma 1 to show that R3 and R4 do not overlap,
in contrast to R1 and R4, which do.

We consider now the question of generating all negative overlap. Algorithm 1
finds all pairs of rules that exhibit a negative overlap. We use GetList(o1, o2, . . . or)
as a function that computes a list that contains the distinct values in {o1, . . . or}.

Algorithm1 terminates because each pair of rules will be visited at most once.
The correctness of Algorithm1 follows from the fact that each pair (Ri, Rj) such
that oi ̸= oj is visited exactly once in Line 12. The complexity of Algorithm 1
is O(|M|2 × f(M)) where f(M) is the worst complexity of B ∧ Li ∧ Lj for
an arbitrary pair of rules (Ri, Rj). This observation follows from the fact that
computing GetList can be naturally be done in O(|M|) and the fact that the
satisfiability check in Line 12 is called at most once for each pair (Ri, Rj).

Finally, one might ask whether the default rule can be triggered. Proposition 1
shows that this can be achieved with one SAT call.
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Proposition 1 (Default Rule Application). The default rule is triggered
iff B ∧ ¬L1 . . . ∧ ¬Lr is satisfiable.

Proof (Sketch). No rule fires on a solution to B ∧ ¬L1 . . . ∧ ¬Lr. ⊓⊔

4.2 Redundancy

In order to study rule and literal redundancy, we provide a formal definition of
decision sets equivalence. We denote by SM(o) = ∪Ri∈∆(o){x ∈ F | x |= B∧Li}.

Definition 3 (Decision Set Equivalence). Let M1 and M2 be two decision
sets defined over the same feature space F and output V and having the same
default rule. M1 is equivalent to M2 iff ∀o ∈ V, SM1(o) = SM2(o).

The following lemma is an immediate consequence of Definition 3.

Lemma 2 (Lemma Decision Set Equivalence). Let M1 and M2 be two
equivalent decision sets that exhibit no negative overlap and let B be a background
knowledge. Then ∀x |= B, κM1

(x) = κM2
(x).

We introduce the notion of rule redundancy to capture the fact that removing
a given rule from a decision set leads to an equivalent decision set.

Definition 4 (Rule Redundancy). A rule Ri is redundant in M iff M\Ri

is equivalent to M

Let Gi = ∆(oi) \ {Ri} = {Ri1 , . . . , Riz} where Rim = (Lim , oim).

Proposition 2 (Rule Redundancy Check). A rule Ri is redundant in M
iff B ∧ Li |= Li1 ∨ . . . ∨ Liz .

Proof. Let M∗ = M\Ri. Clearly Ri is redundant in M iff SM(oi) = SM∗(oi).
In other words, iff ∪Rj∈∆(oi){x ∈ F | x |= B ∧ Lj} = ∪Rj∈∆(oi)\Ri

{x ∈ F | x |=
B ∧ Lj}. The latter is true iff B ∧ Li |= Li1 ∨ . . . ∨ Liz . ⊓⊔

Following Proposition 2, one can check if a rule is redundant with one SAT
oracle since B∧Li |= Li1 ∨ . . .∨Liz iff B∧Li ∧¬Li1 ∧ . . .∧¬Liz is unsatisfiable.
For instance, in Example 1, this allows to show that R3 is redundant.

One can also build an equivalent decision set with no redundant rules by
checking and removing redundant rules iteratively. Note that the order in which
the redundant rules are removed matters as it might return a different decision
set at each execution.

We assume in the rest of this section that no rule is redundant. Suppose
that Li contains at least two literals and that l ∈ Li. We denote by Mi

l =
M∪ (Li \ l, oi)\Ri the decision set identical to M except that l is removed from
Li. We give a formal definition of literal redundancy.

Definition 5 (Literal Redundancy). A literal l is redundant in Li iff l ∈ Li

and Mi
l is equivalent to M.
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Informally speaking, a literal is redundant in Li iff its removal from Li leads
to an equivalent decision set. In the following we prove that there are only two
cases of redundancies that we call local and global redundancies, and we show
sufficient and necessary conditions to find (and remove) them. When using Li,
we suppose that it contains at least two literals.

We denote by Ll̄
i = Li ∪ {¬l} \ {l}. We define the following sets to address

literal redundancy: Ωi = ∪Rj∈Gi{x ∈ F | x |= B ∧ Lj}, Θi = {x ∈ F | x |=
B ∧ Li \ {l}}, Ξi = {x ∈ F | x |= B ∧ Li}, Υi = {x ∈ F | x |= B ∧ Ll̄

i}. By
construction, we have:

– Θi = Ξi ∪ Υi

– SM(oi) = Ωi ∪Ξi

– SMi
l
(oi) = Ωi ∪Θi = Ωi ∪Ξi ∪ Υi

Proposition 3 (Literal Redundancy (1)). A literal l is redundant in Li iff
l ∈ Li and Ωi ∪Ξi = Ωi ∪Θi = Ωi ∪Ξi ∪ Υi

Proof. Observe first that Mi
l is equivalent to M iff SM(oi) = SMi

l
(oi). There-

fore, l is redundant in Li iff Ωi ∪Ξi = Ωi ∪Θi = Ωi ∪Ξi ∪ Υi. ⊓⊔

Lemma 3 (Local Redundancy). If l ∈ Li and B ∧ Li \ {l} |= l then l is
redundant in Li. This is called local redundancy.

Proof. If B∧Li \ {l} |= l then Ξi = Θi and thus SMi
l
(oi) = Ωi ∪Θi = Ωi ∪Ξi =

SM(oi). Therefore, by Proposition 3, l is redundant in Li. ⊓⊔

In Example 1, (age > 10) is locally redundant in R1.
Recall that Gi = ∆(oi) \ {Ri} = {Ri1 , . . . , Riz} and Ll̄

i = Li ∪ {¬l} \ {l}.

Lemma 4 (Global Redundancy). If l is not locally redundant in Li and B∧
Ll̄
i |= Li1 ∨ . . . ,∨Liz , then l is redundant in Li. This is called global redundancy.

Proof. If B ∧ Ll̄
i |= Li1 ∨ . . . ,∨Liz then Υi ⊆ Ωi. Thus, since Θi = Ξi ∪ Υi, we

have SMi
l
(oi) = Ωi ∪ Θi = Ωi ∪ Ξi ∪ Υi = Ωi ∪ Ξi = SM(oi). Therefore, by

Proposition 3, l is redundant in Li. ⊓⊔

In Example 1, (size ̸= 140) is globally redundant in R1.

Theorem 1 (Literal Redundancy (2)). A literal l ∈ Li is redundant iff it
is locally redundant or globally redundant.

Proof. =⇒: If l is redundant, then by Proposition 3 we have Ωi∪Ξi = Ωi∪Ξi∪Υi.
Observe that Υi ∩ Ξi = ∅. This is because if x ∈ Υi ∩ Ξi, then x |= B ∧ Li ∧ Ll̄

i

which is false because Li ∧ Ll̄
i contains l and ¬l. Therefore, there are only two

cases for Ωi ∪ Ξi = Ωi ∪ Ξi ∪ Υi to hold. Either Υi = ∅ or Υi ̸= ∅ and Υi ∈ Ωi.
The first case is true iff B ∧ Li \ {l} |= l, that is, l is locally redundant. The
second case is true iff B ∧ Ll̄

i |= Li1 ∨ . . . ,∨Liz , that is, l is globally redundant
⇐=: trivial. ⊓⊔
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Corollary 1 (Assessing Literal Redundancy). A literal l ∈ Li is redundant
iff one of the following conditions holds:

1. Local redundancy:

B ∧ (Li \ {l}) ∧ ¬l is unsatisfiable.

2. Global redundancy: (1) does not hold, and

B ∧ Ll̄
i ∧ ¬Li1 ∧ · · · ∧ ¬Liz is unsatisfiable.

Proof. Immediate from Theorem 1 and Lemmas 3 and 4. ⊓⊔

Corollary 1 can be used to iteratively remove redundant literals, thus building
decision sets with no rules/literal redundancies. It should be noted that different
removal orders might lead to different decision sets.

Example 2. Suppose that B = (b ∨ w) ∧ (¬d ∨ f) and M = {R1, R2, R3} where
R1 : (L1 = a ∧ b, o1), R2 : (L2 = a ∧ w, o1), and R3 : (L3 = c ∧ d ∧ f, o2).

– B ∧ L3 \ {f} |= f . Therefore, f is locally redundant in L3.
– Lb̄

1 = a∧¬b, and B ∧Lb̄
1 = (b∨w)∧ a∧¬b ≡ a∧¬b∧w. Thus B ∧Lb̄

1 |= R2

and therefore b is globally redundant in L1.

Relation to Abductive Explanations.

Proposition 4. Suppose that Lk ⊆ {xi = vji | i ∈ [1,m], vji ∈ Di}. If Rk =
(Lk, ok) fires on x, and there is no negative overlap involving Rk, then the fea-
tures used in Lk represent a WAXp.

Proof. By construction. ⊓⊔

Proposition 5. Suppose that Lk ⊆ {xi = vji | i ∈ [1,m], vji ∈ Di}. If Rk =
(Lk, ok) fires on v, there is no negative overlap, and Lk contains no (global or
local) redundant literal, then the features from Lk represent a AXp. ⊓⊔

Proof. Suppose by contradiction that the features from Lk do not define an AXp.
Then there is a literal l ∈ Lk such that ∀x ∈ F such that x |= B, if x |= Lk \ {l},
then κM(x) = ok. In this case, Mk

l (i.e., the decision set identical to M except
for Lk which is replaced with Lk \{l}) is equivalent to M. Then, by Definition 5,
l is redundant, thus the contradiction. ⊓⊔

Observe that, if the conditions of Proposition 5 hold, then the literals in Lk

represent an AXp, and so can be identified manually by a human decision-maker.
Otherwise, as proved in earlier work for the concrete case of decision lists [31],
finding an AXp is computationally hard.
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5 Experiments

We evaluate the different desired properties on different use cases including
decision sets, decision trees, and anchor explanations. All SAT calls are per-
formed using the PySAT toolkit6 with its default configuration [26]. All experi-
ments run on AppleM1 Pro that has 32G memory and 8 cores.

Prediction Models & Datasets. In order to make our evaluation as broad
and as unbiased as possible, we selected datasets from the UCI machine learning
repository 7 with the parameters: P = (Task,Min,Max,Nb, Types) on each
use case (whenever relevant) where:
– Task ⊆ {classification, regression} is the prediction task
– Min (respectively Max) is the minimum (respectively maximum) size of

the dataset.
– Nb is the minimum number of inputs of each class present in the dataset in

case of classification.
– Types ⊆ {numerical, binaly} is the type of features.

We describe the different prediction models along with their tailored setting.
– Orange (v3)8: a library to learn decision sets for classification. The datasets

are selected using the parameters
P = ({classification}, 100, 106, 20, {binary, numerical}).

– Boomer [36]9: A library for learning gradient boosted multi-label classifi-
cation rules. We use the default Boomer datasets10.

– scikit-learn (v1.6.1)11 and Interpretable AI (IAI)12 to learn decision
trees (DTs) for classification and regression. scikit-learn learns trees in a
greedy way with no guarantee of optimality whereas IAI learns optimal de-
cision trees. The parameters used for the datasets are
P = ({classification, regression}, 100, 4 ∗ 106, 20, {binary, numerical}).

Background Knowledge. In our empirical study, the Boolean variables that
are used in the different decision sets represent a domain relation of the form
(xf ▷◁ vf ) where ▷◁∈ {=, >,≥,≤, <} for some f ∈ F and vf ∈ Df . We
implemented a general purpose procedure to generate a background knowl-
edge B for each use case that maintains domain coherence. For instance, if
(length > 30) and (length = 17) appear in a decision set, then B contains
the clause ¬(length = 17) ∨ ¬(length > 30).

Given a set of rules, for each feature f , we first compute a list, called V alf ,
that contains all distinct values from the domain of f that are used in the
decision set (or Anchor explanations). V alf is increasingly ordered if the values
are numerical. We also collect the set of unary relations used for f , denoted
6 https://pysathq.github.io/.
7 https://archive.ics.uci.edu
8 https://orangedatamining.com
9 https://github.com/mrapp-ke/MLRL-Boomer

10 https://github.com/mrapp-ke/Boomer-Datasets
11 https://scikit-learn.org/stable/
12 https://www.interpretable.ai/

https://pysathq.github.io/
https://archive.ics.uci.edu
https://orangedatamining.com
https://github.com/mrapp-ke/MLRL-Boomer
https://github.com/mrapp-ke/Boomer-Datasets
https://scikit-learn.org/stable/
https://www.interpretable.ai/
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Algorithm 2 Domain Constraints As a Background Knowledge
1: Function: Build B
2: Input: Relations1, . . . , Relationsm, V al1, . . . , V alm
3: Output: A background knowlegde B as a CNF
4: B = ∅
5: for f ∈ {1, . . . ,m} do
6: if ‘ =′ ∈ Relationsf then
7: B ← B ∪ {(f = V alf [i]) =⇒ ¬(f = V alf [j]) | i < j ∈ [1, |V alf |]}
8: end if
9: if ‘ >′ ∈ Relationsf then

10: B ← B ∪ {(f > V alf [i+ 1]) =⇒ (f > V alf [i]) | i ∈ [1, |V alf | − 1]}
11: end if
12: if ‘ ≥′ ∈ Relationsf then
13: B ← B ∪ {(f ≥ V alf [i+ 1]) =⇒ (f ≥ V alf [i]) | i ∈ [1, |V alf | − 1] :}
14: end if
15: if {‘ =′, ‘ ≥′} ⊆ Relationsf then
16: B ← B ∪ {(x = V alf [i]) =⇒ (x ≥ V alf [i]) | i ∈ [1, |V alf |]}
17: B ← B ∪ {(x = V alf [i]) =⇒ ¬(x ≥ V alf [i+ 1]) | i ∈ [1, |V alf | − 1]}
18: end if
19: if {‘ =′, ‘ >′} ⊆ Relationsf then
20: B ← B ∪ {(x = V alf [i]) =⇒ ¬(x > V alf [i]) | i ∈ [1, |V alf |]}
21: B ← B ∪ {(x = V alf [i+ 1]) =⇒ (x > V alf [i]) | i ∈ [1, |V alf | − 1]}
22: end if
23: if {‘ ≥′, ‘ >′} ⊆ Relationsf then
24: B ← B ∪ {(x > V alf [i]) =⇒ (x ≥ V alf [i]) | i ∈ [1, |V alf |]}
25: end if
26: if {‘ =′, ‘ ≥′, ‘ >′} ⊆ Relationsf then
27: B ← B ∪ {(x ≥ V alf [i]) =⇒ (x = V alf [i]) ∨ (x > V alf [i]) | i ∈ [1, |V alf |]}
28: end if
29: end for
30: Return B

by Relationsf , which can be any subset of {=, >,≥,≤, <}. The background
knowledge B is then constructed using Algorithm 2 as a CNF. Note that we need
only the three operators >,≥, and =, since (x > v) is equivalent to (x ≥ v − 1)
and (x < v) is equivalent to (x ≤ v−1). Algorithm 2 follows standard procedures
for encoding finite domains into SAT [33].

Learning Setting. For Orange, sickit-learn, and IAI, a grid search is used
to select the best values for the maximum rule length, the minimum covered
examples per rule, among others. Each dataset used with Orange, sickit-learn,
and IAI is split into 80% for training and 20% for testing. Boomer’s learning
parameters are the default ones except for the maximum number of rules that
we fix to 100 with one label classification. The detailed grid search parameters
are given in Table 1. Cross validation is performed with 5 folds for all experiments
using stratified sampling and each execution is randomly repeated 4 times.

Experimental Pipeline. All decision sets that have only one output are dis-
carded. For each decision set, we first remove duplicate rules and rules that
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Table 1. Grid Search Parameters.

Orange Sklearn Class. Sklearn Reg. IAI Class. IAI Reg.
Beam Width 10,30 - - - -
Min Covered 5,15 - - - -

Max Rule Length 3,5 - - - -
Criterion - gini, entropy sqr err, friedman mse - mse

Max Depth - 3,5,7,9 3,5,7,9,11 3,5,7 3,5,7
Min Sample Leaf - 5,15,25 5,15,25 - -

Min Bucket - - - - 5,15 5,15

never fire. After this preprocessing, we run Algorithm 1 to find all overlap.
Next, we look for redundant rules then remove them. Finally, we compute all lo-
cally/globally redundant literals. We use a timeout of one hour on each decision
set to find all pairs negative overlap and rule/literal redundancies.

Decision Set Statistics.
– Train: Training accuracy (classification) or Training MSE (regression)
– Test: Testing accuracy (classification) or Training MSE (regression)
– NR: Number of rules
– NP: Cardinality of {oi | M = ∪i(Li, oi)}
– TO: CPU time (s) to find all negative overlap
– TB: CPU time (s) to generate the background knowledge
– TC: CPU time (s) to find all redundant rules
– TR: CPU time (s) to find all redundant literals
– BS: Size of the background knowledge
– RS: Sum of the sizes of the rules
– RM: Maximum rule size
– NO: Number of negative overlap
– PO = NO

Total : Percentage of negative overlap where Total is the total number
of pairs of rules associated to different predictions

Model Statistics. We report for each prediction model the following:
– DS: The total number of decision sets
– EX: The total number of decision sets that timed out
– IR: Number of instances that admit at least one redundant rule
– PR: Percentage of redundant rules for instances that admit at least one

redundant rule
– IL: Number of instances that admit at least one locally redundant literal
– PL: Percentage of locally redundant literals for instances that admit at least

one locally redundant literal
– IG: Number of instances that admit at least one globally redundant literal
– PG: Percentage of globally redundant literals for instances that admit at

least one globally redundant literal
In the rest of the section, we focus on the most important observations.
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Table 2. Summary of the Results. Floats are converted to integers.

DS EX NR NP TO TB TC TR BS RS RM IR IL PL IG PG
sklearn classification 196 21 35 3 0 0 0 94 23 233 5 0 123 7 175 33
sklearn regression 28 8 70 69 0 0 8 879 85 541 7 0 20 18 0 0
IAI classification 177 0 17 4 0 0 0 19 13 96 4 0 82 3 135 10
IAI regression 28 0 56 53 0 0 3 333 77 367 5 0 25 15 2 0

Orange 127 12 175 2 76 0 2 10 12139 405 3 16 1 0 13 0
Boomer 180 16 97 49 0 0 0 21 30 180 11 42 6 0 20 0

Fig. 1. Box Plot of TR. The X-axis is the time (s).

Summary. Table 2 gives the full statistics for each learning model13. Instance-
related statistics are averaged for each model. Decision sets that are worse than
random guess are ignored. Instance statistics are averaged for each prediction
model. Only the results of the experiments that did not reach the timeout are
reported. The time to generate the background knowledge (TB) is often less than
a second. The time to find redundant rules (TC) is often few seconds, except for
some decision sets where it took about a minute. The runtime to find all literal
redundancies (TR), however, is much longer. To observe this more accurately,
we present in Figure 1 its box plot across all models. This is expected because
every literal is checked for redundancy by application of Corollary 1.

5.1 Rule and Literal Redundancy

We are interested in this section in the evaluation of the presence of redun-
dant rules and locally/globally redundant literals, their correlations with other
characteristics, as well as the efficiency of our approach.

Redundancy. We note first that rule redundancy does not occur often as we
can see in column IR in Table 2 except for Boomer. Figure 2 represents a box

13 The detailed results can be found at https://siala.github.io/data/2025-ecml/

https://siala.github.io/data/2025-ecml/
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Fig. 2. Local/Global Redundancies. The X-axis represents the values of PL/PG.

plot of the percentage of local (respectively global) redundancies PL (respec-
tively PG) for all learning models. Orange and Boomer barely exhibit literal
redundancies (see columns IL and IG in Table 2). Regression models did not
show any global literal redundancy except for 2 cases with IAI regression trees.
This is expected because for a literal to be globally redundant, there should be
at least two rules predicting the exact same value, which is rare in regression.
Classification trees, however, exhibit a noticeable presence of global redundancy
(‘PG IAI classification’ and ’PG sklearn classification’). Figure 2 shows a sig-
nificant presence of local redundancy in all tree models. We note that for each
prediction task (regression, classification), IAI trees have fewer local/global re-
dundancies than sklearn trees (in terms of the median and the maximum values).
This suggests that optimal trees tend to reduce redundancy.

Correlations. We looked into different correlations between local/global re-
dundancy and other statistics. We report the results only for models where at
least 30% of its decision trees/sets exhibit local/global redundancy. There was
a moderate negative correlation of global redundancy with the number of pre-
diction outcomes (i.e., size of V) with scikit-learn and IAI classification trees.
Figure 3 shows the most important correlations of local redundancy with the
statistics mentioned earlier. For instance, on the x-axis, with NR we show the
correlation of the local redundancy values found by each model with the num-
ber of rules. Clearly local redundancy with scikit-learn regression trees highly
correlates with NR, NP, BS, RM. IAI regression trees has the same tendency.

5.2 Negative Overlap

We evaluate the presence of negative overlap on Orange and Boomer and their
relationship with relevant statistics. Boomer timed out on 4 datasets (emotions,
image, scene, yeast) after the one hour time limit. The results are summarized
in Table 3 for instances that did not timeout. The most important observation
is the high percentage of negative overlap (column PO). Indeed, with Boomer
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Fig. 3. Pearson Correlations of Local Redundancies (PL)

Table 3. Summary of the Negative Overlap Results. Floats are converted to Integers.

DS EX Train Test NR NP IR PR TO TR BS RS RM PO
Orange 127 12 70 71 175 2 16 0 76 10 12139 405 3 50
Boomer 180 16 95 95 97 49 42 1 0 21 30 180 11 99

decision sets, almost every pair of rules with different predictions overlap. Such
an observation is worth reporting to the user. The results are less spectacular
for orange with an average close to 50% but still worth noting. The runtime to
find all negative overlap per instance is not negligible.

Negative Overlap in Boomer. As the results in this section confirm (see Ta-
ble 3), Boomer [36] exhibits extensive negative overlap. This is to be expected.
In contrast with the approach outlined in this paper, where negative overlap is
targeted as a reason for non-interpretability, Boomer exploits boosting (and as
a result negative overlap) to build high-accuracy rule ensembles. The theoretical
and practical advantages of boosting are well-known [16, 9], namely to allow
the learning of strong classifiers. As argued in this paper, a downside of nega-
tive overlap (and so of rule ensembles) is that finding explanations becomes a
computationally-hard challenge. Our experiments are reported for completeness,
and confirm the previous remarks.

5.3 Application to Anchor Explanations

Anchors are well-known model-agnostic explanations representing local, “suffi-
cient” conditions for predictions [38]. The question we ask here addresses pre-
cisely one of the open questions in [38]: How to find potentially conflicting an-
chors? To answer this question, we generate anchors for different inputs, then
apply our approach to find negative overlap between anchors.

We reproduced the exact experiments in [38] with the three datasets: adult
for predicting whether a person makes > 50K annually; rcdv for predicting re-
cidivism for individuals released from prison; and lending for predicting whether
a loan on the Lending Club website will turn out bad. For each dataset, four mod-
els are used for prediction: boosted trees with xgboost, random forest, logistic
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Table 4. Anchor Experiments

Learner Dataset Train Test NR TO NO PO RM

xgboost recidivism 92.39 74.33 333 0 87 0.31 17
randomforest recidivism 93.52 75.46 321 0 65 0.25 17
logistic recidivism 62.59 60.00 196 0 735 7.81 12
nn recidivism 87.47 71.49 341 1 150 0.52 17
xgboost lending 90.10 82.89 260 0 384 2.47 15
randomforest lending 91.25 83.60 278 0 207 1.18 15
logistic lending 82.56 83.51 50 0 54 9.38 14
nn lending 88.00 82.54 159 0 66 1.07 16
xgboost adult 90.35 84.26 565 8 3195 4.03 14
randomforest adult 93.52 85.60 558 7 2534 3.27 13
logistic adult 83.00 82.98 378 3 2788 7.86 13
nn adult 92.47 83.62 597 11 3212 3.61 14

regression, and neural networks. Each model is built using the exact configura-
tion in the original paper [38]. For each dataset and each model, we generate all
anchors of the validation set and look for all negative overlap.

Table 4 presents the results for each dataset and each model. As we can
see, negative overlap in Anchor explanations is present in all use cases. Often,
anchors of random forests exhibit the lowest percentage of negative overlap,
whereas those of logistic regression have the highest percentage. We also observe
that the best (and respectively, worst) models in terms of prediction quality
tend to have the lowest (respectively, highest) percentages of negative overlap.
These observations suggest that the quality of Anchor explanations depends on
the prediction quality of the learner/model.

6 Conclusions

This paper investigates the occurrence of negative facets of decision sets,
namely negative overlap and (global or local) literal redundancy. Dedicated al-
gorithms for their identification are proposed. Furthermore, the paper reveals
the tight relationship between decision sets for which manual explanations can
be devised, and the non-existence of the aforementioned negative facets. A first
set of experiments confirms that these negative facets occur ubiquitously in ex-
isting implementations of decision sets, thus rendering unrealistic the manual
identification of explanations. A second set of experiments confirms that the ex-
planations obtained with the well-known explainer Anchors will also exhibit the
same negative facets.
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