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Abstract. Graph Transformers (GTs) address the locality limitation of
traditional GNNs, which aggregate only local neighbor information, by
leveraging global attention. However, they suffer from two significant is-
sues: neglecting community structures and information over-squeezing.
In this paper, we first identify these two problems and propose a Community-
Aware Graph Transformer (CoGT) to solve them. CoGT introduces a
novel node-community-global hierarchical aggregation framework. This
design preserves community-level semantics while reducing the volume
of aggregated information, alleviating the over-squeezing problem. CoGT
first employs a two-stage positional encoding to identify latent commu-
nities and enhance semantic consistency. Then, a hierarchical and par-
allel transformer computation method based on community represen-
tations facilitates global information interaction. Furthermore, we en-
able community-wise parallel attention computation, improving compu-
tational efficiency. Experimental results demonstrate that CoGT outper-
forms existing methods across multiple real-world datasets.
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1 Introduction

The core objective of Graph Representation Learning (GRL) [27] is to capture
both topological structure and semantic information by modeling node interac-
tions. Traditional Graph Neural Networks (GNNs) [24], limited by local neigh-
borhood aggregation, struggle to uncover long-range dependencies [3, 23]. Graph
Transformers (GTs) [22, 26], using global attention mechanisms [16], enable in-
teractions across all nodes, significantly enhancing node representations. This
global aggregation can overcome local neighborhood limitations and identify
distant nodes with potential benefits [25]. However, many studies have focused
on improving the efficiency of GTs while ignoring the problems of global ag-
gregation in GRL: the loss of community structure semantics and information
over-squeezing.

Loss of Community Structure Semantics (Section 2.1): Graph data
often exhibit a hierarchical community structure [14], an inherent property of
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graph data. Therefore, to describe a graph from a global rather than a local per-
spective, community-based semantics best capture its nature [7]. GTs introduce
global perspectives into node representations via global information exchange.
However, existing GTs use homogeneous global attention that overlooks hier-
archical community semantics, undermining the graph’s global structure. This
leads to semantic inconsistencies across hierarchical levels, where core and pe-
ripheral nodes are treated uniformly, failing to capture their distinct roles. More-
over, this indiscriminate aggregation of large volumes of node features introduces
an additional challenge: information over-squeezing, which diminishes the quality
of node representations by blending informative signals with excessive noise.

Information Over-Squeezing (Section 2.2): Global attention aggregates
information from all nodes simultaneously. This may lead to over-squeezing,
where high-weight noise mixes with low-weight signals, resulting in the loss of
important information. This disrupts the hierarchical structure of the central
node, flattening the influence of all nodes on it. This is similar to over-squashing
in GNN [18], which is essentially the problem of weakening or losing important
signals caused by receiving too much information. From a structural entropy
perspective [13], this is equivalent to using a global structure to represent each
node, which increases the structural entropy of node representations. As a result,
node features learned in a high-entropy space are suboptimal. While global ag-
gregation uncovers latent information, a balance must be struck between global
aggregation and information over-squeezing.

To this end, we propose a Community-Aware Graph Transformer (CoGT),
which features two key designs: Learnable Two-stage Positional Encoding (TiCod-
ing) and Hierarchical and Parallel Transformer Computation (HPTC). CoGT
achieves hierarchical, semantics-aware global aggregation by identifying latent
communities in graphs. Specifically, TiCoding first injects global positional infor-
mation into nodes via a local structure encoder and leverages the result to detect
potential communities. Each identified community is assigned a unique encoding
to model community semantics explicitly. HPTC extracts community representa-
tions and computes the hybrid attention that integrates information from central
nodes, intra-community nodes, and inter-community representations to update
node embeddings. We also crafted a parallelized attention computation process
to improve efficiency. This design not only explicitly models community seman-
tics but also replaces large-scale node features with community representations
for aggregating, alleviating the over-squeezing issue.

The contributions of this paper can be summarized as follows:

– We propose CoGT that mitigates community semantics loss and information
over-squeezing via latent community discovery and hierarchical aggregation
with parallel and efficient attention computation.

– We design TiCoding for effective multi-semantic positional encoding and
introduce HPTC for efficient hierarchical aggregation, enabling community-
aware modeling while alleviating over-squeezing.

– We conduct an empirical study revealing community semantics loss and over-
squeezing as limitations in existing GTs.



Community-Aware Graph Transformer 3

(a) Number, density, and size of communities (b) Visualization of communities in real-world datasets
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Fig. 1. The community structure is prominently present in graphs. (a) Statistics of
community-related metrics. Modularity reflects the density of communities within a
graph to some extent, while the size of each point represents the average community
size. (b) Visualization for different communities in datasets by coloring the nodes ac-
cording to their respective communities.

– Extensive experiments show that CoGT achieves superior performance and
by explicitly modeling community-level semantics.

2 Empirical Investigation

2.1 Community Structures Prevalent in Graphs

To highlight the importance of explicitly modeling community-level semantics,
we analyzed key community-related metrics from common graph datasets, in-
cluding the number of communities NC , the average number of nodes in com-
munities Navg, and modularity [14] Q = 1

2e

∑
i,j

(
Aij − didj

2e

)
δ(ci, cj), where e

is the edge numbers, Aij is the adjacency matrix, di is the degree of node vi, and
δ(ci, cj) equals 1 if vi and vj are in the same community and 0 otherwise. The
results are shown in Fig. 1(a). We use the Louvain algorithm [14] for community
detection on common graph datasets and count the number of communities.
We set the community granularity to 1.2, ensuring that the algorithm identifies
larger communities, rather than smaller, loosely connected ones. Based on the
community partitioning results, we calculated modularity Q to quantify the ex-
tent of the community structure. We also visualized the communities in datasets
by coloring the nodes according to their respective communities in Fig. 1(b).

The results in Fig. 1(a) show that: (1) Common graph datasets typically ex-
hibit dense community structures, with each graph containing tens to hundreds
of communities. (2) Generally, when the modularity Q > 0.3, the community
structure can be considered significant. All datasets exceed this threshold, with
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Fig. 2. A set of comparative experiments to demonstrate the issue of information over-
squeezing in GTs. Global node aggregation alone performs significantly worse than
GNNs, emphasizing important neighbors, indicating that global aggregation suffers
from the information over-squeezing problem.

most having Q values greater than 0.6, indicating that these graphs feature sig-
nificant community structures. (3) The calculation shows that NC × Navg ≥
total number of nodes N , with some datasets approaching 2N . This indicates
that the community structure covers nearly all nodes in the graph, with some
nodes playing roles in multiple communities, which supports the discovery of
latent information through global aggregation. (4) From the visualizations, we
can easily observe significant community structures, with dense connections gen-
erally present within the communities.

In summary, we conclude that community-level semantics are a crucial and
often overlooked level of semantic granularity. However, existing methods often
overlook modeling the community structure, resulting in the loss of community-
level semantics during the global aggregation process.

2.2 Information Over-Squeezing in GTs.

We conducted empirical studies to validate that the use of simple global aggre-
gation leads to the issue of information over-squeezing. We selected the best-
performing model from GCN, GAT, and GraphSAGE as the baseline perfor-
mance of classical GNNs. We compared it with models using only transformer-
based global aggregation, classical GNNs with global aggregation, and two promi-
nent GTs. The results are shown in Fig. 2.

Our findings are as follows: (1) Information Over-Squeezing Issue: Using only
GNNs significantly outperforms global aggregation alone. Compared to GNNs,
purely global aggregation injects excessive information into each node, making
their structural representations overly similar. This leads to a low signal-to-
noise ratio, making node differentiation challenging. (2) In contrast, GNNs em-
phasize crucial information through local aggregation while inherently preserv-
ing some community structures, resulting in more effective representations. (3)
When naively combining GNNs with global aggregation, performance degrada-
tion is observed in two out of three datasets, indicating that global aggregation
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exacerbates the over-squeezing issue. This phenomenon is also evident in the
performance of state-of-the-art GT models, such as NodeFormer and GOAT in
the figure, suggesting that directly integrating global aggregation suffers from
severe information compression. (4) However, the performance improvement on
the enhanced WikiCS dataset suggests that global aggregation can be beneficial
by identifying latent yet useful node relationships.

Based on these observations, we need to find a balance between global ag-
gregation and information over-squeezing, ensuring that the benefits of global
aggregation are leveraged while avoiding issues like over-squeezing.

3 Related Work

3.1 Graph Representation Learning

The goal of GRL is to integrate node or graph-level features with supervision
signals through an end-to-end training process [27], generating discriminative
low-dimensional representations. Traditional approaches primarily include ma-
trix factorization, e.g., Laplacian Eigenmaps [1], and random walk-based shal-
low models, e.g., DeepWalk [15], Node2Vec [8]. While these methods effectively
capture the statistical properties of graph structures, they suffer from a strong
dependence on feature engineering and lack adaptive parameters, making it dif-
ficult to jointly optimize representations for downstream tasks.

The emergence of GNNs [24] marked a significant shift toward deep learning-
based approaches in GRL. Message-passing GNNs [9], e.g., GCN [11] and GAT [19],
aggregate neighborhood features iteratively to capture local structural patterns.
Specifically, GCNs [3] employ spectral convolution operations to establish a
paradigm for information propagation, whereas GATs [20] introduce attention
mechanisms to enhance the interpretability of the aggregation process. However,
classical GNNs are fundamentally constrained by their local aggregation assump-
tion, limiting their ability to model long-range and latent dependencies [6]. This
limitation is particularly pronounced in domains with complex topological struc-
tures, such as social networks and molecular graphs. To overcome the bottleneck
of local neighborhood aggregation, Transformer architectures have been intro-
duced into GRL, leading to the development of GTs [16, 22]. GTs leverage global
attention mechanisms to compute attention between any pair of nodes [26, 2],
effectively capturing long-range and latent dependencies in graph structures.

3.2 Transformer Models

Transformer models [5] were proposed for natural language processing, where its
key innovation lies in eliminating the sequential dependencies inherent in tradi-
tional recurrent neural networks. Instead, it leveraged self-attention mechanisms
to model global interactions between sequence elements. The success of ViT [10]
in computer vision, surpassing the performance of Convolutional Neural Net-
works, highlighted the generalizability of attention mechanisms across different
modalities. This realization has driven the extension of Transformers to GRL.
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Fig. 3. The CoGT framework.

GTs treat all nodes in the graph as interactive attention units [21], allowing
direct computation of attention weights between any pair of nodes [4]. Cur-
rent research efforts focus on enhancing the scalability of Transformer models
for large-scale graphs [12, 17, 22]. However, existing approaches often overlook
two critical challenges associated with global attention aggregation in GRL: (1)
excessive reliance on node-level interactions may weaken the semantic represen-
tation at the community level; (2) global attention can lead to an “Information
Over-Squeezing” effect, increasing noise interference and diminishing the effec-
tiveness of crucial information.

4 Methodology

4.1 Overview

The goal of CoGT is to explicitly model community-level semantics during the
global aggregation step through hierarchical aggregation. By using community-
level features instead of a large number of node features in attention-based ag-
gregation, CoGT effectively mitigates the issue of information over-squeezing.

The CoGT framework is shown in Fig. 3. To model a community-level se-
mantic in the global aggregation process, we first apply a two-stage positional
encoding to all nodes in the graph. In the first stage, a local structure encoder
is used to encode the position of each node. Based on this encoding, nodes are
then communityed, and each community is assigned a community-level positional
encoding to distinguish different communities. Next, the communityed feature
matrix is passed to the HPTC layer for attention-based computation. This layer
not only enables global aggregation but also mitigates excessive information
squeezing. Furthermore, its design inherently supports parallel computation at
the community level, significantly enhancing computational efficiency.

4.2 Two-stage Positional Encoding

For a graph G(E,X) with edge set E and node features X, where the total
number of nodes is N , we first apply a local structure encoder to inject positional
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information into each node’s representation:

X = LocalStructureEncoder(G(E,X)), (1)

where X ∈ RN×F denotes the encoded feature matrix, and F is the hidden di-
mension. We adopt graph convolutional networks as the local structure encoder.

To ensure a differentiable community assignment process and prevent exces-
sive community sizes that may cause memory overflow and semantic imbalance,
we design a classification-based assignment strategy with a constraint on the
"average community size Nm = ⌈N

M ⌉", where M is the number of communities.
We formulate node assignment as a classification problem and apply the softmax
function to normalize the probability Z ′

i,j of assigning node i to community j:

Z = XWC, Z ′
i,j =

exp(Zi,j)∑M
k=1 exp(Zi,k)

, (2)

where WC ∈ RF×M is a learnable matrix, and Z is the assignment score matrix.
We enforce a fixed number of nodes, Nm, per community by sorting nodes based
on assignment probabilities and selecting the top Nm nodes. Then, we assign a
learnable community position embedding Em ∈ RF to each community Cm to
distinguish its semantics and enhance intra-community node consistency:

X′
i = Xi +Em(i ∈ Cm), (3)

Based on node-community affiliations, we obtain the reorganized feature matrix
X′ ∈ RM×Nm×F , which incorporates twofold positional semantics. Here, X′[m, :
, :] represents the features of all nodes in Cm.

4.3 Hierarchical and Parallel Transformer Computation

We employ hierarchical aggregation to achieve global feature interaction while
mitigating the information over-squeezing problem. First, we compute the query,
key, and value matrices for each community Cm. We directly feed X′ into linear
layers to compute the Q, K, and V in parallel, which reduces memory peak usage
because the tensor size of each community is much smaller than the original X:

Qm = WQX
′
m, Km = WKX′

m, Vm = WV X
′
m, (4)

where W(·) are learnable weights, F is the hidden dimension, X′
m is X′[m, :, :].

To mitigate the information over-squeezing issue caused by the O(N2) level of
feature interactions among all nodes globally, we introduce community-level fea-
tures to replace node-level interactions outside the community. Nodes within the
same community interact via node features, while nodes from different communi-
ties engage through a set of community-level features. Since community features
have higher semantic consistency and are much fewer in number compared to
node features, they effectively prevent information over-squeezing and high noise
within node features, thereby improving the efficiency of feature interactions.
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Fig. 4. HPTC leverages community features to enable parallel attention computation
at the community level. This design not only incorporates community semantics but
also enhances computational efficiency.

We compute the community-level query (CQ), key (CK), and value (CV )
matrices, which are obtained by applying an aggregation function to the features
of each community, followed by concatenation:

cQm = Agg(Qm), cKm = Agg(Km), cVm = Agg(Vm), (5)

CQ =
∥∥M
m=1

(cQm), CK =
∥∥M
m=1

(cKm), CV =
∥∥M
m=1

(cVm), (6)

where cQm, cKm, cVm is the query, key, and value for community m. Agg(·) denotes to
the aggregation operation, and

∥∥M
m=1

denotes concatenation. To improve compu-
tational efficiency, we employ simple aggregation methods such as mean pooling.

Next, we refine the community-level key and value representations using
community-level attention, allowing the community features to be optimized
and enriched in semantic information. The community-level attention matrix
PC ∈ RM×M is computed as:

PC = σ

(
CQCK⊤

√
F

)
, KG = PCC

K , VG = PCC
V . (7)

Here, σ denotes the activation function, and we use tanh as the activation func-
tion in this work. The use of tanh for activation is to maintain computational
efficiency at the O(N) level, rather than the common N-level of softmax. Fur-
thermore, positive or negative attentional values can also be considered to ag-
gregate or depress the features of corresponding communities.

To establish global semantic dependencies for each node, we compute intra-
community and cross-community attention as follows:

Pintra
m = σ

(
QmKm

⊤
√
F

)
, Pcross

m = σ

(
QmKG⊤

√
F

)
, (8)
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where Pintra
m ∈ RNm×Nm captures interactions between nodes within the same

community, and Pcross
m ∈ RNm×M models interactions between nodes in com-

munity m and all communities globally. Notably, both Pintra
m and Pcross

m can
be efficiently computed in a single step by concatenating Km and KG. More-
over, since we reshape the feature matrix into 3 dimensions, Pintra

m and Pcross
m

computation for M communities can be performed in parallel simultaneously.
Finally, we apply the attention scores to both node-level and community-level

value matrices to generate the final node representations for Cm:

Hm = [Pcross
m

∥∥Pcross
m ] · [Vm

∥∥VG], (9)

where [·
∥∥·] denotes a concatenation operation along columns, and each row of

Hm ∈ RNm×F corresponds to the representation of a node in community m.
These representations incorporate information from other nodes within the same
community as well as global information from all M communities. Finally, we
restore the original order of the feature matrix through the node indexes gener-
ated by the community assignment. It is worth noting that the computation of
all M community representation matrices is performed in parallel, significantly
reducing both computational time and peak memory usage.

5 Theoretical Justification

5.1 Global Feature Interaction via Cross-Community Attention

Although the model avoids explicit attention computation for all node pairs
through community partitioning, the hierarchical aggregation mechanism still
enables information interaction between any two nodes in the input graph. For
any two nodes vi ∈ Cm and vj ∈ Cn:

If vi and vj are in the same community (i.e., m = n), their interaction is
directly modeled by node-level attention. The weight of vi on vj is defined as:

Pintra
m (i, j) = σ

(
Qm[i, :]Km[j, :]

⊤
√
F

)
, (10)

where Pintra
m (i, j) directly encode the semantic similarity between vi and vj .

The local aggregation result for node vi is hlocal
i =

∑
j∈Cm

Pintra
m (i, j)Vm[j, :],

explicitly capturing fine-grained associations within the community.
If the nodes belong to different communities (i.e., m ̸= n), their interaction

is indirectly achieved through community-level features. The node features of
community Cm are aggregated into a community feature cVm, which is further
weighted by the inter-community attention matrix PC ∈ RM×M to form the
updated global feature VG. The elements of PC are computed as:

PC(m,n) = σ

(
cQmcKn

⊤

√
F

)
, (11)
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where PC(m,n) represents the attention weight of community Cm on Ck. Each
row vG

n ∈ RF of VG denotes the higher-order representation of community Cn

in the global semantic space. The interaction between cross-community nodes
vi and vj is achieved through the cross-community attention matrix Pcross

m ∈
RNm×M , whose elements are defined as:

Pcross
m (i, n) = σ

(
Qm[i, :]KG[n, :]

⊤

√
F

)
, (12)

where Pcross
m (i, k) represents the weight of vi ∈ Cm on community Ck. The

global aggregation result for vi is hglobal
i ∝

∑M
k=1 P

cross
m (i, k)VG[k, :]. Notably,

the information of node vj ∈ Cn is transmitted to vi through its community’s
VG[k, :], i.e., hglobal

i ∝ Pcross
m (i, n)VG[n, :]. Since VG[n, :] is the updated cVn , this

process indirectly establishes cross-community dependencies.
From the perspective of gradient propagation, regardless of whether nodes

belong to the same community, their gradients can be backpropagated through
local or global paths. For vj ∈ Cn, its gradient contribution to vi ∈ Cm is:

∂L
∂Xj

=


∂L

∂hlocal
i

· ∂Pintra
m (i,j)
∂Xj

m = n

∂L
∂hglobal

i

· ∂Pcross
m (i,n)

∂KG[n,:]
· ∂KG[n,:]

∂cK
n

· ∂cK
n

∂Xj
m ̸= n

. (13)

This indicates that the hierarchical aggregation mechanism still enables infor-
mation interaction between any two nodes in the input graph.

5.2 Reducing Structural Entropy via Community Segmentation

This study introduces structural entropy to quantify the structural information
encoded in node representations. Traditional graph transformers employ global
attention to enable full-node interactions, effectively leveraging graph structures
but leading to high structural entropy. The fully connected interaction mecha-
nism makes nodes highly susceptible to noise, particularly in large-scale graphs,
where irrelevant interactions dilute critical semantic information.

To address this issue, we propose a hierarchical propagation strategy based
on community partitioning. First, fine-grained intra-community attention is per-
formed to capture local dependencies while avoiding inter-community noise.
Then, global information exchange is achieved through the aggregation of com-
munity representations, which filters noise while preserving essential seman-
tics. This strategy optimizes the information propagation path from N − 1 to
Nm−1+N , ensuring Nm−1+M ≪ N−1, significantly reducing structural en-
tropy. In conventional methods, structural entropy is determined by interactions
between all node pairs, formulated as:

Hglobal ∝ −
∑

all nodes N

p log p, (14)
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Table 1. Statistics of the datasets used in this paper.

Dataset Type # Nodes # Edges # Features Classes Metric

Amazon-Computer Homophily 13,752 245,861 767 10 Accuracy
Amazon-Photo Homophily 7,650 119,081 745 8 Accuracy
Coauthor-CS Homophily 18,333 81,894 6,805 15 Accuracy
Cora Homophily 2,708 5,278 1,433 7 Accuracy
WikiCS Homophily 11,701 216,123 300 10 Accuracy
ogbn-proteins (large) Homophily 132,534 39,561,252 8 2 ROC-AUC

Squirrel Heterophily 2,223 46,998 2,089 5 Accuracy
Chameleon Heterophily 2,277 31,421 2,325 5 Accuracy
Amazon-Ratings Heterophily 24,492 183,831 300 5 ROC-AUC
Minesweeper Heterophily 10,000 39,402 6 2 ROC-AUC
Questions Heterophily 48,921 118,540 301 2 ROC-AUC
pokec (large) Heterophily 1,632,803 30,622,564 65 2 Accuracy

where p represents the dependency strength between any two nodes, resulting
in a high entropy value. In contrast, our method decomposes entropy into lo-
cal interaction entropy (within communities) and global propagation entropy
(between condensed community representations):

Hnew ∝ −
∑

intra-community Nm

p log p−
∑

inter-community M

q log q, (15)

where p represents the dependency strength between two nodes in one com-
munity, analogous to Pintra, and q represents the dependency strength between
community features, analogous to Pcross. Consequently, CoGT updates node
representations using only intra-community node information and the coarse-
grained, sparse linkage structure between communities. This approach results in
significantly lower structural entropy compared to methods that perform interac-
tions at the global node level, mitigating the issue of information over-squeezing.

6 Experiments

6.1 Experimental Setup

For the datasets, we selected several commonly used homophilic and heterophilic
graphs, including large graphs. The specific data set statistics are shown in Ta-
ble 1. The training, validation, and test splits for each dataset follow the official
partitioning method provided for that dataset. Except for the ogbn-proteins,
Amazon-Ratings, Questions, and Minesweeper datasets, which are evaluated us-
ing the ROC-AUC metric, all other datasets are evaluated using accuracy. This
setting follows the evaluation protocol used in previous works. ROC-AUC (Area
Under the Receiver Operating Characteristic Curve) measures a model’s ability
to distinguish between positive and negative classes and is particularly useful in
imbalanced classification scenarios. In the preprocessing stage, we first convert
the graph into an undirected graph and then add self-loops.



12 Yutai Duan et al.

Table 2. Node classification results on homophilic datasets. The top first, second,
and third results are highlighted.

Model Computer Photo CS Cora WikiCS ogbn-proteins

GCN 89.65 ± 0.52 92.70 ± 0.20 92.92 ± 0.12 81.60 ± 0.40 77.47 ± 0.85 72.51 ± 0.35
GraphSAGE 91.20 ± 0.29 94.59 ± 0.14 93.91 ± 0.13 82.68 ± 0.47 74.77 ± 0.95 77.68 ± 0.20
GAT 90.78 ± 0.13 93.87 ± 0.11 93.61 ± 0.14 83.00 ± 0.70 76.91 ± 0.82 72.02 ± 0.44

GraphGPS 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 82.84 ± 1.03 78.66 ± 0.49 76.83 ± 0.26
NAGphormer 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 82.12 ± 1.18 77.16 ± 0.72 73.61 ± 0.33
Exphormer 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 82.77 ± 1.38 78.54 ± 0.49 74.58 ± 0.26
NodeFormer 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 82.20 ± 0.90 74.73 ± 0.94 77.45 ± 1.15
GOAT 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 83.18 ± 1.27 77.00 ± 0.77 74.18 ± 0.37
Polynormer 93.68 ± 0.21 96.46 ± 0.26 95.53 ± 0.16 83.25 ± 0.93 80.10 ± 0.67 78.97 ± 0.47

CoGT 94.01 ± 0.28 96.56 ± 0.31 95.93 ± 0.20 83.98 ± 0.76 81.23 ± 0.24 81.33 ± 0.37

Table 3. Node classification results on heterophilic datasets. The top first, second,
and third results are highlighted.

Model amazon-ratings minesweeper squirrel chameleon questions pokec

GCN 48.70 ± 0.63 89.75 ± 0.52 38.67 ± 1.84 41.31 ± 3.05 76.09 ± 1.27 75.45 ± 0.17
GraphSAGE 53.63 ± 0.39 93.51 ± 0.57 36.09 ± 1.99 37.77 ± 4.14 76.44 ± 0.62 75.63 ± 0.38
GAT 52.70 ± 0.62 93.91 ± 0.35 35.62 ± 2.06 39.21 ± 3.08 76.79 ± 0.71 72.23 ± 0.18

GraphGPS 53.10 ± 0.42 90.63 ± 0.67 39.67 ± 2.84 40.79 ± 4.03 71.73 ± 1.47 OOM
NAGphormer 51.26 ± 0.72 84.19 ± 0.66 39.99 ± 3.90 44.39 ± 3.93 68.17 ± 1.53 76.59 ± 0.25
Exphormer 53.51 ± 0.46 90.74 ± 0.53 40.41 ± 2.42 42.06 ± 2.44 73.94 ± 1.06 OOM
NodeFormer 43.86 ± 0.35 86.71 ± 0.88 38.52 ± 1.57 34.73 ± 4.14 74.27 ± 1.46 71.00 ± 1.30
Polynormer 54.81 ± 0.49 97.46 ± 0.36 41.97 ± 2.14 41.97 ± 3.14 78.92 ± 0.89 86.10 ± 0.05

CoGT 55.31 ± 0.54 97.52 ± 0.37 45.10 ± 1.28 45.38 ± 3.39 77.98 ± 1.03 86.14 ± 0.05

We compare CoGT with both classic GNNs and recent GTs. The GNN
baselines include GCN [11], GraphSAGE [9], and GAT [19], which rely on lo-
cal message passing. The GTs include GraphGPS [16], NAGphormer [2], Ex-
phormer [17], NodeFormer [21], GOAT [12], and Polynormer [4].

We ran each experiment ten times with different random seeds and reported
the average results. Regarding hyperparameter settings, the type for the local
structure encoder is selected from {GCN, GAT, GraphSAGE}, with the number
of layers ranging from [2, 12]. The learning rate is chosen from {0.01, 0.005, 0.001,
0.0005}, and weight decay is selected from {0, 5e-4, 5e-5}. For the number of
communities, we select values from [0, 70] for medium-sized graphs. For large
graphs, to ensure a fair comparison, we use a batch size of 10,000 for ogbn-
proteins and a batch size of 550,000 for pokec, setting the number of communities
to 15 and 425, respectively. Finally, the number of layers for CoGT is chosen
from {1, 2}.
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Fig. 5. Comparison of CoGT and SOTA GTs in terms of performance, efficiency, and
memory consumption. The size of each point represents memory consumption.

6.2 Experimental Results

Tables 1 and 2 present the comprehensive performance of CoGT across a wide
range of datasets. The selected datasets include diverse types, such as homophilic
and heterophilic graphs, as well as large graphs containing a single component.

CoGT achieves outstanding performance in various scenarios and achieves the
best results on multiple datasets. The key difference between CoGT and previ-
ous GTs is that it explicitly models community-level semantics during the global
aggregation process. Our design provides the transformer layer with features
that incorporate structural semantics, which are crucial characteristics of graph
data. We believe that the performance gains of CoGT primarily stem from this
step. By utilizing community-level features in the attention calculation, CoGT
avoids the problem of excessive feature noise that arises from introducing node
features of O(N) complexity. Moreover, community-level features are derived
from a community process with positional encodings, where the node seman-
tics within each community are more consistent, allowing the central nodes to
effectively aggregate valuable information while filtering out noise.

Notably, CoGT also achieves the best performance on two large-scale datasets,
indicating that global aggregation using community features remains effective
even for large graphs. This also confirms the existence of the information over-
squeezing problem in the global aggregation process.

6.3 Efficiency Analysis

In the design of CoGT, we employ several strategies to enhance the overall
model efficiency. These include utilizing a community-structured parallel atten-
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Fig. 6. The results of ablation studies. The results show that removing the proposed
components leads to varying degrees of performance degradation.

tion mechanism within the transformer layer, replacing the quadratic-complexity
Softmax function with the linearly-complex ReLU function, and incorporating
efficient average pooling aggregation.

In terms of complexity, to prevent any community from growing too large
during the aggregation process and further increasing memory consumption, we
adopted a strategy where each community contains an average number of nodes.
As a result, the number of nodes in a community scales with the size of the graph,
leading to quadratic complexity. To address this issue, we merge the community
features during computation, aggregating the features of M communities into K
through block averaging, thereby achieving linear complexity.

The comparison between CoGT and SOTA baseline methods in terms of
efficiency is shown in Fig.5. From the figure, it is evident that CoGT not only
achieves superior performance but also demonstrates advantages in terms of peak
memory usage and training time. This is attributed to the parallel attention
computation, which significantly boosts model efficiency. By decomposing the
multiplication of large feature matrices into parallel multiplications of smaller
matrices, the required peak memory usage is greatly reduced.

6.4 Ablation Study

Fig. 6 presents the results of experiments validating the effectiveness of various
components of CoGT. We replaced the HTPC layer with the SOTA method,
Polynormer, to assess the effectiveness of the proposed HTPC layer. We also
removed the community positional encoding to verify the importance of this
step. The results show that replacing CoGT with other GT layers led to a per-
formance decline, indicating that explicitly modeling community semantics is
effective. Furthermore, removing the positional encoding also resulted in a per-
formance drop, demonstrating that community positional encoding is beneficial.
We believe this encoding highlights the semantic distinctions between commu-
nities, which is important for attention modeling.

Additionally, we conducted experiments to explore the impact of community
count on model performance, with the results shown in Fig.7. It can be observed
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Fig. 7. The results of proposed CoGT under different community numbers. The results
indicate that the optimal number of communities varies across datasets, suggesting
that different datasets require different levels of semantic granularity in community
representation.

that the optimal number of communities varies across different datasets. We
interpret this result as indicating that the communities with clear semantic dis-
tinctions differ across datasets, similar to how universities have varying numbers
and types of academic departments. From an empirical perspective, we hypothe-
size that the hyperparameter for community count is proportional to the number
of nodes and the number of label categories.

7 Conclusion

In this paper, we first identify two key challenges that may limit the expressive-
ness of global attention mechanisms in GRL: (1) the absence of community-level
semantics and (2) the issue of information over-squeezing. To address these is-
sues, we propose CoGT, a novel GT variant that explicitly models community-
level semantics by identifying latent communities within the graph. This de-
sign not only enhances higher-order semantic representation but also reduces
the volume of aggregated information, alleviating the over-squeezing effect. Fur-
thermore, we provide theoretical justifications to support the effectiveness of
CoGT’s design. Extensive experiments demonstrate that CoGT outperforms ex-
isting methods in performance while maintaining efficiency.

Currently, CoGT is not yet capable of automatically adapting the number
of communities to different datasets; this value still needs to be set empirically.
Therefore, a direction for future work is to develop a version of CoGT that
supports adaptive community number selection. In addition, the current design
of CoGT primarily targets node-level tasks, and it could be further extended to
support edge-level and graph-level tasks in the future.
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