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Abstract. Link Prediction is a foundational task in Graph Representa-
tion Learning, supporting applications like link recommendation, knowl-
edge graph completion, and graph generation. Graph Neural Networks
(GNNs) have shown promising results in this domain and are widely used
for learning graph representations from data. However, not all GNNs can
represent edge direction and not all training strategies support the learn-
ing of directed graph representations. For this reason, Neural Directed
Link Prediction (NDLP) has been divided into three sub-tasks. Models
that perform well in distinguishing uncorrelated samples of positive and
negative directed edges (the general DLP task) do not necessarily cap-
ture edge directionality and bidirectionality (two additional tasks). While
many models can be trained to perform well on any of the sub-tasks,
most fail to perform well across them all. In this work, we propose three
novel training strategies that adress the three sub-tasks simultaneously
and can be applied to any autoencoder-based GNN without motifying
its architecture. Our first strategy, the Multi-Class Framework for Neu-
ral Directed Link Prediction (MC-NDLP) maps NDLP to a Multi-Class
training objective. The second and third strategies adopt a Multi-Task
perspective, either with a Multi-Objective (MO-NDLP) or a Scalarized
(S-NDLP) approach. We show that these training strategies allow many
models to achieve higher or more balanced performance across the three
NDLP sub-tasks. The flexibility offered by our proposed training strate-
gies provides a powerful means for improving the capabilities of NDLP
models to advance the state of Neural Directed Link Prediction.

Keywords: Graph Machine Learning · Directed Link Prediction.

1 Introduction

Graphs are a natural way to represent complex systems. Examples include social
networks, financial transaction networks, power grids, and neuronal connectiv-
ity [1,17]. These systems can be modeled using different types of graphs, ranging
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from simple networks to more sophisticated structures like Knowledge Graphs
[15], Dynamic Graphs [16], or Bipartite Graphs for recommender systems [25].
Given the widespread presence of graph structures, learning representations from
graph data has grown increasingly important with core applications including
node classification, link prediction and graph classification.

In this work, we focus on Graph Neural Networks (GNNs) as applied to link
prediction[27] on directed graphs. Recently, GNN-based models, such as Graph
Autoencoders, have been devised focusing on undirected [21,41,6,10,8] and di-
rected graphs [22,44,13,40,32,43], establishing the field of Neural Link Prediction.
These models have several important applications, including completing knowl-
edge graphs [4] , serving as baseline for deep graph generation [21,34] and pre-
processing transaction networks [26]. However, the recent literature primarily
focuses on undirected applications [23,28,38], with few studies mentioning di-
rected cases [3]. Direction can be core to the application itself, in some domains.
With citation graphs, for instance, citing and being cited have substantively
different meanings. Moreover, incorporating edge direction has been shown to
improve learning for node classification across different types of graphs [31]. Even
so, the nuances of link prediction on directed graphs are often overlooked and it
has been argued that this limits progress in this area [32].

Neural Directed Link Prediction (NDLP) requires a model that is capable
of representing edge direction and a training strategy that effectively learns di-
rectionality. Not all GNNs can represent edge direction. Graph Autoencoders,
for example, often use decoder implementations where probabilities for edges
(u, v) and (v, u) are the same by design [32]. We refer to these models as NDLP-
incapable. But even NDLP-capable models can fail to learn edge directionality
when the training strategy is adapted from link prediction on undirected graphs,
where, typically, models are trained and evaluated on random subsets of positive
and negative undirected edges [21,36,41,6,10,14,42]. Now, on a sparse directed
graph, it is statistically unlikely that a random subset of negative directed edges
would include many reverse edges of randomly sampled positive directed edges.
This allows models to ignore edge direction without incurring a penalty. Indeed,
using uncorrelated samples of positive and negative directed edges to train and
evaluate NDLP models [22,44,13,40] can lead to NDLP-incapable models per-
forming deceptively well.

Training and evaluation for NDLP is more complex. Three sub-tasks have
been devised in the recent literature to more comprehensively evaluate perfor-
mance of directed link prediction [32,43,42,45]. The “General DLP” task is the
classic adaptation of the approach used in the undirected case to the directed
case. This is complemented with two other binary classification sub-tasks de-
signed to test a model’s ability to distinguish edge directions. Namely, the “Direc-
tional” and “Bidirectional” sub-tasks. Prior work has shown that NDLP-capable
models can learn to perform well on each of the three sub-tasks [32,43,42,45]
and that there is a trade-off among them [43]. However, prior approaches do not
consider training strategies that can adress these three sub-tasks simultaneously.
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Here we propose three learning strategies to improve performance across
NDLP sub-tasks, simultaneously. The first strategy, Multi-Class Directed Link
Prediction (MC-NDLP), maps directed link prediction to a four-class classifica-
tion task. This framework distinguishes between unidirectional positives, unidi-
rectional negatives, bidirectional positives, and bidirectional negatives, ensuring
balanced contributions to the training loss. The other two approaches recognize
the Multi-Task nature of directed link prediction, simultaneously training on
simultaneously constructed General DLP, Directional and Bidirectional train-
ing sets. Drawing from the literature on Multi-Objective [7] and Scalarization
[18] methods, we propose Multi-Objective Directed Link Prediction (MO-NDLP)
and Scalarization-based Directed Link Prediction (S-NDLP) strategies to han-
dle these tasks more effectively. Each of our three training strategies incentivize
NDLP-capable models to learn directed representations that perform well across
the three sub-tasks. We find that better training strategies can be as useful as
better models in advancing the state of Neural Directed Link Prediction.

The remainder of this paper is organized as follows: Section 2 covers the
background concepts and related work, highlighting their relevance to our ap-
proach. In Section 3, we detail the proposed multi-class and multi-task strategies.
Section 4 outlines the experimental setup, describes the datasets and presents
a performance comparison of various models across all strategies and datasets.
Finally, Section 5 provides concluding remarks.

2 Background and Related Work

In this section, we introduce the notation and review key concepts and prior re-
search relevant to Neural Directed Link Prediction (NDLP). We briefly discuss
foundational work in Graph Neural Networks and their applications in undi-
rected link prediction, then go on to examine approaches for incorporating edge
direction, in order to highlight limitations and the need for training strategies
that better incentivise models to encode directed representations.

2.1 Notation

Given a directed graph G = (V,E) with N = |V | nodes where E ⊆ V × V , and
given u, v ∈ V we say that:

– (u, v) is negative bidirectional ⇐⇒ (u, v) /∈ E ∧ (v, u) /∈ E;
– (u, v) is negative unidirectional ⇐⇒ (u, v) /∈ E ∧ (v, u) ∈ E;
– (u, v) is positive unidirectional ⇐⇒ (u, v) ∈ E ∧ (v, u) /∈ E;
– (u, v) is positive bidirectional ⇐⇒ (u, v) ∈ E ∧ (v, u) ∈ E;

Moreover, we denote A ∈ {0, 1}N×N as G’s adjacency matrix, and X ∈ RN×F

as node features.
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Fig. 1. From a graph G (top panel), for each task definition, green edges are the
positive class and red edges are the negative class. In General DLP, any absent directed
edge can be selected as negative. For Directionality prediction, unidirectional edges are
positives, with their inverses as negatives. For Bidirectionality prediction, one direction
of bidirectional edges are positives, and the reverse of unidirectional edges are negatives.

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are currently the de facto standard approach
for learning over graph data, with applications in the pharmaceutical industry,
material science [29], time series [19], and anti-money laundering [20,37,9,2].

Message Passing Neural Networks (MPNNs) [11,12,35,39] constitute the most
general framework for GNNs, and elaborate successive hidden representations for
each node v by aggregating messages from its neighbors. Given z

(k)
v as the k-th

layer embedding of node v (with z
(0)
v equalling v’s feature vector xv), GNNs

compute the next layer embedding z
(k+1)
v through the following relation:

z(k+1)
v = f (k)

(
mk

s(z
(k)
v ), A(k)

({
m(k)

n (z(k)u )|u ∈ N(v)
}))

(1)

Where f (k), A(k),mk
s and m

(k)
n are, respectively, the layer-specific update func-

tion, the aggregation function, the self-information and message functions. N(v)
indicates the neighborhood of node v.

If we consider K layers in total, the last embedding of each node zv ≡ z
(K)
v

can be used for downstream tasks such as node classification, link prediction,
and graph classification. For link prediction, a decoder is a function that takes
as input the representation of two nodes, zu, zv and outputs a normalized score
representing the probability of an edge (u, v) being present. For the undirected
case, the decoder can be the scalar product followed by a sigmoid function,
DEC(zu, zv) = σ(zu · zv), or a neural network such as a Multi-Layer Perceptron
(MLP). The scalar product, being symmetric in u and v, is an example of a
decoder that leaves a model unable to represent directionality in its predictions.
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2.3 Neural Directed Link Prediction

This work considers three sub-tasks for NDLP, as presented in [32]. Figure 1
shows a representation of the positive and negative classes that define the Gen-
eral Directed Link Prediction (General DLP) task, the Biased Directional Neg-
ative Samples Link Prediction (Directional) task, and the Bidirectionality Pre-
diction (Bidirectional) task. These classes are the basis for selecting the samples
of (directed) edges used in the most relevant recent literature for testing and
evaluation of NDLP-capable models performing directed link prediction.

We focus on NDLP-capable models that use Graph Autoencoder techniques.
[22] develops an extension of the Weisfeiler-Lehman kernel [33] which is then
used as a basis to define a source/target-like [32] graph autoencoder for directed
graphs; however, the model is only tested on the General DLP sub-task. [43]
defines a GCN for directed graphs where the aggregation is performed by a com-
plex, hermitian laplacian. This model is tested across all three tasks, although for
each of them, a different parameter set is inferred. To the best of our knowledge,
[32] devises the earliest GNN-based autoecoders for NDLP, and is among the
first to highlight the intrinsic differences between the directed and undirected
cases; Their work is also responsible for one of the earliest usage of the General
DLP, Directional and Bidirectional sub-tasks in a neural setting. Similarly to
[43], the authors of [32] do not find one parameter set for all three tasks for
each model. [42] endows cluster information in node embeddings, but, similarly
to [32], trains and tests over the Directional and Bidirectional tasks using two
different training graphs. [45] produces unsupervised source/target node embed-
dings by adversarially training a neural pair of generator and discriminator on
the graph topology; the final model performs simultaneously well on the General
DLP and Directional task, but it is not evaluated on the Bidirectional task.

Although we will experiment with different models, it is not our aim to
sponsor any model in particular. Rather, we propose learning strategies that can
used with any NDLP-capable model to encourage encoding directionality and
strike a better balance among the performances on sub-tasks of NDLP. Therefore
our work is much more in the spirit of [24], a representation learning framework
that argues in favor of masking compared to full-graph training. Unfortunately,
[24] has been developed and tested on undirected graphs only, so its extension
to directed graphs could be a future research avenue.

3 Strategies for Neural Directed Link Prediction

In the previous section, we discussed that NDLP has recently been described as
three distinct sub-tasks: General DLP, Directional, and Bidirectional. Simulta-
neously addressing these requires more than the classic approach to training for
link prediction. In this section, we formalize Multi-Class and Multi-Task training
strategies that are in principle applicable to every NDLP-capable encoder-based
MPNN and encourage such models to learn to encode directionality.
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3.1 Multi-Class Strategies for Neural Directed Link Prediction

As anticipated in Section 1, we consider here that the reason why prior works
are generally not able to infer a single model that performs well on all three
sub-tasks could be related to an unaddressed imbalance between unidirectional
and bidirectional edges’ contributions to the training loss. We note that this
imbalance should be dealt with without compromising the reweighting between
positive and negative edges. Therefore we propose to simultaneously balance pos-
itives vs negatives and unidirectional vs bidirectional edges using the following
Multi-Class Neural Directed Link Prediction (MC-NDLP) strategy.

Given a GNN model that computes dK-dimensional embeddings zv, ∀v ∈ V ,
we may compute logits for each of the four classes listed in Section 2.1 by applying
an MLP to the concatenation of the embeddings. The MLP must take 2dK input
dimensions and output 4 logits, and can be arbitrarily deep:

[l̂nbuv, l̂
nu
uv , l̂

pu
uv, l̂

pb
uv] = MLP(zu||zv), (2)

where l̂muv,m ∈ {nb, nu, pu, pb} denote the model’s output logits for the edge
(u, v) being negative bidirectional, negative unidirectional, positive unidirec-
tional, or positive bidirectional as defined in §2.1.

Notably, MC-NDLP is also compatible with any graph autoencoder that
makes use of specific decoders which output only one logit l̂uv, that is, the
model output for the presence of a directed edge (u, v) [32,22]. We can turn the
standard binary classification task for NDLP into a 4-class classification task by
transforming the output logit into a probability via e.g., a sigmoid p̂uv = σ(l̂uv)
and defining:

[p̂nbuv, p̂
nu
uv , p̂

pu
uv, p̂

pb
uv] = [(1− p̂uv)(1− p̂vu),

(1− p̂uv)p̂vu,

p̂uv(1− p̂vu),

p̂uvp̂vu].

(3)

We note that Eq. 3 assumes statistical independence between p̂uv and p̂vu,
which are both conditioned on A and X. In fact, most autoencoders model
p̂uv = P̂ (euv|A,X) where euv = 1 ⇐⇒ (u, v) ∈ E otherwise it equals 0
[21], and Eq. 3 naturally extends these univariate autoencoders. Please refer to
Appendix for details.

We can then define a weighted Multi-Class cross-entropy loss function:

LMC-NDLP(Θ) = −
∑
c∈C

∑
uv∈T

wyuv
I(yuv = c) log(p̂yuv

uv ), (4)

where C = {nb, nu, pu, pb}, T is the General DLP training set (see §3.3), I is the
indicator function and yuv ∈ C is the ground-truth class of the edge (u, v), and
p̂yuv
uv is the model’s output probability of edge (u, v) belonging to the ground-

truth class yuv. The class weight is defined as

wyuv
=

nx

nyuv

,
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where nx represents the number of samples in class x, where x is the most
numerous class (usually nb), and nyuv

is the number of samples in class yuv. As
discussed in §1, this class reweighting mitigates the statistical imbalance between
all four classes defined in §2.1.

3.2 Multi-Task Strategies for Neural Directed Link Prediction

Multi-Task Learning (MTL) refers to scenarios where more than one objective
function must be simultaneously optimized. It is more challenging compared to
single-task learning, due to the various objectives having no a priori relative im-
portance and generally competing against each other. To simultaneously exploit
the General DLP, Directional and Bidirectional training sources of information,
we devise a multi-task objective over the three sub-tasks, defined by the binary
cross-entropy loss functions on General DLP LG, Directional LD and Bidirec-
tional LB .

Multi-Task learning is usually carried out in two ways:

– Scalarization: it prescribes to sum and weight the losses to reduce the opti-
mization to the single-objective case:

L = αGLG + αDLD + αBLB

The coefficients αi, i = G,D,B, can be either learned or heuristically set.
Despite its simplicity, heuristic implementations of Scalarization have been
proven to achieve competitive performance in real use cases [18]. In this
work, we set them to the validation losses (normalized between 0 and 1) of
the previous epoch, to favor generalization. We name this approach S-NDLP ;

– Multi-Objective: it consists in finding a parameter update rule that ensures
that all losses are diminished (or left unchanged) at each optimization step.
Given a model fΘ and the objectives {Li(Θ)}Li=1 to be simultaneously op-
timized, we say that Θ1 dominates Θ2 ⇐⇒ Li(Θ1) ≤ Li(Θ2) ∀i ∈
1, ..., L. Therefore, a solution Θ∗ is Pareto-optimal if it is not dominated by
any other solution. The set of non-dominated solutions is called the Pareto
set P. While many Gradient-based Multi-Objective optimization algorithms
with guaranteed convergence on the Pareto set have been developed, we fo-
cus for simplicity on one of the first, MGDA [7]. This algorithm is based
on the observation that given the gradients associated with the individual
losses, the opposite of their shortest convex linear combination points in the
direction where all losses either remain constant or diminish. We name this
approach MO-NDLP.

3.3 Simultaneous Splits

Train, validation, and test sets are constructed from the positive and negative
classes associated to each of the three NDLP sub-tasks (see Fig. 1). In [32], edges
are randomly sampled from the positive classes to construct the validation and
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test sets separately for each sub-task. Since models are separately trained on each
sub-task, in that work, the training sets can be defined as what remains when
the positive samples for that sub-task are reserved. In our case, the models must
be trained over the graph that remains when all the reserved edges are removed.
In order to preserve as many edges as possible for training, sampling is done
together. Specifically, for each dataset, a random 10% and 5% of all unidirectional
edges are reserved for testing and validation, respectively. Moreover, a random
30% and 15% of (one direction of) all bidirectional edges are reserved for testing
and validation, respectively.

Validation and test sets for the three sub-tasks are constructed using the
reserved edges. All the sampled edges (unidirectional and bidirectional) are used
as positives for the General DLP task, complemented with an equal number
of randomly sampled absent directed edges as negatives. The sampled unidirec-
tional edges are used as positives for the Directional task, complemented with
their reverses as negatives. The randomly sampled bidirectional edges are used
for the Bidirectional task, complemented with an equal number of the reverses of
unidirectional edges randomly sampled from the remaining graph as negatives.
To perform well on this task, the model must distinguish between directed edges
whose reverse edge exists from those whose reverse edge does not.

Multi-class learning requires a single training set. As in the General DLP task
of [32], and in the classic formulation of directed link prediction, the training set
is constructed out of all remaining directed edges and all the absent edges in
the incomplete training graph. In our case, these edges are sorted into the four
classes defined in §2.1 for multi-class classification as described in §3.1.

Multi-task learning requires training sets for each sub-task. Here, we take the
opportunity to construct our own versions of the training sets for the Directional
and Bidirectional tasks. This is done to give the training set similar edge statis-
tics as their respective validation and test sets. In particular: for the Directional
task, the training set is composed of all the remaining unidirectional edges (as
positives) and their reverses (as negatives). This is similar to the training set
for the General DLP task, but with the bidirectional edges removed. Finally, for
the Bidirectional task, one direction of all the remaining bidirectional edges are
used, as positives, together with an equal amount of the reverses of unidirectional
edges randomly sampled from the remaining graph, as negatives.

These modifications to the sampling described in [32] make simultaneous
training possible while ensuring no overlap between train and test data.

4 Experiments

In this section, we evaluate the effectiveness of our proposed strategies through
comparative experiments using well-known datasets and NDLP models. We aim
to demonstrate the performance improvements of our approaches across multiple
tasks and models, highlighting their ability to handle the challenges of edge
directionality and directionality. All code and results are publicly available at
https://github.com/ClaudMor/MTMC-NDLP.

https://github.com/ClaudMor/MTMC-NDLP
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4.1 Datasets

Our experiments are conducted on three publicly available datasets, each of
which is a directed graph. As in [32], we consider two small citation networks
(Cora and CiteSeer) and a larger hyperlink network (Google).

Table 1. Statistics of the datasets used.

Dataset Nodes Edges Edges Reciprocity Density Clustering
|V | |E| (undirected) |E|/|V |2

Cora 2,708 5,429 5,278 0.056 0.000741 0.131
CiteSeer 3,327 4,732 4,676 0.024 0.000428 0.074
Google 15,763 171,206 149,456 0.254 0.000689 0.343

Table 1 gives the key network statistics. The Cora and CiteSeer graphs have
few bidirectional edges. For the Google graph, however, a randomly sampled
directed edge will be part of a bidirectional edge around 25% of the time.

Despite the difference in size, the graph density is similar across the datasets.
The local density is higher for the Google dataset, as measured by the average
(directed) clustering coefficient. Edge weights and/or node attributes are not
considered. In all experiments, we use one-hot encoding of the node IDs as node
features [32], except for the MAGNET model for which we used in- and out-
degree as prescribed by the authors [43]. While employing node IDs means the
models are transductive, all the strategies can be extended to inductive settings
by using other node features as appropriate; an avenue for future development.

4.2 Models

We evaluate our proposed training strategies using several NDLP-capable models
from the literature, all of which follow the Graph Autoencoder paradigm. These
include the Gravity-Inspired Graph Autoencoder (Gr-GAE) [32], Source/Target
Graph Autoencoder (ST-GAE) [32], the DiGAE Directed Graph Auto-Encoder
from [22], MAGNET [43] and our custom MLP-GAE, which uses a decoder based
on concatenating the encoder outputs followed by a multilayer perceptron. We
also consider a recently introduced undirected model, MPLP [8], that achieves
the current state-of-the-art in undirected link prediction computing approxima-
tions of graph heuristics, following the idea introduced in [41]. Altough the orig-
inal implementation is not natively NDLP-capable, we introduce a modification
of the decoder (dMPLP) that allows for NDLP and achieves competitive re-
sults. Each model is tested under various experimental conditions to evaluate its
performance within our proposed framework. The standard graph autoencoder
(GAE) [21] is included to provide a baseline NDLP-incapable model. Further
details on model implementations and settings are provided in Appendix.
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Fig. 2. Performance difference of each proposed strategy compared to the baseline
strategy, measured in ROC-AUC (x100). Each bar represents the change in ROC-AUC
- either an increase or decrease - when applying one of the proposed strategies to a
specific sub-task, NDLP model, and dataset, relative to the same model’s baseline
performance. Scores are averaged over 5 runs. Error bars are omitted for visual clarity.

4.3 Experimental Settings

For the three tasks described in Fig. 1, under the sampling defined in §3.3, we
measure ROC-AUC (Receiver Operating Characteristic - Area Under the Curve)
to evaluate a model’s ability to distinguish between classes, while AUPRC (Area
Under Precision-Recall Curve) evaluates precision across different recall levels.
We train the models according to the strategies defined in §3, as well as a Base-
line strategy. Namely, the model is trained on the General DLP training set with
rebalancing of positive and negative edges’ contributions to training loss (Binary
Cross Entropy). For each novel training strategy, we perform early stopping on
the sum of ROC-AUC and AUPRC metrics over the General DLP, Directional
and Bidirectional validation sets. Missing self-loops are always inserted for mes-
sage passing, and they are also used as positive supervision samples in both
MO-NDLP and S-NDLP, while they are treated as bidirectional negative super-
vision samples in MC-NDLP.

4.4 Results

The performance results are summarized in Table 2 (Cora dataset), Table 3
(CiteSeer dataset), Table 4 (Google dataset) and in Figure 2. Performances are
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Table 2. ROC-AUC and AUPRC test scores of various models on Cora Dataset,
trained with the Baseline strategy and our proposed strategies.

GENERAL DIRECTIONAL BIDIRECTIONAL
model strategy ROC-AUC AUPRC ROC-AUC AUPRC ROC-AUC AUPRC

GAE BASELINE 84.6 ± 0.4 88.6 ± 0.3 50.0 ± 0.0 50.0 ± 0.0 62.4 ± 3.0 64.0 ± 3.1
GR-GAE BASELINE 89.2 ± 0.4 92.4 ± 0.2 63.4 ± 2.5 61.5 ± 2.7 69.1 ± 3.1 66.5 ± 3.3

MO-NDLP 84.5 ± 1.1 86.3 ± 1.1 80.6 ± 0.7 80.2 ± 0.9 79.6 ± 4.3 84.6 ± 3.5
MC-NDLP 88.6 ± 0.4 90.0 ± 0.4 82.1 ± 0.5 81.8 ± 0.7 77.3 ± 2.2 76.3 ± 1.7
S-NDLP 87.8 ± 0.6 89.5 ± 0.5 82.3 ± 0.5 81.6 ± 0.4 89.6 ± 1.6 92.4 ± 1.1

ST-GAE BASELINE 87.8 ± 0.7 90.1 ± 0.5 60.8 ± 0.5 64.5 ± 0.6 74.6 ± 1.8 74.1 ± 2.2
MO-NDLP 86.3 ± 0.5 86.2 ± 0.4 79.3 ± 1.0 80.0 ± 0.9 79.3 ± 0.5 79.5 ± 1.9
MC-NDLP 80.7 ± 2.0 80.1 ± 2.1 79.0 ± 2.3 81.6 ± 1.9 70.3 ± 3.0 68.1 ± 2.1
S-NDLP 84.5 ± 0.4 84.9 ± 0.7 75.8 ± 1.0 78.4 ± 0.9 81.1 ± 0.9 80.4 ± 1.6

DiGAE BASELINE 80.4 ± 1.1 85.3 ± 0.8 57.5 ± 1.3 63.0 ± 1.4 70.4 ± 2.2 68.6 ± 1.2
MO-NDLP 70.2 ± 3.8 72.6 ± 3.6 73.6 ± 5.4 76.0 ± 4.2 67.3 ± 4.6 69.6 ± 4.1
MC-NDLP 75.4 ± 0.9 77.4 ± 1.0 84.3 ± 0.6 85.4 ± 0.8 68.9 ± 1.5 69.3 ± 1.1
S-NDLP 72.5 ± 4.0 77.4 ± 4.4 61.6 ± 1.3 69.2 ± 1.4 72.1 ± 5.6 74.4 ± 5.7

MLP-GAE BASELINE 77.1 ± 0.9 78.2 ± 0.6 90.7 ± 0.6 90.7 ± 0.6 69.9 ± 3.2 69.7 ± 3.7
MO-NDLP 76.0 ± 0.8 76.4 ± 0.7 93.4 ± 0.6 93.5 ± 0.6 80.7 ± 1.6 79.2 ± 2.4
MC-NDLP 74.5 ± 0.7 75.6 ± 0.7 94.3 ± 0.6 94.4 ± 0.5 71.7 ± 2.4 65.7 ± 1.8
S-NDLP 74.7 ± 1.0 74.9 ± 0.9 90.5 ± 0.7 90.0 ± 0.9 72.0 ± 2.6 70.5 ± 2.9

MAGNET BASELINE 75.2 ± 1.4 77.8 ± 1.0 90.4 ± 0.9 89.8 ± 0.8 71.9 ± 2.3 70.4 ± 2.8
MO-NDLP 74.4 ± 1.4 77.4 ± 1.1 91.3 ± 1.0 90.9 ± 1.0 70.6 ± 2.7 68.6 ± 2.7
MC-NDLP 74.4 ± 1.0 77.4 ± 1.0 92.1 ± 0.7 91.6 ± 0.7 71.8 ± 2.6 70.0 ± 2.6
S-NDLP 74.6 ± 1.3 77.5 ± 1.1 91.0 ± 1.0 90.4 ± 1.0 71.8 ± 2.8 70.2 ± 2.9

dMPLP BASELINE 86.1 ± 0.5 88.0 ± 0.9 75.7 ± 2.2 76.8 ± 1.6 81.1 ± 3.6 82.2 ± 5.3
MO-NDLP 83.5 ± 0.6 85.1 ± 0.6 89.1 ± 1.7 89.0 ± 2.1 85.8 ± 3.3 89.3 ± 2.5
MC-NDLP 81.4 ± 1.7 82.0 ± 1.5 83.7 ± 4.2 83.7 ± 3.6 70.0 ± 4.3 71.5 ± 3.9
S-NDLP 85.6 ± 1.0 86.9 ± 1.0 84.8 ± 2.7 86.3 ± 2.3 83.6 ± 4.7 87.0 ± 4.3

Table 3. ROC-AUC and AUPRC test scores of various models on CiteSeer Dataset,
trained with the Baseline strategy and our proposed strategies.

GENERAL DIRECTIONAL BIDIRECTIONAL
model strategy ROC-AUC AUPRC ROC-AUC AUPRC ROC-AUC AUPRC

GAE BASELINE 78.6 ± 0.7 84.1 ± 0.6 50.0 ± 0.0 50.0 ± 0.0 56.2 ± 3.8 59.3 ± 1.9
GR-GAE BASELINE 77.0 ± 0.7 84.3 ± 0.6 55.7 ± 2.3 58.2 ± 3.2 72.5 ± 3.7 71.3 ± 4.4

MO-NDLP 78.6 ± 0.8 82.6 ± 1.3 73.4 ± 1.6 76.8 ± 1.2 92.6 ± 2.1 94.6 ± 1.5
MC-NDLP 81.9 ± 0.8 85.1 ± 0.5 75.5 ± 0.7 78.9 ± 0.6 85.9 ± 2.8 85.1 ± 3.1
S-NDLP 80.8 ± 0.9 84.4 ± 0.7 75.2 ± 1.0 78.2 ± 0.9 97.5 ± 1.1 98.0 ± 0.7

ST-GAE BASELINE 80.9 ± 0.8 85.2 ± 0.7 56.0 ± 0.3 61.1 ± 0.5 72.0 ± 4.5 73.0 ± 3.7
MO-NDLP 81.4 ± 1.5 82.6 ± 2.0 78.5 ± 2.3 80.1 ± 1.8 90.5 ± 4.4 92.2 ± 4.1
MC-NDLP 77.8 ± 1.8 79.3 ± 2.4 75.5 ± 4.0 79.5 ± 2.8 73.9 ± 5.1 75.1 ± 4.9
S-NDLP 80.0 ± 1.3 82.0 ± 1.4 72.6 ± 1.6 77.4 ± 1.1 88.9 ± 4.3 90.3 ± 3.9

DiGAE BASELINE 78.5 ± 0.9 83.5 ± 0.8 56.6 ± 1.0 65.2 ± 1.5 62.3 ± 3.3 65.8 ± 3.8
MO-NDLP 72.6 ± 5.0 74.9 ± 5.2 68.7 ± 3.4 71.7 ± 4.1 65.6 ± 4.5 70.8 ± 5.2
MC-NDLP 72.7 ± 1.3 74.6 ± 0.9 78.3 ± 2.9 80.1 ± 1.8 58.6 ± 3.8 61.6 ± 3.3
S-NDLP 71.8 ± 3.9 75.4 ± 4.6 63.3 ± 1.4 69.7 ± 2.2 65.5 ± 5.1 71.5 ± 5.8

MLP-GAE BASELINE 73.3 ± 0.8 76.1 ± 0.7 88.4 ± 0.7 89.8 ± 0.6 76.5 ± 1.1 76.5 ± 2.6
MO-NDLP 74.0 ± 0.9 75.2 ± 1.0 91.8 ± 0.5 92.2 ± 0.5 90.2 ± 0.9 90.0 ± 1.4
MC-NDLP 73.7 ± 0.8 74.3 ± 0.9 92.6 ± 0.5 92.9 ± 0.4 78.5 ± 1.1 73.6 ± 2.4
S-NDLP 73.3 ± 0.7 74.8 ± 0.9 89.8 ± 0.3 90.1 ± 0.3 85.5 ± 2.5 85.1 ± 2.4

MAGNET BASELINE 71.6 ± 0.7 74.9 ± 0.8 89.5 ± 0.6 89.9 ± 0.6 70.9 ± 6.1 68.9 ± 6.6
MO-NDLP 72.3 ± 0.6 74.7 ± 0.6 91.0 ± 0.6 91.2 ± 0.5 74.6 ± 7.1 73.4 ± 7.7
MC-NDLP 73.2 ± 0.9 75.2 ± 0.9 91.6 ± 0.6 91.7 ± 0.6 71.1 ± 7.5 69.7 ± 7.5
S-NDLP 71.3 ± 0.8 74.6 ± 0.8 89.6 ± 0.6 90.0 ± 0.5 75.3 ± 6.2 73.5 ± 7.0

dMPLP BASELINE 83.9 ± 0.9 86.8 ± 0.9 72.3 ± 1.5 73.8 ± 1.7 84.3 ± 7.0 86.2 ± 6.0
MO-NDLP 81.2 ± 1.6 83.7 ± 1.7 86.9 ± 2.1 87.6 ± 1.8 87.7 ± 4.6 90.8 ± 2.9
MC-NDLP 77.5 ± 1.9 80.8 ± 1.9 77.8 ± 3.3 77.0 ± 2.7 63.7 ± 8.6 65.5 ± 8.8
S-NDLP 84.9 ± 1.7 87.2 ± 1.8 80.7 ± 1.4 82.9 ± 1.0 85.2 ± 7.1 88.8 ± 5.0
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Table 4. ROC-AUC and AUPRC test scores of various models on Google Dataset,
trained with the Baseline strategy and our proposed strategies.

GENERAL DIRECTIONAL BIDIRECTIONAL
model strategy ROC-AUC AUPRC ROC-AUC AUPRC ROC-AUC AUPRC

GAE BASELINE 93.5 ± 0.2 94.9 ± 0.2 50.0 ± 0.0 50.0 ± 0.0 54.8 ± 0.8 53.6 ± 1.4
GR-GAE BASELINE 98.3 ± 0.1 98.9 ± 0.0 76.5 ± 0.8 69.1 ± 0.9 92.0 ± 0.2 91.9 ± 0.2

MO-NDLP 97.4 ± 0.1 98.1 ± 0.1 91.9 ± 0.2 90.3 ± 0.4 97.6 ± 0.1 97.6 ± 0.1
MC-NDLP 95.7 ± 0.1 95.7 ± 0.1 92.6 ± 0.2 92.8 ± 0.1 95.1 ± 0.1 94.2 ± 0.1
S-NDLP 96.9 ± 0.1 97.7 ± 0.0 94.3 ± 0.1 94.7 ± 0.1 98.0 ± 0.0 98.5 ± 0.0

ST-GAE BASELINE 98.4 ± 0.1 98.7 ± 0.0 87.2 ± 0.2 86.2 ± 0.1 92.2 ± 0.3 89.6 ± 0.4
MO-NDLP 97.6 ± 0.2 97.4 ± 0.3 96.6 ± 0.1 96.8 ± 0.1 98.8 ± 0.1 98.6 ± 0.1
MC-NDLP 96.6 ± 0.1 96.4 ± 0.2 94.6 ± 0.1 96.1 ± 0.1 96.4 ± 0.1 95.9 ± 0.1
S-NDLP 97.6 ± 0.0 97.5 ± 0.1 95.0 ± 0.1 96.0 ± 0.1 98.3 ± 0.1 96.8 ± 0.1

DiGAE BASELINE 97.0 ± 0.1 97.8 ± 0.1 92.9 ± 0.2 94.5 ± 0.2 90.9 ± 0.3 87.7 ± 0.4
MO-NDLP 94.7 ± 0.1 95.7 ± 0.2 95.9 ± 0.1 96.9 ± 0.1 97.7 ± 0.1 97.9 ± 0.1
MC-NDLP 91.7 ± 0.6 92.4 ± 0.5 96.3 ± 0.2 97.2 ± 0.1 95.7 ± 0.3 95.5 ± 0.4
S-NDLP 96.8 ± 0.1 97.3 ± 0.1 96.5 ± 0.1 97.0 ± 0.1 96.7 ± 0.2 96.3 ± 0.3

MLP-GAE BASELINE 90.8 ± 0.1 91.6 ± 0.0 93.5 ± 0.1 94.4 ± 0.1 81.2 ± 0.2 77.8 ± 0.4
MO-NDLP 90.4 ± 0.1 91.0 ± 0.1 97.0 ± 0.0 97.3 ± 0.0 95.6 ± 0.1 95.1 ± 0.1
MC-NDLP 86.3 ± 0.1 87.9 ± 0.1 98.4 ± 0.1 98.5 ± 0.1 96.4 ± 0.2 95.4 ± 0.1
S-NDLP 91.2 ± 0.1 91.9 ± 0.1 97.6 ± 0.0 97.8 ± 0.0 96.0 ± 0.1 95.5 ± 0.1

MAGNET BASELINE 89.1 ± 0.1 90.1 ± 0.0 93.8 ± 0.6 94.3 ± 0.4 83.9 ± 2.0 77.7 ± 2.3
MO-NDLP 88.5 ± 0.2 89.8 ± 0.1 97.1 ± 0.1 97.2 ± 0.1 92.9 ± 0.1 91.1 ± 0.3
MC-NDLP 84.7 ± 0.7 86.2 ± 0.4 97.6 ± 0.0 97.3 ± 0.1 92.5 ± 0.2 88.9 ± 0.3
S-NDLP 87.9 ± 0.3 89.4 ± 0.2 96.7 ± 0.1 96.8 ± 0.1 91.9 ± 0.5 88.3 ± 0.9

dMPLP BASELINE 98.7 ± 0.1 98.9 ± 0.2 93.6 ± 0.9 92.3 ± 2.2 95.6 ± 0.7 93.4 ± 0.8
MO-NDLP 87.3 ± 2.8 85.1 ± 2.9 97.0 ± 0.2 97.1 ± 0.3 98.1 ± 0.6 97.7 ± 0.8
MC-NDLP 96.6 ± 0.6 97.6 ± 0.4 93.6 ± 0.4 93.7 ± 0.5 96.1 ± 0.4 96.0 ± 0.5
S-NDLP 94.9 ± 1.0 95.0 ± 1.0 96.7 ± 0.3 96.8 ± 0.2 96.3 ± 0.8 94.5 ± 1.6

averaged over 5 random splits, keeping the same seed for all models. All ROC-
AUC and AUPRC values are scaled by 100 for compactness and clearer visualiza-
tion. In bold we highlight the best training strategy for each metric/model/task
combination, while the underlined scores indicate the best training strategy
across all models.

For comparison, we evaluated an NDLP-incapable graph autoencoder (GAE)
model trained under the baseline strategy. While GAE performs deceptively well
on the General DLP task, it fails to capture edge directionality, as expected. This
is reflected in its random performance on the Directional task, with a ROC-AUC
of 0.5. This limitation arises from the inner product decoder used by GAE [21],
which always assigns the same probability to edges (u, v) and (v, u). Results
from this experiment are reported in the first rows of Tables 2, 3 and 4.

Our proposed strategies consistently improved performance on the Direc-
tional and on the Bidirectional tasks across all datasets and models, only slightly
compromising (at times even benefiting) General DLP performance [43], with
a few exceptions. For instance, MAGNET showed similar performance on Cora
and CiteSeer, regardless of the training strategy, while it achieved significant
improvement in the Bidirectional task on the Google dataset when trained us-
ing our strategies. This highlights that even though some models, like MAG-
NET, show limited gains on specific datasets, the overall benefits might be more
pronounced in larger datasets like Google. dMPLP shows good results with a
balanced performance across all tasks for the S-NDLP and MO-NDLP strate-
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gies, while MC-NDLP seems less effective especially for the Bidirectional task.
Reflecting the representational power of the original undirected model, dMPLP
achieves the best performances in the General task both for Citeseer and Google
datasets.

For other models like DiGAE, we observed a trade-off: its performance on
the Directional task improved, but often at the expense of lower General task
scores. Notably, on the Google dataset, especially with the S-NDLP strategy,
DiGAE maintained its General task performance while delivering modest gains
in Directional and Bidirectional tasks. Both MLP-GAE and MAGNET per-
formed well on the Directional task but struggled on the General task, where
their scores were systematically lower than those of the NDLP-incapable baseline
GAE. DiGAE also struggled with the General task, surpassing GAE’s baseline
performance only on the Google dataset.

Selecting the right model-strategy combination depends on how much one
is willing to sacrifice General task performance for improvements in Directional
and Bidirectional tasks. Interestingly, this trade-off is not always necessary. For
example, with the CiteSeer dataset, Gravity-GAE with MC-NDLP achieved the
best General task performance while significantly improving Directional and
Bidirectional scores. However, the optimal combination of model and strategy
varies by dataset. For the Cora dataset, Gravity-AE with S-NDLP offers a bal-
anced solution, delivering strong Directional and Bidirectional performance with
only a slight reduction in General task scores. On the CiteSeer dataset, ST-GAE
with MO-NDLP provides a good balance, offering competitive General task per-
formance alongside noticeable gains in Directional and Bidirectional tasks. Simi-
larly, for the Google dataset, ST-GAE with MO-NDLP proves to be an excellent
choice, delivering significant improvements in Directional and Bidirectional tasks
with minimal sacrifice in performance on the General task.

5 Conclusions

In this paper, we introduced and evaluated new training strategies to improve
performance on Neural Directed Link Prediction tasks, addressing the limita-
tions of current models in learning edge directionality. By extending existing
models to handle multiple sub-tasks simultaneously, we demonstrated that the
proposed strategies – Multi-Class (MC-DLP), Scalarization-based (S-DLP), and
Multi-Objective (MO-DLP) Directed Link Prediction – consistently improve per-
formance on both Directional and Bidirectional tasks, although at times with a
trade-off in General DLP task performance.

While no single approach universally outperforms across all settings, the flex-
ibility offered by our proposed training strategies provides a powerful means for
improving NDLP model capabilities, and adopting any of the strategies is likely
to yield meaningful benefits over the models trained without our optimization
strategies. The proposed strategies do not require any modifications in the orig-
inal models’ architecture and are thus applicable to most MPNN models and
versatile. The three proposed strategies affect the computational complexity of
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training differently. While MC-NDLP has a minimal impact, both S-NDLP and
MO-NDLP require the computation of three losses, increasing the total mem-
ory needed. Nevertheless, also these two strategies can be effectively trained by
parallizing the computation of the losses and implementing batching.

Future work can focus on refining these strategies to minimize trade-offs, par-
ticularly for applications that demand robust handling of directed graphs and
directed link prediction. Our training strategies for learning edge directionality
might also be usefully combined with approaches that allow GNNs to better rep-
resent edge directionality. Many alternative encodings [4,5] and labeling tricks
[1,2,3] have been proposed to enhance the expressiveness of GNNs, also for per-
forming DLP, and it would be interesting to explore a wider range of augmented
models. Simultaneous training across the three facets of DLP enables more con-
cise comparative studies on the ability of models and various enhancements to
provide balanced performance across these facets. Also, an interesting area for fu-
ture exploration is knowledge graphs (KG), which could greatly benefit from our
methods. Since KG-oriented tasks often employ specialized losses with margin
terms [5] and involve complex query answering rather than basic link prediction
[30], studying how enhanced directionality learning impacts KG performance
would be a valuable direction.
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