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Abstract. Considerable effort has been made in privacy-preserving video
human activity recognition (HAR). Two primary approaches to ensure
privacy preservation in Video HAR are differential privacy (DP) and
visual privacy. Techniques enforcing DP during training provide strong
theoretical privacy guarantees but offer limited capabilities for visual pri-
vacy assessment. Conversely methods, such as low-resolution transforma-
tions, data obfuscation and adversarial networks, emphasize visual pri-
vacy but lack clear theoretical privacy assurances. In this work, we focus
on two main objectives: (1) leveraging DP properties to develop a model-
free approach for visual privacy in videos and (2) evaluating our pro-
posed technique using both differential privacy and visual privacy assess-
ments on HAR tasks. To achieve goal (1), we introduce Video-DPRP:
a Video-sample-wise Differentially Private Random Projection frame-
work for privacy-preserved video reconstruction for HAR. By using ran-
dom projections, noise matrices and right singular vectors derived from
the singular value decomposition of videos, Video-DPRP reconstructs
DP videos using privacy parameters (€, ) while enabling visual privacy
assessment. For goal (2), using UCF101 and HMDB51 datasets, we com-
pare Video-DPRP’s performance on activity recognition with traditional
DP methods, and state-of-the-art (SOTA) visual privacy-preserving tech-
niques. Additionally, we assess its effectiveness in preserving privacy-
related attributes such as facial features, gender, and skin color, using
the PA-HMDB and VISPR datasets. Video-DPRP combines privacy-
preservation from both a DP and visual privacy perspective unlike SOTA
methods that typically address only one of these aspects. The source code
is publicly available on GitHub El
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Fig. 1. In (a), privacy is ensured during training (in-training) using differential privacy
(DP), but not directly on the video itself. As a result visual privacy cannot be assessed.
In (b), the video is transformed prior to training using either obfuscation methods or
adversarial approaches, but the privacy-utility trade-off cannot be quantify as clearly as
in DP. In (¢) (ours), privacy is ensured using DP, directly on the video. This approach
allows for visual privacy evaluation, where privacy-utility trade-off is quantified using
the €,0 parameters of DP.

1 Introduction

Privacy preservation is a critical research challenge in the field of video-based hu-
man activity recognition (HAR) and video analysis. Video HAR systems are in-
creasingly used in settings like healthcare monitoring, smart homes and security
[50/5/40]. However, these systems often capture sensitive personal information,
creating a strong need for privacy measures to protect individuals’ identities and
personal activities from misuse or unauthorized access.

Current literature indicates that privacy preservation, in Video HAR can be
achieved either at a model level or directly on the data by modifying its visual
content. Model-based approaches usually ensure privacy by leveraging differen-
tial privacy (DP) [12II3/4128]. This method provides a theoretical and empirical
guarantee of privacy by incorporating noisy mechanisms into the training algo-
rithms, using the privacy parameters e and ¢ [II32/35/9/T0]. However, its effec-
tiveness is limited when it comes to post-training privacy analysis such as visual
privacy. In the context of video HAR, visual privacy can be define as a model’s
ability to recognize visual information such as faces, gender, or individuals per-
forming activities. The underlying hypothesis is that diminished performance in
these recognition tasks indicates higher visual privacy. As shown in Figure a),
models trained with DP cannot achieve this level of privacy because the data
itself is not directly altered for DP; only the gradient’s estimates g are adjusted
during training.

Conversely, while some data-based approaches utilizing generative adversarial
networks (GANs in Figure [1{b)) offer an affordable means of visual privacy as-
sessment, [ST38TE], the generated videos from these methods may still disclose
sensitive visual content [4I], as they are trained on unconstrained real-world
data. Additionally GANs, including other video down-sampling and obfuscation
approaches [39I38/2T], lacks the rigorous mathematical privacy guarantees af-
forded by differential privacy. Theoretical privacy assurance is often overlooked
in data-based methods, which typically rely on heuristic approaches, ad-hoc
obfuscations, or data transformations. These methods lack transparency in how
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Fig. 2. Video-DPRP counsists of the following components:(1) Each video frame is re-
shaped and flattened, then concatenated to form a video X of dimension (T',w x h x 3).
(2) A random projection matrix Rnr(0,0,) Teduces X to a lower-dimensional space
(T, k). (3) Noise is added to both the projected video and its covariance matrix, from
which the right singular component V' of the noisy covariance @ is used to reconstruct
a differentially private video (see Section |3 for details).

privacy is preserved and can be vulnerable to reverse-engineering or sophisticated
attacks [23], resulting in mere security through obscurity. In contrast, differen-
tial privacy is grounded in well-established mathematical principles that provide
robust privacy guarantees, irrespective of an adversary’s capabilities. Moreover,
differential privacy offers clearer privacy explainability in terms of the chances
of information leakage, quantified by the € and § parameters [336].

We identify two key limitations in previous privacy-preserving Video HAR
studies: (1) Although DP models provide empirical and theoretical privacy guar-
antees during model training, their privacy-preserving effect does not extend be-
yond training. This limitation arises because the data itself remains unaltered, re-
taining visually sensitive content. Evaluating such data on visual privacy metrics
is likely to yield poor results. (2) While some studies propose data-transformed
methods for visual privacy evaluation, these approaches still fail to offer theo-
retical guarantees of privacy. Recent advancements in differential privacy and
random projection present promising solutions. By leveraging a random projec-
tion matrix followed by the addition of a noise matrix to the projected data,
previous work has demonstrated the feasibility of reconstructing differentially
private tabular datasets and images [47127J30J29/15]. However, applying differ-
entially private random projections to a video dataset presents a significant
challenge due to the added complexity introduced by the temporal dimension of
videos.

In this work, we introduce Video-DPRP, a Video-sample-wise Differentially
Private Random Projection framework tailored for visual privacy-preserved
video reconstruction of HAR datasets. The framework unfolds in several stages:
we begin by reshaping each video, as illustrated in Figure [2| Next, we apply a
random projection to the reshaped video using a projection matrix, reducing its
dimensionality while preserving its underlying structure. To ensure differential
privacy, we add a noise matrix, calibrated with the (¢, §) parameters, to both the
projected video and its covariance matrix. Finally, by leveraging the right singu-
lar vectors from the singular value decomposition (SVD) of the noisy covariance
matrix, we reconstruct a video sample, that is both visually and differentially
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private. Ideally, a model trained with videos reconstructed using Video-
DPRP is expected to exhibit both high-quality performance in video
HAR and strong privacy preservation. Our contributions are as follows:

— We introduce Video-DPRP, a differentially private approach for video re-
construction tailored for video HAR. Video-DPRP provides a theoretical
guarantee of differential privacy, while also ensuring visual privacy.

— We evaluate the performance of Video-DPRP across both HAR and visual
privacy-preserving attributes. For HAR evaluation, we use the UCF101 and
HMDB51 datasets. To assess visual privacy-preserving attributes, we utilize
the PA-HMDB and the VISPR datasets.

2 Related Work

Privacy-preserving video HAR. Privacy in the context of video HAR can
be categorized into two main groups: visual privacy and differential privacy.
Visual privacy aims to obscure identifiable visual attributes in video content
and can be categorized into 3 main groups: obfuscation, adversarial training and
downsampling

Downsampling. As an example, Ryo et al. [39] proposed an inverse-super-
resolution paradigm that learns an optimal set of transformations to generate
low-resolution videos from high-resolution inputs. This approach utilizes a down-
sampling technique, similar to the method proposed by [7]. While this technique
is effective, its major drawback lies in the trade-off between achieving accurate
activity recognition and maintaining privacy preservation: a trade-off that could
be better quantified with a rigorous mathematical bound on privacy.

Obfuscation. Ren et al. [38] presents a data obfuscation method for anonymiz-
ing facial images, using a learnable modifier. This approach employs an adversar-
ial training setup, where a generator produces modified versions of facial images,
and a discriminator attempts to identify facial features despite the modifications.
The end result is a video anonymizer that performs pixel-level modifications to
anonymize each person’s face with minimal impact on action detection perfor-
mance. Additional work on obfuscation has been conducted by Ilic et al., focusing
on appearance-free action recognition using an optical-flow estimator [20] and
selective video obfuscation using random noise [2I]. However, obfuscation tech-
niques have a limitation in that they require domain knowledge to effectively
identify and obscure the region of interest.

Adversarial training. Beyond video down-sampling and obfuscation, some
researchers have developed privacy optimization strategies using adversarial neu-
ral networks [46/30/8]. These strategies typically involve a cost function that
is minimized for activity recognition, while simultaneously maximized for pri-
vacy preservation. A significant drawback of these techniques is their substantial
computational resource requirements for reconstructing anonymized videos. In
contrast, a more effective approach could be a model-free method capable of
reconstructing videos at a considerably lower computational cost.
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While visual privacy focuses on hiding identifiable visual attributes in sample
videos, in differential privacy, a random noise is added to the gradient estimates
during a model’s training process. This noise is carefully calibrated to ensure
that the model can still learn overall patterns and trends, while specific details
that could identify a sample video are not leaked. It is important to note that
the sample videos themselves are not directly modified; only their gradient es-
timates are altered during training. Figure a) provides a clear illustration of
training with differential privacy, specifically detailing a variant of stochastic
gradient descent (SGD) known as differential private stochastic gradient descent
(DP-SGD) [I]. DP-SGD differs from traditional SGD in that, after computing
the per-sample gradient ¢ it is clipped to a threshold value C, resulting in a
clipped gradient g.p. A Gaussian noise, calibrated with the DP parameters:
€,0, is then carefully added to the clipped gradient producing the differentially
private gradient gq, (details about the DP parameters are provided in Section
. Recently, Luo et al. [32] proposed Multi-Clip DP-SGD, a method designed to
achieve video-level differential privacy in HAR. The DP framework is built such
that, during model training, shorter video segments, or clips, are sampled from
each video, and their gradients are computed and averaged across all the clips of
the video. DP-SGD is then applied to the averaged gradient, ensuring differen-
tial privacy without additional privacy loss. Although the result is a differential
private model, a significant challenge with DP-SGD and other DP learning algo-
rithms is that privacy preservation is confined to the training phase, restricting
further visual privacy assessments on the video data beyond training.
Differential Private Random Projection (DPRP). Previous research in-
troduced DPRP primarily as a data release framework, for tabular data [47[T5125].
For instance Xu et al. [47] employed DPRP for the release of high-dimensional
data, while Gondara et al. [I5] adapted DPRP for smaller clinical datasets.
In both scenarios, the original dataset is projected into a significantly lower-
dimensional space using a random projection matrix, followed by the addition
of a noise matrix. This noise matrix is calibrated with the (¢, ) parameters to
achieve differential privacy. In our approach, we apply DPRP on a per-video-
sample basis rather than across the entire dataset, offering more granular privacy
control and assessment on activity recognition.

3 Method Overview

We begin by introducing key concepts relevant to Video-DPRP, including an
initial video transformation mechanism, the theoretical foundations of differen-
tial privacy, random projection, and the algorithmic framework of Video-DPRP.

This section concludes with preliminary discussions of the privacy guarantees
offered by Video-DPRP, which are further detailed in the Appendix.

3.1 Video Transformation

A sample video is structured as a 4D tensor, (T,w,h,3), consisting of a 1D tempo-
ral dimension and 2D spatial dimensions. The temporal dimension is represented
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by the number of frames, T', in the video sequence, while the spatial dimensions
are denoted by the pair (w, h), corresponding to the width and height of each
frame. Moreover, each frame contains 3 color channels (red,green and blue). To
facilitate our random projection strategy, we flattened the 2D spatial dimensions
of each frame from (1,w, h,3) to (1,w x h x 3). Next, we concatenate all the T
flattened frames along the temporal axis (the first axis), resulting to 2D array X
of dimension (T, w x h x 3). This concatenation preserves the temporal sequence
of the video, with each row of X corresponding to a flattened frame. This step
is crucial for our subsequent methodology, and henceforth, we treat each video
X as a 2D array.

3.2 Differential Privacy

We consider two sample videos, X and X', that differ by a single row, rep-
resenting neighboring inputs. Intuitively, this means X and X’ differ by one
frame. Video-DPRP ensures that modifying the pixel values of a single frame
does not pose a significant visual privacy risk, nor does it lead to a substantial
drop in video HAR performance. This implies that even if an adversary knows
the output video, they cannot infer sensitive information about the frame that
was modified. We then give a formal definition introduced by Dwork et al. [IT]
and re-calibrated to our context:

Definition 1 (Differential Privacy). A randomized mechanism M, satisfies
(€,8)-differential privacy if for any two input videos X and X', that differ in
only one row (frame), and for all sets of possible outputs O € range(M), we
have:

PriM(X) € O] < e -PrIM(X') € O] + 46

In other words, the outcomes of applying the random mechanism M to the
two neighboring videos X and X' differ by at most a factor of e¢. The privacy
guarantee can fail with a probability of . When § = 0, the mechanism operates
under pure e-differential privacy.

3.3 Random Projection

Random projection is a dimensionality reduction technique that projects data
from an initial dimension d to a lower dimension k, while preserving pairwise
distances between data points (in our case, frames) using a projection matrix
R. To ensure that the pairwise distances between frames are preserved, the
projection matrix must satisfy the Johnson-Lindenstrauss Lemma [24].

Lemma 1 (Johnson-Lindenstrauss [24]). Let S be a set of n points such
that S C R%, with A > 0 and k = 201\#. There exists a Lipschitz mapping
f: R? — RF that distorts all pairwise distances by a factor of 1 + X. For any
x,y € RY, this mapping satisfies the following inequality:

(L= Nllz =yl < 1f (@) = fF@IE < @+ N - yll3
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Contextually, for a given video X, the initial dimension is d = w X h x 3, where
w and h are the width and height of the frames, respectively, and the set of n
points corresponds to the number of frames T, as discussed earlier in section [3.1]
To project the video X7*? a random projection matrix R is required, such that
the resulting projected video is P = X'R. A suitable random projection matrix
that satisfies Lemma[lis one whose entries are drawn from a normal distribution
with mean p = 0 and variance 0% = § (that is, R ~ N(0, ﬁ)d”).

3.4 Video-DPRP Algorithm

The algorithmic framework of Video-DPRP is inspired by the influential work
on the Johnson-Lindenstrauss transform [25], and recent developments in the
release of small datasets [15].

Preliminary: Recall that each video is initially transformed into a 2D matrix
of dimensions (T" x d), where T, is the number of frames and d = w x h x 3 (with
w being the width and A the height of a frame).

Privacy parameters: All our privacy parameters are derived from a single
privacy parameter pair (¢, ). To ensure that a given video remains differentially
private without significantly compromising its utility, we avoid adding multiple
independent noise matrices. Instead, we split the parameters into two sets: one
set is used to make the random projection P differentially private (e1,d1) and
the other set (e3,d2) to make the covariance matrix P.,,, differentially private.
Each set is derived using the privacy budget allocator b €]0, 1] (see lines 1-2).
The privacy budget is a parameter that controls the total amount of privacy
loss allowed, balancing utility with privacy protection. The complete workflow
of Video-DPRP is outlined in Algorithm[I} The time complexity of each step of
the algorithm is highlighted in blue.

To begin with, for each video
XTxd in the dataset D,
we project the video into

Algorithm 1 Video-DPRP

Input: D = {X1,Xo,..., Xn},d x k,€,6,b a lower-dimensional space,

/*The dataset D with n videos; the using the projection ma-

size of the projection matrix dxk; the trix RAxk (lines 4-5), which
)

privacy parameters ¢ and ¢; the privacy

satisfies the JohnsonLinden-
budget allocator b€ ]0,1[ */

strauss Lemma [Il This result

; E;g; _ E i l()’léjb;)’(; % (1-) to a projected video P, of di-
3: for XTX% ¢ D do: mension (7' x k). Here, k rep-
4: R~ N0, ﬁ)dx’@/*pmj ection matrix*/ resents the number of dimen-
5: P = XR /*Random projection:O(Tdk)*/ sions for the random projec-
6: P=P+Mg,s) /*Noise addition:O(Tk)*/ tion. At this stage, P still
7:  Peoy = P'P/*Covariance matrix:O(Tk?)x/ contains sensitive information
8 Q=Peov+ N(cy5,) /*Noise addition:O(k*)*/ from X and is therefore not
9: UY V'=8VD(Q) /*Decomposition:O(k®)*/ differentially private. Differ-
10: X=P (th)+Vt/*reconstructed video:*/ ential privacy is ensured by

Output: reshaped video, reshape()z') adding a random noise ma-
trix M(, s5,) to the projected
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video (1ine 6), resulting to P.
The entries of the random noise matrix are drawn from a Gaussian distribution
with mean p = 0 and variance o5 (M(, 5,) ~ N(0,07)"*¥). The variance 0%
is determined using Theorem [I} Differentially private video reconstruction ef-
fectively begins at line 7, where the covariance matrix P.,, of the projected
video P, is first computed as a necessary step for reconstruction. The use of the
covariance matrix is motivated by principles similar to those in Principal Com-
ponent Analysis, aiming to capture the most significant features of the video
within the low-dimensional subspace. Similar to line 5, since P is not differ-
entially private, its covariance matrix P.,, is also not. To achieve differential
privacy, a random noise matrix N, s,) is added to Py, resulting in a noisy
covariance matrix @ (line 8) of dimension (k x k). In the same way, the entries
of N(c,s,) are drawn from a Gaussian distribution with mean y = 0 and variance
02 (N(ez,d9) ~ N(0,02)**%). The variance o2 is determined using Theorem
To proceed, the noisy covariance matrix @) is subjected to a singular value de-
composition (SVD), which decomposes @ into three matrices: UXV? (1ine 9),
where U and V! (denoting the transpose of V') are orthogonal matrices each of
dimensions (k x k), and X' is a diagonal matrix containing the singular values.
Following the approach of [15], we only use the right singular component V?, the
random projection matrix R, and the differentially private projected video P
for video reconstruction of X (line 10). We use the Moore-Penrose pseudoin-
verse (denoted by +) of RV because RV'*? is not a squared matrix and may not
be invertible. X has dimensions (7' x d) and is ultimately reshaped back to its
original video format (T, w, h, 3).
Time complexity: Given that the algorithm processes n videos independently,
the overall time complexity for the entire dataset D is O(n(Tdk + Tk? + k?)).
This complexity shows that the algorithm scales linearly with the number of
videos n, and is influenced by both the number of frames T" and the dimension-
ality d. The cubic term k3 becomes dominant when the projection dimension k
is large.

3.5 Privacy Guarantee of Video-DPRP

Differential privacy is applied at two stages in Algorithm (i) to ensure that the
projected video P is differentially private, and (ii) to make the covariance matrix
P,,, differentially private. To establish the privacy guarantee of Video-DPRP,
we must demonstrate that both stages meet differential privacy requirements.
The proofs rely on two supporting theorems from [44JT5], which are included
here for completeness, with details provided in the appendix.

Theorem 1 (Privacy of projected video P). Let ¢ > 0 and 0 < §; < %
Consider a randomized Gaussian projection matriz R ~ N (0,1/vVk)4*. Then,

the noisy projection P = XR + Mc, 5,), where M, s,y is a (T x k) Gaussian
matriz with entries drawn from N(0,0%), is (e, 81)-differentially private, with:

o1 = 005\ k + 2y/klog(2/01) + 2l0g(2/61)v/2(log(1/251) + e1) /ex
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Where o, = 1/ Vk, and 0 denotes the Ly sensitivity bound of the input. The
variables are consistent with those defined in Section [3.4] to maintain uniformity.
The L, sensitivity 6: For the input f(X) = XR where X represents the video
with pixel values ranging from [0,255] and R is a random matrix, the Ly sen-
sitivity 6 is proportional to the maximum change in X, scaled by the norm of
R. This norm typically takes the value 1/vk. Since the Ly sensitivity of X is
1255 — 0|, we define 6 as 8 = 255/+/k. Where |.| denotes the absolute value. More
details are provided in the appendix section.

Theorem 2 (Privacy of covariance matrix P,.,,). The mechanism defined
by Q=Peov +N(cy,5,), where N(c, s, is a Gaussian matriz with entries drawn from
N(0,02), is (e2,02)-differentially private, provided that ea > 0 and d2 < 1/2.

/2l0g(1.25)/5
Where o9 =60 %.

By applying the principle of sequential composition [13], each video X is (e, §)-
differentially private as a result of the combination of two differentially private
mechanisms in Algorithm [I] Where € = €; + €3 and § = §; + da.

Table 1. Comparison with different visual privacy techniques, including data-
obfuscation, adversarial training and video anonymization using GANS. cMAP and
F1 metrics are for privacy evaluation while Top-1 is for action evaluation. Results are
reported on UCF101 [42], HMDB51 [26],PA-HMDB [46] and VISPR [34]. The best
results are in bold-red, while the second best are underlined.

Raw Test set Top-1(1) Reconstructed Test set Top-1(1) Raw Test set PA-HMDB Raw Test set VISPR

Method UCF101 HMDB51  UCF101 HMDB51 Top-1 (1) cMAP ({) cMAP (1) F1(])
ISR,(‘””A) 49.65+0.22  35.66+0.10 45.14+0.53 28.97+0.09 38.71+1.22 58.26+0.13 53.60+0.87 49.14+0.00
ISR(lﬁxw)m 18.34+0.02  19.47+0.04 24.94+0.20 12.64+0.01 25.11+0.62 40.01+0.17 43.27+0.25  45.00+0.73
V-SAM[I9] 17.32+0.30  14.72+0.12  10.02+1.48 12.03+0.01 15.31+0.54 40.39+0.38 44.64x0.09 39.97+0.16
Face Anonymizer[38] 32.05+0.49  19.04x0.24 21.62+0.35 21.13+0.69 17.04+0.03 41.18+1.09 44.00+0.63 51.43+0.39
SPAct[8] 60.82+0.33 41.29+0.01 - - 44.13+0.73 60.55+0.75 56.71+0.18  47.61+0.11
ALF[46] 56.27+0.91  32.04x0.56 - - 43.73+0.82 40.29-+0.03 55.09+1.49  43.08+1.02
Deepprivacym 16.72+0.36  11.54+0.05 14.95+0.58 11.69-+0.90 18.77+0.13 39.76+0.83 42.06+0.28  41.27+0.50
Appearance freem 30.02+0.07  15.67+0.14 14.22+0.16 10.29+0.06 19.60+0.02 - - -
Selective privacy[21] 58.97x0.11  38.27x0.01  45.10+0.15 30.09+0.06 42.56+0.54 - - -
Face blurring[22] 51.07+0.63 37.98+x0.21 40.01+0.64 28.81+0.01 37.0040.44 42.13+0.68 47.04x0.33  52.34x0.27
Raw data (no privacy) 85.77+0.18  59.24+0.65 85.77+0.18 59.2440.65 65.05+1.17 70.13+0.59 64.18+0.06  69.10+0.59
Video-DPRP (., 5_10-4) 55.16+059 36.49+0.79  38.76+0.11 27.95:+0.01 39.25+0.15 39.4240.62 41.89:0.02 40.03+0.28
Video-DPRP (._; 5_10-4) 58.58+0.16 38.37+0.00 45.20+0.02 29.06+0.77 44.86+0.02 48.75+0.07 50.110.63 53.77+0.30
Video-DPRP (g 5_10-4) 61.69+0.07 40.00+0.71  50.00+0.28 32.1340.31 51.07+0.73 53.00+0.01 56.10+0.20 55.12+0.03

Table 2. Comparison with differential private training methods and Video-DPRP on
action recognition, for € € {2,5,8} and 5=10"%. The best results are in red , and the
second best are underlined.

Raw Test set UCF101 (Top-1 (1)) Raw Test set HMDB51 (Top-1 (1)) Raw Test set PA-HMDB (Top-1 (1))

Method

€e=2 ‘ e=5 e=8 e=2 ‘ e=5 e=8 €e=2 ‘ e=5 e=8
DP-SGD[I] 25.54::0.3337.24:£0.26 45.32+0.86 14.18:£0.06/30.09+0.18 32.16+1.85 15.34:£2.15(25.70+1.97 20.900.04
MultiClip-DP 5 chps)@ 44.07+0.18(70.03+0.13 72.0340.71 36.11:£0.25[48.00£0.05 50.9840.66 37.06£0.24[45.16£0.05 52.73+0.46
Video-DPRP 55.16:0.59(58.58:£0.16 61.6940.07 36.49:0.7938.37£0.09 40.0040.71 39.25:40.15(44.86:£0.02 51.0740.73
Video-DPRP 3 clips)  60.110.10|70.87+0.03 74.0640.38 42.7240.44|49.63+0.95 51.63+£0.53 41.08+0.04|48.17+0.42 54.98+0.86
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4 Experiments

4.1 Datasets

We adopt PA-HMDB [46] and VISPR [34] for visual privacy assessment, and
UCF101 [42] and HMDB51 [26] for HAR, as these are commonly used datasets
in the literature.

PA-HMDB[4g] is a dataset containing 515 videos with video-level action anno-
tations and frame-wise visual privacy annotations, including privacy attributes
such as skin color, face, gender, nudity, and relationship. The dataset covers 51
action classes.

VISPR [34] is an image dataset designed for visual privacy research. It contains
various personal attributes similar to those in HMDB51. The dataset comprises
10,000 training images, 4, 100 validation images, and 8,000 test images.
UCF101 [42] and HMDB51 [26] are both HAR datasets, containing 101 and
51 action classes, respectively. For both datasets, all results are reported on split-
1, which includes 9,537 training videos and 3, 783 test videos for UCF101, and
3,570 training videos and 1,530 test videos for HMDB51.

4.2 Implementation details

Many deep learning models incorporate Batch Normalization (Batch Norm) lay-
ers. However, such models are not compatible with differentially private training
methods like DP-SGD [1] or MultiClip-DP-SGD [32] (abbreviated to MultiClip-
DP in Table , as Batch Norm requires calculating the mean and standard
deviation for each mini-batch, introducing dependencies between samples and
violating the principles of differential privacy. For fair comparison across all our
results in video HAR, we require a model with a different type of normalization
layer. Therefore, we use the PyTorch implementation of the Multiscale Vision
Transformer (MViT-B 16x4)) [14], which employs Layer Normalization [2] and is
pre-trained on the large-scale Kinetics-400 dataset [3]. For each video, we ran-
domly crop a clip consisting of 16 frames, with each frame resized to a shape
of (224,224, 3). In the case of Video-DPRP (3 cjipsy and MultiClip-DP (3 ciips) (see
Table , we crop 3 clips and apply the same pre-processing as described above.
The optimization is performed using stochastic gradient descent (SGD) with a
learning rate of ir = 0.01, a batch size of 8, and 50 training epochs.

Set-up of Video-DPRP: We use video samples reconstructed by Video-DPRP
as inputs for our training. In line with Algorithm [I} we set the dimensions of
the projection matrix to d X k, where d = 320 x 240 x 3 and k = 32 x 32 x 3.
Note that d corresponds to the dimensions of a frame from the original video
(as described in Section and is therefore fixed to the value defined above by
default. We set the privacy budget allocator b to 0.8, meaning that 80% of the
privacy budget is allocated to making the random projection P, differentially
private (see line 6) while the remaining 20% (i.e, 1 —b) is used to ensure the
covariance matrix P, is differentially private (see line 8 of Algorithm .
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For the differentially private training of DP-SGD [I] and MultiClip-DP 3 ¢iips)

[32], we use the PyTorch Opacus library [48], which includes a privacy budget
accountant to track the differentially private parameters (e,d) during training.
For fair comparison and simplicity across all differentially private techniques
(i.e., DP-SGD [1], MultiClip-DP (3 c1ips) [32] and Video-DPRP), we set the pri-
vacy parameter 6=10"% and only vary e. All experiments were conducted on
an NVIDIA RTX A6000 GPU. For a comparative analysis with state-of-the-art
(SOTA) visual privacy techniques, such as Obfuscation and Anonymization,
we replicate their techniques following the authors’ descriptions.
Obfuscation methods: specifically, we compared our approach with: (1) a
Inverse-Super-Resolution (ISR) [39] model, which initially downscales videos and
further perform a set of transformations (rotations, cropping) to the downscaled
videos ; (2) a Face Blurring [22] algorithm, that detects faces using YOLOv3
[37] and applies Gaussian blurring with a kernel size of k = 21, and a stan-
dard deviation ¢ = 10 for consistency with prior works [46J21]; and finally
(3) a Appearance-Free Privacy model [20], which removes appearance cues on
videos via optical flow warping [43]. For comparisons with Anonymization
techniques we used: (4) DeepPrivacy [I8] which perform a full-body video
anonymization, (5) a video Face Anonymizer [38], and (6) a surface-adaptive
modulation: V-SAM [19]. Adversarial training strategies include (7) a adver-
sarial learning framework (ALF )[46], which utilizes a adversarial privacy budget,
and (8) SPAct [8], which employs self-supervised learning with MViT-B(16 x 4)
as the target classifier. We also implement differentially private training with
(10) DP-SGD [1] and (11) MultiClip-DP(3 clips) [32] using a clipping norm of
C = 0.4. Full SOTA experimental details are included in the appendix.

4.3 Evaluation Metrics and Protocols

Metrics: Action recognition evaluation is conducted using the Top-1 accuracy
metric, following prior work [I7I32/16]. For visual privacy recognition, considered
as a multi-label image classification task due to the presence of multiple privacy
attributes per image, we use the class-wise mean average precision (cMAP) [34]
and the class-wise Fl-score. All results are reported as percentages, averaged
over three runs, with both their mean and variance provided. In our tables, 1
denotes metrics where higher values are better, while | indicates that lower val-
ues are better.

Protocols: Apart from Adversarial training methods, which ensure privacy
directly during training, we apply two evaluation protocols for video HAR with
visual privacy techniques. Protocol 1 evaluates on the raw test set X!¢ of
dataset Xe {UCF101, HMDB51, PA-HMDB}, after training our model on
the corresponding reconstructed train set X" . using a method reconst €
{Obfuscation, Anonymization, Video-DPRP}.

Here, Obfuscation and Anonymization refer to all obfuscation and anonymiza-
tion techniques described in Section It is important to note that for eval-
uation on the PA-HMDB dataset, we use HMDB51\{PA-HMDB} as our

training set. This means that all video samples present in HMDB51 but not



12 A.T.A Nken et al.

Original videos (a) Sample videos with ¢
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Fig. 3. Visual correlation: From left to right, we present video samples processed us-
ing Video-DPRP with varying ¢ = {2, 5, 8}, while maintaining a fixed lower-dimensional
space of k = 32 x 32 x 3, a privacy parameter of § = 10~*, and a privacy budget of
b = 0.8. Lower € values introduce more noise, degrading reconstruction quality and
leading to less accurate predictions. Incorrect classes are highlighted in red, while
correct predictions are marked in green.

in PA-HMDB are used for training in this scenario. Protocol 2 evaluates on
the reconstructed test set X! . of dataset X, after training on X%n . us-
ing method reconst. Accordingly, no results are provided for adversarial training
methods in the reconstructed test set column of Table [Il Protocol 1 assesses
the model’s robustness in real-world scenarios where obfuscation or anonymiza-
tion might not be applied, while testing on the reconstructed data (Protocol
2) measures performance consistency under privacy-preserving transformations,

validating model adaptability across both standard and privacy-focused settings.

In Table [2| we restrict the analysis of video HAR to differentially private
training methods: DP-SGD [I] and MultiClip-DP (3 c1ips) [32], alongside Video-
DPRP, as these are the only methods that incorporate differential privacy. For
visual privacy evaluation, we begin by training our model on the training set
of VISPR, formulating the task as a multi-label image classification problem
due to the multiple privacy attributes per image. We then use the annotated
video frames from PA-HMDB as our test set. This is considered a cross-
dataset evaluation protocol, as outlined in [8]. We also evaluate on the test set
of VISPR, as reported in Table [I We can observe from Table [I] that Video-
DPRP provides competitive results, highlighted in bold, when compared to
SOTA privacy-preserving techniques in both activity recognition and visual pri-
vacy preservation. Notably, the performance of Video-DPRP with ¢=8 and
=10"% (i.e Video-DPRP ((_g 5—10-4), in Table [1)) shows a significant improve-
ment. However, Video-DPRP (._g s—10-4) shows a slight performance drop of
1.29% in activity recognition on the HMDB51 dataset compared to SPAct[8],
which achieved a baseline accuracy of 41.29%. In terms of visual privacy, we
observe that Video-DPRP achieved a cMAP score of 39.76% on PA-HMDB51
and 42.06% on VISPR (with €=2), outperforming state-of-the-art methods
such as ISR(32x24)[39] and V-SAMJI9]. Despite yielding decent scores on vi-
sual privacy, anonymization methods such as DeepPrivacy[I8|, V-SAM[I9] and
Face Anonymizer [38] as well as obfuscation method like ISR (16x12)[39], strug-
gle to achieve good utility performance on HAR, with results dropping as low
as 12.00%. Intuitively, DeepPrivacy[I8], V-SAM[I9] and Face Anonymizer[38]
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Fig. 4. Robustness analysis. We evaluated the robustness of Video-DPRP with ¢ = 2
against three types of attack: (1) Image Restoration (Left): Using Real-ESRGAN [45]
a SOTA super-resolution generative adversarial network, we attempted to restore im-
ages from Video-DPRP.—2. However, the image’s quality remained significantly de-
graded (see second row). (2) Face Detection (Middle): We employed a pre-trained
YOLOv3 [37] to detect faces in the original video (first row, blue bounding boxes)
and in videos reconstructed using Video-DPRPe—2(second row). The poor localiza-
tion of the red bounding boxes highlights Video-DPRP’s strong obfuscation effect. (3)
Deconvolution Attacks (Right): We tested SUPIR [49], a SOTA deconvolution model
on downscaled ISR [39] videos (16 x 12 resolution) and Video-DPRP.—,. While SUPIR
successfully recovers visual attributes from ISR videos (green checkbox column), it
fails on Video-DPRP.—s (red cross column), demonstrating our method’s resilience
to deconvolution attacks. Full experimental details, along with additional results on
face and skin-color detection, are provided in the appendix.

generate a modified version of the original video, which often fails to consistently
preserve the motions of individuals involved in the activity. We conclude that
while the above anonymization methods yield good privacy results, they may
not be suitable for utility analysis in Video HAR. For obfuscation techniques,
we argue that the visual content may be so obscured that models struggle to ef-
fectively identify activities. In contrast, Video-DPRP strikes a balance between
utility and privacy, even for varying values of € € {2,5,8}. We do not report
the privacy results for Appearance-Free [20] and Selective Privacy [2I], as both
methods rely on optical flow between successive frames in videos for obfuscation,
which is not applicable in our experiment since we use VISPR as the primary
training set for privacy evaluation. In Figure[3] we present visual results of sample
videos from UCF101 and HMDB51 with € € {2, 5,8}, along with their predicted
classes. In Table [2| we use DP-SGD [I] as a baseline method and compare our
results with MultiClip-DP (3 ciips) [32]. It is important to note that the results
for MultiClip-DP 3 clips) [32] are based on our own experiments, as the origi-
nal code was not available. With 3 clips per sample video, Video-DPRP 3 c1ips)
provides competitive results when compared to MultiClip-DP (3 cjips), achieving
Top-1 accuracy of 74.06% on UCF101, 51.63% on HMDB51 and 54.98% on
PA-HMDB with e=8. Figure [4] presents a robustness analysis of Video-DPRP
against image restoration, face detection, and deconvolution, simulating an ad-
versarial scenario where an attacker attempts to compromise visual privacy from
reconstructed videos. Additional analysis details are provided in the appendix.
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5 Ablation Study

Keeping § constant, we observe that increasing € improves the action recognition
performance of Video-DPRP but significantly reduces privacy, which is a typical
behavior of differentially private algorithms. Video-DPRP is also influenced by
two major components in its algorithm: the projection dimensionality k£ and the
privacy budget b.

Effect of varying the dimensionality k: For a fixed e=8, §=10"%, and a pri-
vacy budget of b=0.8, we observed that increasing the dimensionality k£ improves
action recognition performance but results in a significant decrease in privacy,
as shown in Table 3] This is because, the value of k, has a diminishing effect
on the noise scale, o,= 1/\/E and also on the Lo sensitivity, § = 255/\/%. As
a result, when k increases, it substantially reduces the standard deviation value
o1 in Theorem [ and o3 in Theorem [2] leading to a decrease in the amount of
noise added for differential privacy. Selecting an optimal k£ requires balancing
performance gains with acceptable privacy levels for practical viability.

Effect of varying the privacy budget b: Recall that b, represents the pri-
vacy budget allocated to make the random projection differentially private, while
1— b, ensures the differential privacy of the covariance matrix (see Algorithn.
To understand the effect of varying b, we fixed e=8, 6=10"* and k=32 x 32 x 3.
Table [4] shows that increasing the privacy budget for random projection up to
a value of 80%, results in a less noisy random projection. Consequently, there
is an increase in action recognition performance but with a substantial decrease
in privacy. This suggests that the random projection plays a more critical role
compared to the covariance matrix, in Video-DPRP.

Computational efficiency: We measured the time taken to reconstruct privacy-
preserved videos from the UCF101 and HMDB51 datasets using different meth-
ods, as shown in Table [5| Although Video-DPRP has a polynomial time com-
plexity as outlined in Section [3:4] it remains computationally efficient with an
average reconstruction rate of ~ 20 sec/Video for both datasets. In contrast,
V-SAM[19], Appearance-Free|20], and Face Blurring|22] incur additional compu-
tational overhead due to their use of surface-guided GANs, YOLO, and optical
flow models, respectively.

PA-HMDB PA-HMDB Reconstruction (sec/Video)
Dimension k Action 1 Privacy | Budget b Action T Privacy | Methods UCF101 HMBD51
20 x 20 x 3 24.60+1.67 32.46+0.75 0.2 37.80+0.92 29.02:+0.12 V-SAM[IS] 33.12 35.07
24 x 32 x 3 28.03+0.07 40.17+1.22 0.4 40.26+0.17 36.73+1.01 ISR (32x24) [39] 19.24 18.97
32 x 32 x 3  51.07+0.73 53.00+0.01 0.5 43.80+0.85 44.27+0.49 Appearance free [20] 23.74 21.60
50 x 50 x 3 67.1840.49 56.96+0.07 0.6 46.3940.22 50.01+0.14 Face blurring [22] 26.08 24.49
64 x 80 x 3 70.10+0.14 60.18+0.33 0.8 51.07+0.73 53.00-+0.01 Video-DPRP (ours) 20.32 19.84

Table 3. Action (Top-1) and privacy (cMAP) Table 4. Action (Top-1) and privacy (cMAP) Table 5. Reconstruction time per video (in sec-
scores on PA-HMDB[46] for different lower di- scores on PA-HMDB[46] for different privacy onds) for UCF101 [42] and HMDB51 [26].
mensions k. The best result is highlighted in budget b. The best result is highlighted in bold, The best (lowest) time is highlighted in bold,
bold, and the second best is underlined. and the second best is underlined. and the second best is underlined.



Video-DPRP 15
6 Discussion

While Video-DPRP offers strong theoretical and empirical guarantees, we ac-
knowledge that its computational overhead particularly due to the SVD-based
reconstruction step, has not been benchmarked against real-time video process-
ing constraints. Although our reconstruction time (~ 20sec/video) is compet-
itive compared to many SOTA visual privacy techniques (e.g., Face Blurring,
V-SAM), it may still limit deployment in latency-sensitive or edge scenarios.
Future work will focus on profiling runtime on embedded systems (e.g., Jetson
Nano) and optimizing matrix operations, with the goal of enabling lightweight,
real-time inference pipelines. We also plan to investigate approximations to SVD
and reduced projection dimensionality k to balance speed, privacy, and utility.

7 Conclusion

This paper introduces Video-DPRP, a differentially private approach for con-
structing visual privacy-preserved videos for Human Activity Recognition (HAR).
Video-DPRP aims to bridge the gap between visual privacy and utility by provid-
ing strong privacy guarantees through the mathematical properties of differential
privacy and random projection. Our evaluation across multiple datasets demon-
strate that Video-DPRP achieves competitive performance in activity recogni-
tion while maintaining robust privacy preservation compared to current state-
of-the-art techniques.
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