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Abstract. Pattern set mining, which is the task of finding a good set of
patterns instead of all patterns, is a fundamental problem in data mining.
Many different definitions of what constitutes a good set have been
proposed in recent years. In this paper, we consider the reconstruction
error as a proxy measure for the goodness of the set, and concentrate on
the adjacent problem of how to find a good set efficiently. We propose a
method based on bottom-k hashing for efficiently selecting the set and
extend the method for the common case where the patterns might only
appear in approximate form in the data. Our approach has applications in
tiling databases, Boolean matrix factorization, and redescription mining,
among others. We show that our hashing-based approach is significantly
faster than the standard greedy algorithm while obtaining almost equally
good results in both synthetic and real-world data sets.
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1 Introduction

The goal of data mining is to find surprising, new information about the data. A
common problem with many methods that find local patterns from the data is
that they find too many of those patterns—so-called pattern explosion problem.
The popular solution to the pattern explosion problem is to switch to pattern
set mining ; that is, to the task of finding a good set of patterns instead of all
patterns.

The definition of what is a good set is a topic of active study, and approaches
such as MDL [26] or subjective interestingness [5] have been proposed for that.
In this paper we approach the problem from a different perspective. We take the
reconstruction error as the means of defining a good set, and ask the question:
how fast can we find the set of patterns that minimizes the reconstruction error?

The motivation for our approach is twofold: For one, we argue that the
reconstruction error is often a good proxy for the more sophisticated pattern set
selection methods. Indeed, they all ask the question: how much yet unexplained
data this new pattern explains, the main difference being how the “how much”
part is defined. Of these, the “plain” reconstruction error is also the fastest to
compute, which is why we prefer it.

For two, we argue that selecting the set of patterns is typically slow. This can
be shadowed by the fact that generating the patterns can be slower and hence
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speeding up the task of selecting the patterns does not feel important. But this is
often not so straightforward. In many cases, each pattern is independent of the
others, and they can be generated efficiently in parallel. With modern multi-core
CPUs and GPUs the pattern generation, even for a huge number of patterns,
can be very effective. Selecting the patterns in the set, however, is inherently
sequential process: in a good pattern set every selected pattern depends on the
others. The selection of the patterns can easily become the slower part of the
process.

To obtain our fast pattern set selection algorithm, we utilize the bottom-k
hashing idea [4, 3, 25] using the efficient computation proposed in [23]. While [23]
studies, in some sense, the quality of a pattern set, our approach will build the set,
and furthermore, we propose a way to handle inexact patterns, that is, patterns
that do not appear as such in the data.

In the next section we will formally define our problems and analyze their
computational complexity. We will also discuss how our problems model different
pattern set mining problems, although we postpone the other related work to
Sect. 5. We will end Sect. 2 with a brief analysis of the standard greedy algorithm
before introducing our algorithm in Sect. 3. The experiments are presented in
Sect. 4.

2 Notation, Problems, and Theoretical Analysis

In this paper, we study the problem of selecting a good subset of patterns to
explain the data. There are two variants: in exact patterns the patterns are exact
subsets of the data; in inexact patterns the patterns can cover things that are
not in the data. We formalise the problems using binary matrices. For that, we
need the following concepts. We denote a matrix (Boolean or otherwise) with
a bold-face upper-case letter, such as M. Vectors are denoted with bold-face
lower-case letters, such as v. All vectors are considered to be column vectors. The
(i, j) element of matrix M is mij and the ith element of vector v is vi. We say that
a binary matrix S ∈ {0, 1}m×n is dominated by a binary matrix D ∈ {0, 1}m×n

if sij ≤ dij for all i and j. We denote that by S ≤ D. Given a collection of
binary matrices C = {Si : i = 1, . . . , ℓ,Si ∈ {0, 1}m×n}, we define

∨
S∈C S = C

as the element-wise logical or over matrices S, that is, cij =
∨

S∈C sij . Matrix
M, of size m-by-n, is rank-1 if it can be expressed as an outer product of two
vectors, M = uvT . Matrix M ∈ {0, 1}m×n is Boolean rank-1 if M = uvT where
u ∈ {0, 1}m and v ∈ {0, 1}n. Finally, we use |·| to denote the number of non-zero
entries in a matrix or a vector, that is, |M| = |{(i, j) : mij ̸= 0}|, where the latter
|·| is the usual set cardinality operator.

2.1 Problem Statement

We give the exact definitions of our problems below. For an explanation of how
these definitions relate to pattern set mining tasks, see Section 2.3.
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Problem 1 (Exact Patterns). Given a binary data matrix D ∈ {0, 1}m×n, a
collection of (rank-1) binary matrices of the same size, S = {S1,S2, . . . ,Sℓ : Si ∈
{0, 1}m×n,Si ≤ D}, and an integer k, find a subcollection C ⊆ S of size k that
minimizes ∣∣∣D−

∨
S∈C

S
∣∣∣ . (1)

Alternatively, the size of collection C can be unlimited and (1) can be replaced
with a requirement that ∨

S∈C

S = D , (2)

where we now assume that ∪S =
⋃

S∈S S = D. Notice that as S are dominated
by D, the union can never have 1s in locations where D does not have them.
Consequently, the subtraction in (1) cannot produce negative entries. We say
that ∪S does not cover any 0s of D.

When the pattern matrices are not dominated by the data, the problem
definition is as follows.

Problem 2 (Inexact Patterns). Given a binary data matrix D ∈ {0, 1}m×n and a
collection of (rank-1) binary matrices of the same size, S = {S1,S2, . . . ,Sℓ : Si ∈
{0, 1}m×n}, find a subcollection C ⊆ S that minimizes∣∣∣D−

∨
S∈C

S
∣∣∣ . (3)

Contrary to (1), in (3) the matrices S are not necessarily dominated by D
and hence the subtraction can yield negative values. Similarly to Problem 1, it is
also possible to limit the size of C in Problem 2 by some user-defined constant k.

In the above definitions, we have limited the patterns to be rank-1 binary
matrices. As we shall see below, this still allows us to represent many different
kinds of patterns commonly encountered in data mining. Our algorithm will
utilize the rank-1 structure for efficiency; however, we can still handle arbitrary
binary matrices as patterns, with a cost in the running time of the algorithm
(see Sect. 3.1). We will use terms pattern, tile, and rank-1 matrix interchangeably
in this paper.

2.2 Computational Complexity

Both problems (and their variants) are NP-hard. The Max k-Cover problem can
be reduced to Problem 1, and the Set Cover problem to the variant of Problem 1
with unlimeted cover size (see, e.g. [11]). The simplest form of this reduction is
to consider a case where D has only one m-dimensional column full of 1s. Each S
is also an m-dimensional column vector and they correspond to incidence vectors
of the sets in Set Cover or Max k-Cover. It is trivial to see that solutions that
maximize (1) or (2) maximize Max k-Cover or Set Cover, respectively.

In the Positive–Negative Partial Set Cover [18], the input consists of positive
and negative elements and a collection of sets of those elements and the goal is
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to select a subcollection of the sets that minimizes the sum of covered negative
elements plus the sum of uncovered positive elements. Consider again a case
where D is m-dimensional vector. Each entry di of the input vector corresponds
to an element in the input; di = 1 if the element is positive and di = 0 otherwise.
The matrices S are again incidence vectors of the sets. It is straightforward to
see that minimizing (3) is the same as minimizing the sum of uncovered 1s plus
the sum of covered 0s.

Furthermore, these reductions are approximation-preserving as the values
of cost functions (number of used matrices/sets or number of uncovered 1s
plus covered 0s/uncovered positive and covered negative elements) are exactly
the same after the reductions. Hence, Problem 1 with optimization goal (1)
cannot be approximated better than Ω(1− 1/e). With optimization goal (2) the
approximation lower bound is Ω(ln(m)) [8]. For Problem 2, the approximation
lower bound is much higher Ω(2log

1−ε ℓ4), where ℓ is the number of sets in S [18].
The intuition behind the vast difference in inapproximability lower bounds is that
in the case of exact patterns, we should aim to select maximally disjoint patterns,
whereas in the case of inexact patterns, we should aim to select patterns that
cover maximally disjoint set of 1s but maximally similar set of 0s, as we only
“pay” the cost of covering a 0 once. This latter problem is clearly much harder.

2.3 Connections to Other Forms of Pattern Set Mining

While we described our problems in the terms of binary matrices, it is relatively
easy to see that the description applies to many different pattern set mining tasks.
Here we describe three such tasks: tiling databases, Boolean matrix factorization,
and redescription mining.

Tiling databases [11] is the task of selecting a subset of (frequent or closed)
itemsets to cover all the items in a transaction database. In our setting, the
transaction database is the data matrix D with items as columns and transactions
as rows, and each rank-1 matrix is one itemset: the columns with 1s correspond to
the items in the itemset and the rows with 1s correspond to the transactions that
contain the itemset. As every item of the itemset must appear in a transaction
for the transaction to contain the itemset, the patterns are dominated and we
have the exact patterns of Problem 1.

Equation (1) is a natural optimization goal for tiling. Equation (2) requires
that every item in every transaction is included in some pattern; this is achieved
most easily by including the singleton itemsets for each item in the set S. Such
exact cover is also required when one uses alternative means of selecting the
pattern set, such as MDL [26] (see also Sect. 5).

Boolean matrix factorization [19] is the task of (approximately) expressing
a given binary matrix as a Boolean product of two binary factor matrices.
Equivalently, it is the task of expressing the input as a element-wise Boolean or of
rank-1 binary matrices. With this definition, the connection to our problem is clear.
As Boolean factorization can be approximated both by not covering some 1s and by
covering some 0s, the appropriate formulation is typically that of Problem 2. For
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𝑞𝐿 = ([𝑎 ≤ 0.4] ∧ [𝑏 ≥ 0.6]) ∨ [𝑑 = 1.0] 𝑞𝑅 = [𝑥 = 1] ∨ [𝑦 = 1]

D𝐿 =
⎛⎜⎜⎜
⎝

𝑎 𝑏 𝑐 𝑑
1 0.3 0.7 0.2 0.9
2 0.5 0.4 0.6 0.8
3 0.4 0.6 0.3 0.9
4 0.3 0.5 0.3 1.0

⎞⎟⎟⎟
⎠

D𝑅 =
⎛⎜⎜⎜
⎝

𝑥 𝑦
1 1 1
2 1 0
3 0 0
4 0 1

⎞⎟⎟⎟
⎠

S =
⎛⎜⎜⎜
⎝

𝑎 𝑏 𝑐 𝑑 𝑥 𝑦
1 1 1 0 1 1 1
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 1 1 0 1 1 1

⎞⎟⎟⎟
⎠

Fig. 1. Example of how redescriptions can be expressed in the framework of Problem 1.
Top: A pair of queries, forming a redescripition. Bottom left and middle: Original
data matrices DL and DR for redescription mining. Cells shaded in gray will be 1 in
uLv

T
L and uRv

T
R. Bottom right: The final matrix S = (uL ∧ uR)[v

T
L ,v

T
R].

computing the smallest exact Boolean factorization (so-called Boolean rank [21]),
however, Problem 1 with optimization goal (2) is the appropriate formulation.

Redescription mining [22, 10] is a data analysis method that, unlike the
aforementioned ones, can, and often does, use numerical data. The goal of
redescription mining is to mine redescriptions, that is, pairs of queries (qL, qR)
over two sets of data, DL and DR, that provide two different views to the same
entities. A classical example of redescription mining is species presence–absence
data and climate data. These provide different “views” to the same geographical
locations and a good redescription on such data would describe a query (or a rule)
over the species (i.e. the presence or absence of certain species) and a query over
the climate variables (e.g. temperature or precipitation) such that the two queries
hold in approximately same geographic areas. The quality of a redescription is
often measured using the Jaccard coefficient between the sets of entities where
the individual queries hold.

While the data in redescription mining can be numerical, every individual
query can be seen as a rank-1 binary matrix. The 1s in the columns correspond
to the attributes that appear in the query; the 1s in the rows correspond to the
entities where the query holds. For a pair of queries, we can concatenate these
two matrices next to each other (note that they must have the same number
of rows) and consider only those rows where both matrices have a 1. That is,
if uLv

T
L is the rank-1 matrix corresponding to qL and uRv

T
R is that for qR, the

rank-1 matrix corresponding to pair (qL, qR) is (uL ∧uR)[v
T
L ,v

T
R], where ∧ is the

element-wise and and the right-hand vectors are concatenated. Figure 1 shows an
example of one pair of queries over numerical and Boolean data and the resulting
pattern matrix S.

2.4 The Greedy Algorithm

By far the most common algorithm to do the pattern set selection for minimum
error case is the greedy algorithm. This algorithm takes first the pattern that
minimizes the error the most, then the pattern from the remaining ones that
minimizes the error the most given the already selected pattern, and so on and
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so forth until it has either selected a predefined number of patterns or no further
pattern reduces the error. This approach is used in tiling [11], in BMF [19], and
in redescription mining1 [10] for selecting a set of patterns. For the exact case,
the greedy algorithm has approximation ratio of O(1− 1/e) (for (1)) or O(ln(m))
(for (2)), matching the lower bounds. For inexact patterns, however, the greedy
algorithm can be arbitrarily bad, although it seems to work well in practice [19].

The time complexity of the greedy algorithm is Õ(mnℓ2) for data matrix of
size m-by-n and |S| = ℓ: after selecting every new pattern, the algorithm must
re-compute how good the remaining patterns are. We use Õ(·) to denote the time
complexity that ignores the logarithmic factors (that are needed to find the best
pattern after the updates). For sparse patterns, tighter analysis can be obtained,
as updating each pattern takes at most as much time as the number of 1s in the
pattern.

3 The Algorithm

Our algorithm, called HaPSi (Hashing for Pattern Selection), is based on using
hash values to estimate the sizes of rank-1 matrices and their combinations.
The main idea, presented in [1] and [23], is to calculate hash values uniformly
distributed in [0, 1] for all 1s in a rank-1 matrix, and to use the kth smallest hash
value v to estimate the number of 1s in the rank-1 matrix as k/v. This can be
used as an estimate, because, if there are z values uniformly distributed in [0, 1],
the expected value of the kth smallest value is k/(z + 1). This method is used by
[23] to estimate the product of two Boolean matrices, by iterating efficiently over
the rank-1 matrices and keeping track of the k smallest hash values seen at each
point.2 Next we will explain a technique for estimating sizes of overlapping tiles
before explaining the algorithm in Sect. 3.2. We analyse the time complexity in
Sect. 3.3.

3.1 Estimating Overlapping Tile Size

This section describes a hashing-based technique of estimating the number of 1s
in a single tile and in a collection of overlapping tiles. It is based on [23], although
with some changes to make the approach suitable for our application.

The hash value h(x, y) for a point (x, y) in a rank-1 matrix is computed based
on two pairwise independent hash functions h1, h2 : U → [0, 1] which map the
row and column indices to [0, 1]. The hash value for the point is then defined as
h(x, y) = (h1(x)− h2(y)) mod 1.

To find the k smallest hash values of a rank-1 matrix uvT , h(x, y) are arranged
into a matrix of size |u| -by- |v|. The rows are ordered by increasing values of h1

and the columns by increasing values of h2. Going down a column the values of
h(x, y) will increase, except at one point where the value drops to the minimum
1 In redescription mining the approaches in literature have some technical differences

to the approach outlined above.
2 Notice that this k is different to the number of selected tiles in problem definitions.
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value of that column. Similarly on the rows, the values decrease going to the
right, except for one increase to the maximum value of that row.

The algorithm is given a value p which serves as an initial maximum hash
value to be stored. The values of the hash matrix are visited starting from the
top of the left-most column, first finding the smallest value of the column. After
that, going through the column, all values that are smaller than p are stored.
After all such values have been found, the next column is searched, this time
starting one row below the row where the previous column had its smallest value.
When k values have been found, if the kth value is smaller than p, p is updated
to this new smallest value.

The idea of using the kth smallest hash value as a size estimate can be applied
to a matrix of any rank, but the efficiency of this algorithm comes from iterating
over the row and column indices which only works on rank-1 matrices. Hence, if
we want to use non-rank-1 patterns, we have to give up on this optimization.

3.2 The Algorithm for the Exact Patterns

The first step of our algorithm is to compute the hash values for each tile. This is
done as explained above. For pairwise independent hash functions, we use random
affine transformations in Z/p, where p ∈ N is a prime number larger than largest
dimension of the matrix. That is, each hash function is of form h(x) = (ax+ b
mod p)/p for some random a and b. Unlike [23], we store the k smallest hash
values separately for each tile instead of maintaining a single collection of size k
over all tiles.

The pseudocode for HaPSi is given in Algorithm 1. The algorithm starts
by choosing the largest tile. Then, it goes through rest of the tiles, trying to
find the one that increases the number of ones covered the most. For each tile
that has not been chosen yet, we concatenate its hash values and those of the
already-chosen tiles’ in line 9. The combined hash values are sorted and we
use the kth smallest value to get the estimated size of these tiles together. In
our preliminary experiments we noticed that this method gives generally very
accurate estimates, but sometimes gives an exceptionally large or small result.
This is why we get the final size estimate as the median over several (|H|, typically
10 in our experiments) estimates (line 12).

When we have the estimated sizes for all tiles, we sort the tiles in a descending
order according to the estimate. Then, in line 16, we go through a limited number
m (typically 30) of top candidates, and calculate the actual reconstruction error
(or the number of 1s in the resulting matrix in the exact case) we would get when
adding that tile to the already chosen ones. Once we find a tile that lowers the
reconstruction error, we stop the search and add that tile to the collection. The
process is repeated until the error no longer improves, or the maximum number
of tiles is met (constraint set by the user).

Handling inexact tiles. In the case where the tiles can cover zeros, the first tile
chosen is the one with the smallest reconstruction error, meaning it has the least
amount of uncovered ones and the least amount of covered zeros. In addition
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Algorithm 1 Exact Patterns (Problem 1)
Input: Data matrix D, tiles T , collection of vectors of hashvalues for each tile H,

maximum number of tiles returned tmax, k for bottom-k hashing, and maximum
number of tiles searched in each iteration m

Output: A set of tiles Q
1: function HaPSi(T,H, t)
2: Q ← tile t0 with the smallest reconstruction error
3: T ← T \ t0
4: while len(Q) < tmax do
5: C ← ∅
6: for t ∈ T do
7: E ← ∅
8: for h ∈ H[t] do
9: h← Sort(H[Q] ∪ h)[: k]

10: E ← E ∪ {k/h[k]}
11: end for
12: v ← median(E)
13: C ← C ∪ {(v, t)}
14: end for
15: C ← Sort(C) in descending order by v
16: for (v, c) ∈ C[: m] do
17: if error(Q∪ {c}) < error(Q) then
18: Q ← Q∪ {c}
19: break
20: else
21: return Q
22: end if
23: end for
24: end while
25: return Q
26: end function

to estimating the combined size with the already chosen tiles, we subtract the
number of zeros covered by the tile from the joined size estimate. This means
that the line 12 changes to median(E)−Zt, where Zt is the number of zeros the
tile t covers.

We note that by subtracting every 0 from every tile that covers it, we are
probably over-penalizing the tiles; if an already-chosen tile covers some of the same
0s as this tile, using this tile does not increase the cost for those 0s. While this
approach might seem naïve, the inapproximability of the inexact case indicates
that much better algorithms are unlikely to exist.

3.3 Time Complexity

For an input matrix of size m-by-n and number of tiles ℓ, the time complexity of
HaPSi is Õ((n+m)ℓ+ ℓ2 +mnℓ). Computing the hash values for one tile uvT

takes amortized time O(|u|+ |v|) [23], where |u| is the number of non-zeros in u.
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This explains the first term. After each tile has been chosen, we need update how
well the others do given the chose tile (the second term), and to choose the tile,
we need to compute its exact error (the final term). We could omit calculating
the actual error, but we would then be susceptible to cascading errors in size
estimates.

4 Experiments

We evaluate the performance of our algorithm on both synthetic and real-world
data. The aim of the synthetic data experiments is to assess how different data
features affect the algorithm; experiments with real-word data then validate these
results.

4.1 Experimental Setup

We generate the synthetic data as follows. First, we make 100 random rank-
1 matrices (aka tiles or patterns) of size m-by-n by sampling vectors ui ∈
{0, 1}m and vi ∈ {0, 1}n from m- and n-dimensional Bernoulli distributions with
parameter p ∈ (0, 1). Each “original” tile is uiv

T
i . We make 5 copies of each of

these tiles, and for each copy u′
iv

′T
i , we move a fraction d of the 1s from u′

i and
v′
i to other locations. This gives us 100 mostly non-overlapping rank-1 matrices,

each of which have 5 copies that have a given amount overlap with the original
and each other.

Then, we have two ways of creating a data matrix out of these 600 patterns,
either by multiplying the original 100 patterns, or by multiplying all 600. After
this we can add noise to the data matrix by randomly flipping a portion of the
elements.

For the exact pattern experiments we only created the data matrix by mul-
tiplying all 600 tiles and did not add any noise, to ensure that the tiles are
dominated by the data. For the inexact pattern experiments, we used both
methods of creating the data matrix and also added noise.

There are four features we test with the synthetic matrices: overlap between
the tiles, density of the data matrix and the tiles, size of the matrix, and the
added noise. We tested all of these with the inexact patterns, and the first two
(overlap and density) also with the exact patterns.

We created the data 5 times for each set of parameters tested, and the results
are the average over these five runs. As our own algorithm has some randomness
in creating the hash values, we initially tested it with three restarts on the same
data. However, since the algorithm uses the median estimate over multiple hash
values on a single run, running it more times did not have much variance in the
results.

We compared HaPSi to two baselines. Greedy is the standard greedy algorithm
for Set Cover (see Sect. 2.4). Naïve is a simpler and faster algorithm that always
selects the tile from the unselected tiles that alone covers the most 1s (or reduces
the error most, in inexact case), irrespective of what has been selected before.
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These two algorithms represent two extremes. Greedy, while not being optimal,
is the state of the art solution for minimizing the error, while Naïve is about as
fast as it can get: it’s time complexity is Õ(nmℓ), that is, it only requires one
linear scan over the input data.

For all experiments, we report relative reconstruction error, that is, recon-
struction error divided by the matrix size. The algorithms were implemented on
Python and are freely available.3 The experiments were conducted on a machine
with 2 AMD EPYC 7702 processors with 64 cores each. All experiments were
run single-threaded.

4.2 Setting the Hyperparameters for HaPSi

We evaluated the effect of the hyperparameters of HaPSi on the reconstruction
error and the running time. The following hyperparameters were tested: number
of hash values used in bottom-k hashing, k; number of times the hashing is
repeated for the data, |H|; and the maximum number of tiles for which the
reconstruction error is computed before stopping, m. The other parameter for
Algorithm 1 is the maximum number of tiles returned, tmax, but it was not tested
here since it only affects the final error and running time.

The default values used for the experiments were m = 30, k = 30, |H| = 10.
The tests were ran on a synthetic data of size 1000-by-1200 with data density
0.06; fraction of rows and columns changed in copied tiles by 0.1 and noise added
to the data matrix was 10%. Each hyperparameter was varied separately, while
keeping others constant.

The results of the tests are shown in Fig. 2. The results show that two of the
parameters had a noticeable effect on the reconstruction error: |H|, the number
of times the hashing was repeated, and the k for the bottom-k hashing method
(Fig. 2(a) and (c)). Naturally as the hash values are computed several times, the
final estimate (calculated as the median over all of the estimates) will be more
accurate. A larger value here also significantly affects the running time. The
choice of optimal value of k is explained in detail in [23], and our results show
that a larger value improves the error at least to some point. However, we chose
not to use a large value of k in our experiments, as in real-world applications the
rank-1 matrices can have varying densities; in particular, rank-1 matrices with
less than k 1s would be automatically discarded. Another approach for choosing
the value of k would be to choose it after all of the rank-1 matrices have had
their hash values calculated, and their sizes are known, but testing this is left for
future work.

4.3 Results on Synthetic Data

In each test, all other data generation parameters except the one being tested
for were kept constant. The default values used in the data generation were as
follows. Data size: 1000-by-1200; data density: 0.3; fraction of rows and columns
3 https://doi.org/10.5281/zenodo.15629578
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Fig. 2. Reconstruction errors and running times from the hyperparameter tests. Top
row: x-axis: (a) |H|, number of times the hashing is repeated; (b) m, maximum number
of tiles for which the reconstruction error is computed; (c) k, number of hash values.
Relative reconstruction error on y-axis. Bottom row: Running time in seconds on
y-axis. (d)–(f) as (a)–(c).

changed in copied tiles: 0.1; noise added to the data matrix: 10%. Each algorithm
searched for a maximum of 200 tiles unless otherwise specified.

Overlap between the tiles. We created the data as explained above. In the step
where the 100 tiles are copied, we vary the fraction of rows and columns that are
changed. The fractions we used were 0.05, 0.1, 0.25, and 0.5.

Reconstruction errors for these experiments are shown in Fig. 3(a)–(c). There
the overlap decreases as y-axis increases. Naïve can include tiles that increase the
error. With 100 tiles, we also show the best result it obtained. This is depicted
as a dashed line in Fig. 3(a).

With 600 tiles, the results show that the error increases as the overlap reduces.
This is most likely due to the fact that there are more 1s to be covered as each
tile is more disjoint. In case of 100 tiles, situation is different. Now, there are
basically 100 “correct” tiles and 500 “incorrect” tiles to select, with increasing
non-overlap making the incorrectness worse. Here we see that Greedy always
selects the correct tiles. HaPSi selects good tiles initially, but starts deteriorating
as the tiles get more disjoint. Naïve is always the worst eventually, but its best
result is actually better than HaPSi with least overlap.

Data density. We considered data with density 0.06, 0.1, 0.15, 0.2, 0.25, 0.3, and
0.4. The tile density was adjusted depending whether 100 or 600 tiles were used,
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Fig. 3. Relative reconstruction error on y-axis. Top row: The amount d of changed 1s
on x-axis. (a) Inexact case with 100 tiles. (b) Inexact case with 600 tiles. (c) Exact case
with 600 tiles. In (a), the dashed line indicates the best error Naïve obtained. Bottom
row: Data density on x-axis. (d)–(f) as (a)–(c).

so that the data matrix has the desired density. The results are depicted in
Fig. 3(d)–(f). All algorithms perform worse as density increases with HaPSi being
close to Greedy in all cases and Naïve being clearly worse in Fig. 3(d) and (f),
even when considering its best result in (d).

Added noise. We added 5%, 10%, 20%, and 30% noise to the data matrix.
Results are shown in Fig. 4(a)–(b). Again, as noise increases all methods get
worse, and the order is clear: Naïve (worst), HaPSi, and Greedy, with HaPSi
being relatively close to Greedy.

Data size. Finally we tested data size by generating matrices of size x-by-(x+200)
for x values of 1000, 2000, 3000, and 4000. The reconstruction errors are depicted
in Fig. 4(d)–(e), showing that HaPSi performs very similarly to Greedy in terms
of reconstruction error.

Running time. Running times of the algorithms with respect to number of tiles
and size of the data are shown in Fig. 4(c) and (f), respectively. These plots show
clearly that Greedy is significantly slower that HaPSi, which in turn is very close
to Naïve, showing that HaPSi reaches a good balance between result quality and
running time.
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Fig. 4. Top row, (a)–(b): The amount of noise on x-axis, relative reconstruction error
on y-axis. (a) Inexact, 100 tiles. (b) Inexact, 600 tiles. In (a), the dashed line indicates
the best error Naïve obtained. Top row, (c): Running time (seconds, logarithmic scale)
as number of selected patterns increases. Bottom row, (d)–(e): Number of rows in
data on x-axis, relative reconstruction error on y-axis. (d)–(e) as (a)–(b). Bottom row,
(f): Running time (seconds, logarithmic scale) as matrix size increases.

4.4 Results on Real-World Data

Data sets. We used four real-world data sets in our experiments. Some statistics
about them are presented in Table 1. The Mammals dataset contains information
about which mammal species inhabit which areas of the world on one side, and
climate information on the other side [12]. The Dialect data contains features of
spoken dialects of Finnish over different geographical regions [6, 7]. The 20News-
groups data4 is a corpus of 1000 posts from 20 different newsgroups, stemmed
and with rare terms removed. The Abstracts data5 is another corpus, this time of
project abstracts. Terms are stemmed and rare ones are removed.

Redescription mining. We used redescriptions mined using the fast redescription
mining algorithm Fier [14]. These results contained 161 redescriptions, some of
them very similar to each other. The results are shown in Fig. 5(a) and (d). The
results show that HaPSi is able to find very fast a good set of approximately 50
redescriptions. It should be noted that this data can be fully covered using all
161 tiles, so all methods converge towards the end. Notice also that Greedy is
very slow.
4 https://archive.ics.uci.edu/dataset/113/twenty+newsgroups
5 https://archive.ics.uci.edu/dataset/134/nsf+research+award+abstracts+1990+2003
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Table 1. Properties of real-world data sets

Data Rows Columns Density (%) Note

Mammals 54 013 4 802 — Numerical data
Dialect 1 334 506 16.14
20Newsgroups 5 163 19 997 0.89
Abstracts 4 894 12 841 0.90
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Fig. 5. Top row: Relative reconstruction error on the y-axis and number of tiles on
the x-axis. (a) Tiles are redescriptions from the Mammals data. (b) Tiles are frequent
itemsets from the Dialect data. (c) Tiles are rank-1 Boolean matrices for BMF from the
Dialect data. Bottom row: Time (in seconds) on y-axis and number of tiles on x axis.
(d)–(f) as (a)–(c).
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Tiling databases. We mine frequent itemsets from the Dialect dataset with
minimum frequency of 15%. This gave us 28 535 frequent itemsets. We used all
of these as tiles, and searched for a set of maximum 1000 tiles. The results are in
Fig. 5(b) and (e). We see that HaPSi is again very good up to about 50 itemsets,
after which it has converged. It is again significantly faster than Greedy and
significantly better than Naïve.

Boolean matrix factorization. We created the rank-1 Boolean matrices using
the association matrix technique used by the Asso algorithm and the restarted
random walks technique [19]. These rank-1 matrices can cover 0s in the data,
unlike in the previous cases. The results using the Dialect data are shown in
Fig. 5(c) and (f). The results are similar to the other real-world use cases, except
that in this case the Naïve algorithm increases its error consistently. But again
HaPSi is competitive with Greedy, especially when we consider the significant
advance it has on running time.

We also ran experiments with tiles found only by the association matrix
technique using the two large corpus matrices. This created approximately 5000
tiles for 20Newsgroups and 12 000 for Abstracts. HaPSi took 850 s for Abstracts,
while Greedy took 101 h. For 20Newsgroups HaPSi took 665 s and Greedy 74 h.
This shows that HaPSi can find results efficiently with input sizes where Greedy
is unable to produce the results in a reasonable amount of time.

5 Related Work

Tiling databases was first studied in [11], where also the use of the greedy
algorithm was proposed. The problem was later independently studied in [27].
The tiling was later extended to hierarchical representations (where tiles contain
other tiles) [24], data streams [15], and ranked data [16], among others.

Boolean matrix factorization (BMF) can be seen as a variant of tiling. It
has been originally studied in combinatorics (see [21] and references therein),
but it has also seen significant research interest in data mining (see [19] and
references therein). An exact Boolean matrix factorization is the same as exact
tiling, and [2] propose an algorithm for exact BMF based on greedy Set Cover
algorithm.

The aforementioned methods use reconstruction error as the primary means
of deciding which tiles or rank-1 matrices to use. Minimum Description Length
(MDL) principle is another popular method for selecting the pattern set (see,
e.g. [26, 17, 20]). In MDL, the idea is to select those tiles that compress the data
the best.

Another method for selecting the set of patterns was proposed by De Bie [5].
His proposal is based on modelling the data with a maximum-entropy distribution,
and selecting the tiles that are the most surprising (i.e. least likely) under this
distribution. After each selected tile, the distribution is updated by constraining
it with the selected tile such that the new distribution has the maximum entropy
over all those distributions where the found tiles appear. Later, [13] extended
that approach to selecting a set of redescriptions.
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Redescription mining [10] was proposed in [22] and has seen various algorithms
and applications proposed since (see [10]). The first redescription set mining
approach was proposed in [9] and later [13] proposed a version based on subjective
interestingness.

The idea of using bottom-k hashing for size estimation was first proposed
in [1], while [23] extended it to the size of Boolean matrix product and explained
the efficient algorithm we use as the basis of HaPSi.

6 Conclusions

Bottom-k hashing can provide significant speedups for selecting a good set of
patterns with minimal effects on the quality of patterns selected. We showed
how our algorithm can be applied to tiling, Boolean matrix factorization, and
redescription set mining, but we believe that there are other pattern set mining
problems where our approach can be useful, as well.

The hashing techniques presented in this paper are limited to reconstruction
error. Algorithms like HaPSi are not directly good for selecting itemsets based on
measures like MDL, as they pay no attention to the “cost” of the selected patterns.
Indeed, we can see in Fig. 5 that HaPSi sometimes selects patterns that improve
the error very little if at all; such patterns are very unsuitable for optimizing
MDL, say. In principle, the description length could be taken into account when
selecting the patterns, but it is not clear if the bottom-k hashing would ever
find patterns that are good in MDL-sense. Developing these algorithms is an
interesting topic for a future work.

Being able to select the pattern set faster can also facilitate novel algorithms
that build sets of pattern sets. Such algorithms can provide a hierarchical view
to the data, supporting exploration with few high-level pattern-sets-as-patterns,
each of which can be “zoomed in” to see the actual patterns.

Our method does not allow novel unethical uses of data mining techniques
although the vast speed improvements do allow existing potentially unethical
uses to be scaled to much larger data sets.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
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