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Abstract. Foundation models have recently emerged as a promising
approach for time series analysis, adapting transformer architectures
originally designed for natural language processing to handle continu-
ous temporal data. While these models demonstrate strong performance
across various time series tasks, their handling of multivariate time se-
ries, particularly inter-channel dependencies, remains underexplored. In
this paper, we present a comprehensive analysis of current foundation
models for time series, including tokenization-based, patch-based, and
shape-based approaches, focusing on their mechanisms and data rep-
resentations for capturing relationships between channels. Our analysis
shows that even though these models have advanced architectures, they
mostly process channels independently, which may prevent them from
fully capturing cross-channel patterns. We examine this limitation across
di!erent model families and discuss its implications for multivariate time
series analysis. Our empirical evaluation shows that foundation models
perform well on simpler tasks but exhibit diminished e!ectiveness as
channel dependencies increase, with specialized time series methods con-
sistently outperforming them on complex datasets. These findings high-
light the critical need for channel-aware architectures and more e!ective
strategies for modeling inter-channel relationships in foundation models.

Keywords: Foundation Models · Multivariate Time Series Classifica-
tion · Inter-Channel Dependencies · Evaluation

1 Introduction

The success of foundation models in natural language processing has inspired
their adaptation to other domains, including time series analysis. These mod-
els, pre-trained on large-scale datasets and fine-tuned for specific tasks, have
shown promising results in time series forecasting, classification, and anomaly
detection [20]. Recent approaches such as Chronos [1], MOMENT [17], One
Fits All [29], aLLM4TS [2], Mantis [12] and VQShape [27] demonstrate various
strategies for adapting transformer architectures to handle continuous tempo-
ral data [20], ranging from tokenization schemes to patch-based processing and
shape-based representations. However, as these models are increasingly applied
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to multivariate time series (MTS) problems, a critical question emerges: how ef-
fectively do they capture dependencies between di!erent channels or variables?
This question is particularly relevant in domains such as human activity analysis
and healthcare, where relationships between multiple measurements are crucial,
e.g., tracking multiple body parts during an exercise, or in financial markets,
where correlations between di!erent assets drive system behavior. Traditional
time series analysis methods, including both statistical approaches and neural
networks, have explicitly addressed channel dependencies through various mech-
anisms. Some Convolutional Neural Networks (CNNs) architectures use 2D con-
volutions to capture cross-channel patterns, while methods like ROCKET [5]
combine channel information during convolution through weighted summation
across channels and further leverage these dependencies in the classification
stage. In contrast, our analysis shows that current foundation models for time
series predominantly process channels independently, treating them as separate
sequences in their batch dimension. This design choice, while computationally
e”cient and e!ective for capturing temporal patterns within individual channels,
may limit these models’ ability to learn and leverage inter-channel dependencies.
This paper makes the following contributions:

– We provide a systematic analysis of how current foundation models han-
dle multivariate time series, categorizing their approaches into tokenization-
based, patch-based, and shape-based methods.

– We examine the specific mechanisms each model employs for processing mul-
tiple channels and capturing channel dependencies.

– We identify a common limitation across these models in their treatment of
inter-channel relationships, suggesting an important direction for future re-
search in time series foundation models. We showcase this limitation through
extensive experiments on synthetic and real multivariate time series classifi-
cation (MTSC) datasets.

– We discuss potential solutions for addressing this limitation. We make all
our data and code publicly available1.

2 Related Work

Time series classification has seen significant methodological advances, from tra-
ditional feature-based approaches to advanced architectures, including founda-
tion models. This section reviews key methods evaluated in our study, emphasiz-
ing their architectural design and capabilities in managing channel dependencies
in MTS data.

2.1 Traditional Machine Learning Methods

Traditional machine learning (ML) approaches for time series classification (TSC)
can be categorized into several families. Tree-based methods include Random

1 https://github.com/mlgig/FM4MTSC
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Forest [3] and Gradient Boosting [15], which build ensembles of decision trees
to create robust classifiers. Linear classifiers, including Logistic Regression [4]
and Ridge Classifier [18] separate classes using hyperplanes in the feature space.
K-Nearest Neighbors (KNN) [13] makes predictions based on proximity in the
feature space without constructing an explicit model. For MTSC, these methods
typically treat the data as tabular by concatenating all channels into a sin-
gle feature vector, flattening the temporal and channel dimensions. While this
approach may not explicitly capture temporal dependencies or channel interac-
tions, it allows these traditional methods to be directly applied to time series
data, providing baseline performance for comparison with specialized temporal
models [9].

2.2 Time Series Methods

ROCKET [5] is a convolution-based algorithm which transforms time series us-
ing a large number of random convolutional kernels, where each kernel has ran-
dom length, weights, bias, dilation, and padding. Its implementation for MTS
combines channel information during convolution through weighted summation
across channels, thus capturing channel dependencies. MiniRocket [6] follows the
same principle, but is more e”cient, using 84 deterministic kernels.

HYDRA [7] is a hybrid method combining ideas of dictionary and convolu-
tional approaches. Like ROCKET, it first uses convolutional kernels for feature
extraction, and then implements concepts of dictionary methods by organizing
kernels into groups and counting the best-matching patterns at each timepoint.

QUANT [8] is an interval-based algorithm which serves as a strong baseline in
recent TSC benchmarks [23]. It computes quantiles over fixed dyadic intervals on
the input time series and its transformations (first and second di!erence, Fourier
transform). When applied to MTS, it extracts features independently from each
channel and concatenates them into a single feature vector which is fed to an
Extra Trees Classifier [16].

Among feature-based methods, Catch22 [21] is a popular approach that pro-
vides a compact set of 22 statistical features designed to capture diverse time
series characteristics. These features are extracted independently from each chan-
nel, lacking explicit mechanisms to capture interactions between channels.

2.3 Deep Learning Approaches

CNNs have been widely utilized in time series classification due to their ability to
automatically learn hierarchical features. In multivariate settings, CNNs process
multiple channels using 2D convolutions [19], where early layers operate on each
channel independently, extracting local features, while deeper layers combine
information across channels. This architecture allows CNNs to capture some
inter-channel relationships, but the initial independent processing may limit their
e!ectiveness in scenarios with strong channel dependencies, where interactions
between channels are crucial for accurate classification.
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InceptionTime [31] introduces an ensemble of five inception-based classifiers
that apply convolutions with di!erent kernel sizes in parallel to capture multi-
scale temporal patterns. While achieving state-of-the-art performance on many
benchmarks, it processes multivariate channels through parallel pathways with-
out explicitly modeling inter-channel dependencies during feature extraction.

LITEMVTime [30] extends lightweight ensemble approaches to MTS, balanc-
ing accuracy and computational e”ciency for resource-constrained applications.
It has channel-aware design elements that better utilize inter-channel relation-
ships while maintaining lightweight computational characteristics.

Although TimesNet [28] is described as a foundation model in its original
paper, we categorize it as a deep learning approach due to its architectural de-
sign and training paradigm. Unlike foundation models, which typically rely on
large-scale pre-training and transformer-based architectures to learn generaliz-
able representations across diverse tasks, TimesNet employs a CNN-based ar-
chitecture that transforms 1D time series into 2D representations through Fast
Fourier Transform (FFT) based periodicity analysis. Its TimesBlocks reshape the
time series based on identified periodicities and process these 2D tensors with
multi-scale kernels to capture complex temporal patterns. Similar to other deep
learning approaches, TimesNet processes channels separately in its initial stages,
which may limit its ability to fully leverage strong inter-channel dependencies
present in MTS data.

2.4 Transformer-based Methods

ConvTran [14] combines convolutional layers and transformer blocks to capture
both local and global dependencies in time series data. Initially, convolutional
layers extract local features, e”ciently modeling short-term dependencies within
each channel. Subsequently, transformer blocks leverage self-attention mecha-
nisms to capture long-range dependencies and complex inter-channel interac-
tions. The integration of these components allows ConvTran to overcome the
limitations of using either approach alone. This can make ConvTran e!ective in
MTS classification, particularly in datasets with strong channel dependencies.
However, for datasets with weak channel dependencies, the model’s complexity
might not yield substantial benefits compared to simpler architectures.

TSLANet [11] introduces a novel approach to time series representation learn-
ing by integrating the Adaptive Spectral Block (ASB) and the Interactive Con-
volution Block (ICB). The ASB leverages the Discrete Fourier Transform to
transform time series data into the frequency domain. This process involves com-
puting the power spectrum and applying a trainable threshold to filter out noise,
followed by the Inverse FFT to reconstruct time-domain features. The ICB fur-
ther refines these features using a dual-layer convolutional structure with varying
kernel sizes to capture both local and long-range dependencies. This block en-
courages interactions between features extracted at di!erent scales, enhancing
the model’s ability to capture complex temporal relationships. TSLANet may be
e!ective in scenarios with strong channel dependencies due to its ability to model
complex inter-channel interactions through its spectral and convolutional com-
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ponents. However, in datasets with weak channel dependencies, its architecture
may not provide significant advantages over simpler models.

2.5 Foundation Models

Recent advances in foundation models have introduced various approaches to
time series analysis, which we categorize here by their data representation strate-
gies.
Tokenization-based methods convert continuous time series values into dis-
crete tokens, similar to vocabulary-based approaches in natural language pro-
cessing. Chronos [1] uses this approach by transforming continuous-valued data
through scaling and quantization schemes that map values to discrete tokens
while preserving probabilistic characteristics, enabling language models to pro-
cess time series for downstream tasks. Despite its potential versatility, Chronos
was empirically validated only on univariate time series forecasting tasks, leaving
its e!ectiveness for MTS scenarios and other applications as an open question.
Patch-based methods segment time series into fixed-length subsequences (i.e.,
patches) that serve as input tokens to transformer architectures, drawing inspi-
ration from vision transformers where image patches are treated as sequence ele-
ments. OneFitsAll [29] implements a transfer learning framework that processes
time series in patches while maintaining frozen pre-trained transformer blocks,
while Adapting LLMs (Large Language Models) for Time Series (aLLM4TS) [2]
extends this approach through its framework for handling arbitrary temporal
windows. MOMENT [17] advances patch-based processing by introducing “The
Time Series Pile” for large-scale pre-training, supporting multiple tasks through
various deployment modes. Mantis [12] adapts the Vision Transformer [10] ar-
chitecture to time series data by generating tokens from patched time series
and their di!erentials, employing contrastive learning during pre-training and
introducing channel-level adapters to handle multivariate inputs e”ciently.
Shape-based methods represent time series through abstract shape features
and attributes. VQShape [27] uses vector quantization to create interpretable,
reusable shape-level representations through learned codebooks that generalize
across domains.

A critical limitation across all these approaches is their handling of MTS:
most current foundation models process channels independently, potentially miss-
ing inter-channel dependencies crucial for multivariate analysis.

3 Systematic Analysis of Foundation Models for MTSC

This section examines how current foundation models handle MTS, focusing on
their data representations and mechanisms for processing multiple channels and
capturing inter-channel dependencies. We denote a MTS as X → RL→C , where
L denotes the sequence length and C represents the number of channels.
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Chronos [1] approaches time series analysis by adapting language modeling
techniques through a tokenization strategy. The model processes channels inde-
pendently at multiple stages. First, in the scaling operation, each channel c is nor-
malized separately using its own scale factor sc: x̃c =

xc↑m
sc

, sc =
1
L

∑L
i=1 |xc[i]|,

where x̃c represents the scaled values for channel c, xc is the original time series
for channel c, m is the scaling factor, sc is the channel-specific scale factor
computed as the mean absolute value, L denotes the sequence length, and xc[i]
is the value at time step i in channel c.

This channel-wise processing continues in the tokenization phase, where the
quantization function q(x̃) maps the scaled values of each channel to tokens
independently:

q(x̃) =






1 if ↑↓ ↔ x̃ < b1

2 if b1 ↔ x̃ < b2

...

B if bB↑1 ↔ x̃ < ↓

(1)

where q(·) is the quantization function, B is the total number of tokens in the
vocabulary, and b1, b2, . . . , bB↑1 are the quantization boundaries that partition
the scaled value space into discrete intervals. The dequantization function d :
{1, 2, 3, ...B} ↗ R is defined as d(j) = cj , which maps each token back to
a representative real value. While the transformer’s self-attention mechanism
processes these tokenized sequences:

Attention(Q,K, V ) = softmax(
QK

T

↘
dk

)V

each channel must either be processed independently or flattened into a single
sequence. Unlike methods such as ROCKET [5], where cross channel processing
is followed by a linear classifier that can learn channel interactions through its
weights, Chronos lacks an explicit mechanism for capturing inter-channel depen-
dencies. The model processes each channel in isolation throughout its pipeline,
from initial scaling through tokenization to the final prediction phase where
the categorical distribution p(zt+1|z1:t) is computed separately for each channel,
with z1:t representing the tokenized time series.

An in-depth analysis of the Chronos implementation code confirms this crit-
ical limitation. The tokenizer class processes inputs strictly as 2D tensors of
shape (batch size, time length), with no provision for a channel dimension. The
normalization process calculates scaling factors along the time dimension only,
confirming that normalization happens independently for each channel. More-
over, the model’s input validation explicitly requires inputs to be at most 2-
dimensional, forcing MTS to be processed as separate univariate sequences. For
MTS applications, this architecture imposes significant constraints.

In our implementation of zero-shot feature extraction for classification tasks,
this limitation requires a preprocessing approach where MTS data is converted to
univariate sequences by concatenating all channels before feeding it to the model.
While this enables Chronos to process the data, it fundamentally changes the
time relationships between channels.
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OneFitsAll [29] adapts pre-trained language models for time series analysis
through a transfer learning framework. Given a MTS X → RL→C , the model
first applies reverse instance normalization to each channel independently: X̃c =
InstanceNorm(Xc) + µc + ωc where X̃c is the normalized time series for chan-
nel c, Xc is the original time series for channel c, µc and εc are the channel-
wise mean and standard deviation used for reverse instance normalization, and
InstanceNorm(·) applies instance-level normalization to the input, followed by
patch creation. These patches are processed through a transformer architecture
where self-attention blocks and feedforward layers are frozen, while only the po-
sitional embeddings and layer normalization are fine-tuned. The reverse instance
normalization is completed by adding the channel-wise mean µc and standard de-
viation ωc to the outputs of the transformer blocks: X̂c = TransformerOutputc+
µc + ωc, rather than directly after the initial normalization step. Similar to
other foundation models, OneFitsAll processes each channel independently in
the batch dimension.

aLLM4TS [2] introduces a two-stage framework for time series analysis. Given a
MTSX → RL→C , the model first flattens it intoM univariate sequences. For each

channel i, the sequence is divided into patches: p(i)tp:tp+Lp↑1 = {p(i)tp , ..., p
(i)
tp+Lp↑1} →

RLp→P , where p
(i)
tp:tp+Lp↑1 represents the patch sequence for channel i, tp =

≃(t↑P )/S⇐+1 is the starting patch index, Lp = ≃(L↑P )/S⇐+1 is the number
of patches, P is the patch length, S is the sliding stride, and L is the total se-
quence length. In the causal next-patch pre-training stage, the model predicts the

next patch for each channel independently: p̂(i)tp+1:tp+Lp
= {p̂(i)tp+1, ..., p̂

(i)
tp+Lp

} →
RLp→D

.

The loss function is computed independently for each channel and averaged:

Lp = Ep[
1

M

M∑

i=1

⇒p̂(i)tp+1:tp+Lp
↑ p

(i)
tp+1:tp+Lp

⇒22] (2)

where Lp is the prediction loss, M is the number of channels, p̂(i)tp+1:tp+Lp
is the

predicted patch sequence for channel i, p(i)tp+1:tp+Lp
is the ground truth patch

sequence, and ⇒ · ⇒22 denotes the squared L2 norm.
The model explicitly adopts a “channel-independence setting” where each

sequence is processed independently through the causal LLM backbone. This
design choice is confirmed in the implementation, where multivariate inputs un-
dergo a series of transformations: first transposing the time and channel di-
mensions, then applying padding before creating patches through unfolding op-
erations, and finally rearranging the data to concatenate channels and patch
values into a single dimension. While this concatenation operation might sug-
gest some cross-channel modeling, it actually follows the channel-independence
principle. The model simply treats the concatenated patches as longer univari-
ate sequences, without any mechanism to learn relationships between di!erent
channels.
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MOMENT [17] follows a patch-based strategy that processes channels inde-
pendently. For a MTS X → RL→C , the model first applies reversible instance
normalization to each channel separately, then segments each normalized chan-
nel into non-overlapping patches: Xc = [pc1, ..., p

c
N ], p

c
i → RP where P is the

patch length and N is the number of patches. Each patch is then embedded
through a linear projection or replaced with a special mask token during pre-
training:

e
c
i =

{
Linear(pci ) if Mi = 1

[MASK] if Mi = 0
(3)

where eci is the embedding for patch i of channel c, pci is the patch, Mi is a binary
mask indicator (1 for non-masked, 0 for masked), Linear(·) is a linear projection
layer, and [MASK] is a special mask token.

A key aspect of MOMENT’s design is how it handles multiple variables
(channels) in time series data. Although the model uses a transformer, which
could potentially capture relationships between di!erent variables, MOMENT
takes a di!erent approach. It processes each variable separately by using a simple
reshaping: Input to Transformer = reshape(E, (B ⇑ C,N,D)) where E is the
embedding matrix, B is the batch size, C is the number of channels, N is the
number of time segments (patches), and D is the embedding dimension.

This reshaping treats each variable as if it were a separate time series. As a
result, the transformer processes all variables in parallel but keeps them com-
pletely separate - like processing multiple independent univariate time series
rather than a single MTS.

The model applies both relative and absolute positional encodings to the
patch embeddings before processing them through the transformer encoder:
Z

c = Transformer([ec1, e
c
2, ..., e

c
N ]) where Z is the final representation, Zc is the

representation for channel c, and ⇒ denotes concatenation. Only at the task-
specific output layer does MOMENT attempt to handle cross-channel informa-
tion, primarily through two reduction strategies: mean reduction, which aver-
ages representations across channels (Z = 1

C

∑C
c=1 Z

c), or concatenation, which
preserves channel-specific information (Z = [Z1||Z2||...||ZC ]) but increases pa-
rameter count in the final layer.

This architectural decision has significant implications for MTS modeling.
Processing channels independently reduces the quadratic complexity of self-
attention from O((L · C)2) to O(C · L2), enabling the model to scale to high-
dimensional MTS. However, it also means the model cannot directly capture
dependencies between channels during feature extraction, which may limit its
ability to model complex inter-channel relationships.

Mantis [12] is a time series classification foundation model that functions as an
encoder F : RL ↗ Rq, projecting any univariate time series x → RL with fixed
sequence length L to a discriminative hidden space Rq. During pre-training, an
unlabeled dataset D0 containing multiple time series is used to learn rich em-
beddings that generalize across tasks. For fine-tuning, given a dataset D of time
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series {X1,X2, ...,Xn} and corresponding labels Y , either F extracts embeddings
Z = {F (Xi) | Xi → D} for a classifier h : Rq ↗ {1, . . . ,K}, or a classification
head h : Rq ↗ RK is appended to fine-tune h ⇓ F .

For MTS X → RL→C , Mantis processes each channel independently with the
embedding defined as z = concat[(F (Xc))1↓c↓C ], where z is the final multivariate
embedding, F (·) is the univariate encoder function, Xc represents the c-th chan-
nel, C is the total number of channels, and concat[·] denotes concatenation along
the feature dimension. An adapter a : RL→C ↗ RL→Cnew compresses the original
channels. The model’s confidence in classifying X is conf(X ) = max[ω(h⇓F (X ))],
where conf(X) is the classification confidence for input X, ω(·) is the softmax
function, h is the classification head, F (X) is the encoded representation, and
max[·] returns the maximum probability across all classes.

Mantis adapts the Vision Transformer (ViT) architecture for time series data.
The pre-processing involves setting the input sequence length to 512 and apply-
ing instance-level standard scaling. The token generator unit performs instance-
level normalization, splits the time series into 32 patches using convolution and
mean pooling, generates patches for the time series di!erential to reduce trend
influence, and preserves information about original measurements by encoding
statistics of raw patches. These features are concatenated and passed through
a linear projector with layer normalization to generate 32 tokens of dimension
256. The ViT unit appends a learnable class token, applies sinusoidal positional
encoding, and processes the tokens through 6 transformer layers with 8-head
attention. The class token’s final representation serves as the output. During
pre-training, a projection layer is added for similarity calculations, while dur-
ing fine-tuning, a classification head maps embeddings to class logits. Mantis is
pre-trained using contrastive learning with pairwise cosine similarities computed
as si(ϑ,ϖ) = [scos(g ⇓ F ⇓ ϑ(xi), g ⇓ F ⇓ ϖ(xj))]bj=1, where g is a projector. The

model minimizes a contrastive loss defined as
∑b

i=1 lce

(
si(ω,ε)

T , i

)
with temper-

ature T = 0.1, using RandomCropResize as the primary augmentation method.
For MTS, Mantis employs channel-level adapters that transform the original

d channels into dnew channels, including Principal Component Analysis (PCA),
Truncated Singular Value Decomposition (SVD), Random Projection, Variance-
Based Channel Selection, and a Di!erentiable Linear Combiner. Despite these
adapters, Mantis follows the same pattern observed in other foundation mod-
els, processing each channel independently and lacking explicit mechanisms for
modeling inter-channel dependencies.

VQShape [27] introduces a shape-based representation approach for time series
analysis. For a MTS X → RL→C , VQShape processes each channel xm

i → RT in-
dependently through a shape-level representation framework. Each subsequence
is represented by an attribute tuple: ϱk = (zk, µk,ωk, tk, lk) where zk → Rdcode

is the shape code, µk is the o!set, ωk is the scale, tk is the relative starting
position, and lk is the relative length. The model processes each channel inde-
pendently through its encoding pipeline: {hk → Rdembed | k = 1, ...,K} = E(xm)
where E is the time series encoder that transforms patches into latent embed-
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dings. The attribute decoder processes these embeddings channel-wise: ϱ̂k =
(ẑk, µk,ωk, tk, lk) = Adec(hk)

While VQShape introduces an innovative approach to time series represen-
tation through shape abstraction, it follows the common pattern of processing
each channel independently. The model architecture, from the initial encod-
ing through shape representation to the final reconstruction, maintains separate
processing streams for each channel. Despite its novel shape-based tokenization
strategy, the model lacks mechanisms for capturing dependencies between chan-
nels in MTS data. Looking at the implementation code, the model flattens all
channels and time steps together into a single long sequence. This removes the
clear boundaries between channels. Since the channel structure is lost in this flat-
tening, the model cannot easily identify or learn relationships between di!erent
variables in the MTS.

The model’s loss function Lpretrain = ςxLx+ςsLs+ςvqLvq+ςdivLdiv where
Lx is the time series reconstruction loss, Ls is the shape reconstruction loss,
Lvq is the vector quantization loss, Ldiv is the shape disentanglement loss, and
φx, φs, φvq, φdiv are the respective loss weights. Lpretrain optimizes for time se-
ries reconstruction, vector quantization, shape reconstruction, and shape dis-
entanglement, but none of these components explicitly addresses cross-channel
relationships. This framework yields highly interpretable representations within
each channel but sacrifices the ability to model how these representations inter-
act across the multivariate structure of the data.
Summary. Across these various types of foundation models, we observe a con-
sistent pattern in handling MTS data: channels are processed independently
regardless of the underlying representation strategy. Even approaches that in-
troduce specialized components for multivariate data, such as Mantis with its
channel-level adapters, still maintain separate processing streams for each chan-
nel. This design choice, while computationally e”cient and e!ective for capturing
temporal patterns within individual channels, means that none of these models
incorporate explicit mechanisms for learning inter-channel dependencies. The
computational advantage is significant, reducing self-attention complexity from
O((L ·C)2) to O(C · L2), but it comes at the cost of potentially missing critical
cross-channel interactions that characterize complex MTS data. A structured
comparison of these approaches is given in the Appendix (Table 9).

4 Datasets

We study four multivariate time series classification datasets with varying de-
grees of channel dependency. We emphasize that in this paper channel de-
pendency refers to the necessity of using multiple channels (at least two) for
successful classification, rather than the statistical correlation between channels.
This distinction is crucial: a dataset exhibits strong channel dependency when
accurate classification cannot be achieved using a single channel alone, even if
the channels themselves are not correlated (e.g., this is the case for the SYNTH
dataset). In contrast, we consider a dataset to have weak channel dependency
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when a single channel contains su”cient discriminative information for accu-
rate classification. Detailed dataset characteristics are provided in Table 7 in the
Appendix.
CounterMovementJump (CMJ) [24] contains accelerometer data from counter-
movement jump exercises with 3 classes and 3 channels (x, y, z acceleration).
This dataset exhibits weak channel dependency, as domain experts confirm that
class distinctions are primarily observable on the y-channel.
Military Press (MP) [26] includes motion capture data of exercise perfor-
mances in two variants: MP8 (8 key body point coordinates) and MP50 (all 50
coordinates from 25 body parts) with 4 classes. Domain experts confirm strong
channel dependency, requiring at minimum four channels (left/right elbow and
wrist coordinates) for e!ective classification.
Synthetic (SYNTH) [25] is specifically designed to evaluate strong channel
dependency scenarios. It contains 8 channels where discriminative features ap-
pear in only two randomly selected channels, making classification impossible
using any single channel alone, demonstrating strong channel dependency.

5 Experiments

All experiments were run on an Apple M1 Pro with 16GB RAM. Traditional ML
and time series methods were run on CPU using default parameters. For deep
learning approaches, transformer-based models, and foundation models requiring
fine-tuning, the MPS backend was utilized. We used the original implementa-
tions provided by each method’s paper. The training process used 25% of the
training set as a validation set, with early stopping applied using a patience of
10 epochs and a maximum of 100 epochs to determine the optimal training du-
ration and mitigate overfitting. Our experimental evaluation uses four distinct
MTS datasets, with three exhibiting strong channel dependency characteris-
tics. As suggested in [9], we establish baseline performance using traditional ML
methods including Logistic Regression and Random Forest.
For traditional ML approaches, we flattened the MTS data by concatenating
all channels into a single feature vector, maintaining temporal order within each
channel. All traditional models were implemented using scikit-learn with default
hyperparameters to provide a fair and reproducible baseline. As shown in Table
1, traditional methods showed strong performance on the simpler CMJ dataset
but struggled with channel-dependent datasets, highlighting the limitations of
flattened representations in capturing inter-channel relationships. We next com-
pare these baselines against specialized time series approaches, deep learning
architectures, transformer-based models, and foundation models.
Time series methods utilize the aeon library [22] implementations with de-
fault parameters for ROCKET, MiniRocket, QUANT, HYDRA, and Catch22.
As shown in Table 2, these methods consistently outperformed traditional ap-
proaches, with ROCKET achieving superior accuracy on CMJ and MP50, while
HYDRA led on MP8 and QUANT excelled on the SYNTH dataset. Notably,
MiniRocket maintained competitive accuracy across all datasets while o!ering
significantly faster computation times, making it the most balanced choice for
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Table 1: Accuracy and Runtime Results for Traditional ML Methods
Dataset Model Acc TrainTime(s) PredTime(s)

CMJ

Random Forest 0.933 0.41 0.01
Gradient Boosting 0.939 30.37 0.01
KNN 0.620 0.01 0.01
Logistic Regression 0.687 0.16 0.01
Ridge Classifier 0.536 0.16 0.01

MP8

Random Forest 0.607 2.10 0.08
Gradient Boosting 0.605 166.72 0.01
KNN 0.548 0.01 0.01
Logistic Regression 0.642 2.80 0.01
Ridge Classifier 0.607 0.33 0.01

MP50

Random Forest 0.476 4.73 0.01
Gradient Boosting 0.555 964.20 0.12
KNN 0.341 0.01 0.06
Logistic Regression 0.622 36.83 0.02
Ridge Classifier 0.540 0.85 0.01

SYNTH

Random Forest 0.538 17.84 0.03
Gradient Boosting 0.518 199.24 0.01
KNN 0.544 0.06 0.40
Logistic Regression 0.537 9.28 0.02
Ridge Classifier 0.519 0.90 0.01

practical applications. The results demonstrate the e!ectiveness of these special-
ized approaches in handling complex time series data, particularly in capturing
channel dependencies that traditional methods struggled with.

Deep learning approaches showed varying e!ectiveness across datasets with
di!erent channel dependency characteristics, as shown in Table 3. InceptionTime
demonstrated better performance on channel dependent datasets compared to
basic CNN approaches, highlighting the benefits of its multi-scale ensemble ar-
chitecture. However, CNN (aeon) achieved the best results on both weak depen-
dency and synthetic tasks, while performing poorly on real-world strong depen-
dent datasets. LITEMVTime showed mixed results with generally lower accuracy
and unexpectedly high computational overhead on these datasets. The results
show that no single deep learning architecture consistently performs well across
all channel dependency scenarios.

Transformer-based methods (Table 4) showed promise, particularly Con-
vTran’s strong performance on SYNTH and MP8, but performance varied con-
siderably depending on the data characteristics. TSLANet generally performed
worse than ConvTran, especially on the datasets with strong channel depen-
dence. The performance gap expands noticeably on MP50 and SYNTH, suggest-
ing ConvTran’s architecture better handles strong channel dependencies, though
at the cost of longer training times on larger datasets. Channel dependency
emerges as a key factor in determining when transformer-based approaches be-
come necessary. We note that on these datasets, MiniRocket is comparable with
ConvTran regarding accuracy, but much faster to train and predict.

For the foundation models analyzed, we evaluated both zero-shot and fine-
tuning approaches, as shown in Table 5. As a sanity check, we reproduced the
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Table 2: Accuracy and Runtime Results of Time Series Methods (aeon)
Dataset Model Acc TrainTime(s) PredTime(s)

CMJ

ROCKET 0.950 17.67 7.37
MiniRocket 0.944 2.26 0.49
QUANT 0.933 2.65 0.22
HYDRA 0.944 6.01 2.59
Catch22 0.922 19.79 8.27

MP8

ROCKET 0.743 43.67 17.65
MiniRocket 0.741 3.58 1.09
QUANT 0.696 26.27 0.77
HYDRA 0.748 8.79 3.17
Catch22 0.635 29.76 11.93

MP50

ROCKET 0.793 50.32 20.60
MiniRocket 0.787 4.86 1.61
QUANT 0.740 199.30 4.68
HYDRA 0.738 9.98 3.53
Catch22 0.672 747.74 285.73

SYNTH

ROCKET 0.861 793.20 94.78
MiniRocket 0.882 119.53 4.88
QUANT 0.964 553.77 2.92
HYDRA 0.912 313.10 16.96
Catch22 0.906 58.96 4.83

experiments from the original papers using their datasets and confirmed that we
achieved the same performance metrics as reported by the authors, validating
our implementation before applying these models to our datasets.

5.1 Impact of Classifier Selection on Zero-Shot Performance

Our evaluation demonstrates that foundation models show distinct performance
patterns that are critically influenced by both dataset complexity and classifier
selection. On simpler datasets with weak channel dependencies (CMJ), zero-
shot methods like Chronos perform competitively (0.927 with Random Forest),
while performance declines significantly on channel-dependent datasets. Notably,
classifier choice becomes increasingly important as channel dependency strength-
ens: while Random Forest consistently performs best on simpler datasets, Ridge
Classifier demonstrates notable e!ectiveness when paired with aLLM4TS em-
beddings on complex tasks, achieving better performance on MP8 (0.689) and
MP50 (0.472) compared to alternative classifier combinations. This pattern indi-
cates that di!erent foundation models produce embeddings with distinct charac-
teristics: Chronos generates representations that benefit from Random Forest’s
ensemble approach, while aLLM4TS creates more linearly separable patterns
that Ridge Classifier can e!ectively utilize.

Beyond classifier selection, our evaluation shows significant computational
trade-o!s, with fine-tuning approaches like MOMENT demonstrating better
adaptability to complex data but requiring exponentially higher computational
cost compared to zero-shot methods. Despite these optimization strategies, foun-
dation models consistently underperform specialized time series methods on
channel-dependent tasks, with even transformer architectures specifically de-
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Table 3: Accuracy and Runtime Results of Deep Learning Methods
Dataset Model Acc Epochs TrainTime(s) PredTime(s)

CMJ
CNN 0.922 12 2.07 0.05
TimesNet 0.866 24 220.66 0.95
CNN (aeon) 0.950 2000 335.61 0.25
InceptionTime (aeon) 0.905 500 578.49 1.35
LITEMVTime (aeon) 0.899 500 2127.92 1.08

MP8
CNN 0.810 55 27.28 0.08
TimesNet 0.351 11 186.74 1.82
CNN (aeon) 0.659 2000 659.40 0.31
InceptionTime (aeon) 0.832 500 2472.29 1.62
LITEMVTime (aeon) 0.812 500 2618.88 1.42

MP50
CNN 0.661 56 24.37 0.10
TimesNet 0.245 32 530.50 1.79
CNN (aeon) 0.252 2000 1390.24 0.45
InceptionTime (aeon) 0.781 500 4167.91 2.61
LITEMVTime (aeon) 0.579 500 4924.69 2.59

SYNTH
CNN 0.732 49 92.14 0.26
TimesNet 0.486 17 3822.72 6.56
CNN (aeon) 0.868 2000 5895.06 0.48
InceptionTime (aeon) 0.691 500 10194.65 1.68
LITEMVTime (aeon) 0.576 500 14895.80 2.68

Table 4: Accuracy and Runtime Results of Transformer-based Methods
Dataset Model Acc Epochs TrainTime(s) PredTime(s)

CMJ
ConvTran 0.866 48 114.39 0.65
TSLANet 0.894 34 138.45 1.39

MP8
ConvTran 0.804 100 296.04 0.81
TSLANet 0.727 60 387.87 2.16

MP50
ConvTran 0.570 48 273.15 1.58
TSLANet 0.424 43 287.26 2.08

SYNTH
ConvTran 0.930 50 3821.37 6.20
TSLANet 0.871 20 1898.66 9.74

signed for time series (ConvTran) outperforming general foundation models on
complex multivariate data. These findings emphasize that foundation model eval-
uation requires careful consideration of classifier selection as a critical hyperpa-
rameter, particularly for MTS with varying channel dependencies.

Due to the novel proposal of adapters to address channel dependency, Mantis
model variations (Table 8, Appendix) were evaluated in detail across extrac-
tion approaches (with/without adapters) and fine-tuning strategies. Key findings
include that adapters o!er significant computational e”ciency, reducing trans-
form times by 33-95% across datasets, with the most dramatic gains on complex
data like MP50. However, accuracy implications vary by dataset complexity.
Adapters maintain performance on weak channel dependent data (CMJ) and
improve accuracy on moderately complex data (MP8), but reduce accuracy sig-
nificantly on datasets with strong channel dependence (MP50, SYNTH).

Full fine-tuning significantly outperforms adapter-head fine-tuning on strongly
channel dependent datasets, despite incurring a 15–20% increase in training time.
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Table 5: Accuracy and Runtime Results of Foundation Models
Dataset Model Classifier Fine-tune Acc FeatTime(s) TrainTime(s) PredTime(s)

CMJ

Chronos RandomForest - 0.927 10.79 5.85 0.05
Chronos LogisticRegr - 0.916 10.79 9.32 0.09
Chronos RidgeClassif - 0.927 10.79 0.66 0.03
MOMENT - 50 0.855 - 81.17 2.17
One-fits-all - 28 0.866 - 16.39 0.29
aLLM4TS RandomForest - 0.832 20.29 0.37 0.01
aLLM4TS LogisticRegr - 0.844 20.29 0.06 0.01
aLLM4TS RidgeClassif - 0.872 20.29 0.01 0.01
VQSHAPE RandomForest - 0.922 54.35 0.22 0.01
VQSHAPE LogisticRegr - 0.922 54.35 0.18 0.01
VQSHAPE RidgeClassif - 0.883 54.35 0.02 0.01

MP8

Chronos RandomForest - 0.434 32.17 38.68 0.16
Chronos LogisticRegr - 0.467 32.17 30.20 0.61
Chronos RidgeClassif - 0.459 32.17 4.90 0.18
MOMENT - 18 0.489 - 103.52 9.56
One-fits-all - 33 0.644 - 64.46 0.63
aLLM4TS RandomForest - 0.629 31.38 2.02 0.01
aLLM4TS LogisticRegr - 0.517 31.38 0.09 0.01
aLLM4TS RidgeClassif - 0.689 31.38 0.01 0.01
VQSHAPE RandomForest - 0.659 184.68 1.09 0.03
VQSHAPE LogisticRegr - 0.556 184.68 0.52 0.01
VQSHAPE RidgeClassif - 0.422 184.68 0.08 0.01

MP50

Chronos RandomForest - 0.287 34.66 39.74 0.16
Chronos LogisticRegr - 0.261 34.66 32.08 0.69
Chronos RidgeClassif - 0.235 34.66 4.59 0.16
MOMENT - 58 0.662 - 1791.58 119.38
One-fits-all - 33 0.266 - 219.96 1.61
aLLM4TS RandomForest - 0.361 32.22 1.80 0.01
aLLM4TS LogisticRegr - 0.390 32.22 0.09 0.01
aLLM4TS RidgeClassif - 0.472 32.22 0.09 0.01
VQSHAPE RandomForest - 0.368 185.38 1.02 0.03
VQSHAPE LogisticRegr - 0.341 185.38 1.22 0.01
VQSHAPE RidgeClassif - 0.281 185.38 0.05 0.01

SYNTH

Chronos RandomForest - 0.491 144.34 697.98 2.54
Chronos LogisticRegr - 0.513 144.34 859.18 4.55
Chronos RidgeClassif - 0.491 144.34 178.85 2.70
MOMENT - 60 0.768 - 5164.22 61.30
One-fits-all - 40 0.672 - 414.87 1.19
aLLM4TS RandomForest - 0.497 387.88 16.59 0.02
aLLM4TS LogisticRegr - 0.500 387.88 0.32 0.01
aLLM4TS RidgeClassif - 0.505 387.88 0.07 0.01
VQSHAPE RandomForest - 0.644 855.21 8.32 0.14
VQSHAPE LogisticRegr - 0.671 855.21 0.73 0.01
VQSHAPE RidgeClassif - 0.669 855.21 0.17 0.01

The choice of classifier also plays a crucial role in performance: Random Forest
excels on simpler datasets, while Logistic Regression demonstrates e!ectiveness
with adapters on channel-dependent data, reinforcing our findings on founda-
tion models. The most notable disparity is in computational e”ciency. Mantis
adapter extraction completes in seconds, whereas full fine-tuning requires hours,
underscoring the critical trade-o! between accuracy and e”ciency.

Table 6 summarizes performance across all methods, demonstrating that
foundation models struggle to consistently outperform established approaches,
particularly on datasets with strong channel dependencies. While foundation
models achieve top results, the performance di!erences are often marginal, with
time series and deep learning methods remaining highly competitive across all
evaluation scenarios.
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Table 6: Accuracy Comparison Across All Methods and Datasets
Category Method CMJ MP8 MP50 SYNTH

Traditional ML

Random Forest 0.933 0.607 0.476 0.538
Gradient Boosting 0.939 0.605 0.555 0.518
KNN 0.620 0.548 0.341 0.544
Logistic Regression 0.687 0.642 0.622 0.537
Ridge Classifier 0.536 0.607 0.540 0.519

Time Series

ROCKET 0.950 0.743 0.793 0.861
MiniRocket 0.944 0.741 0.787 0.882
QUANT 0.933 0.696 0.740 0.964
HYDRA 0.944 0.748 0.738 0.912
Catch22 0.922 0.635 0.672 0.906

Deep Learning

CNN 0.922 0.810 0.661 0.732
CNN (aeon) 0.950 0.659 0.252 0.868
TimesNet 0.866 0.351 0.245 0.486
InceptionTime 0.905 0.832 0.781 0.691
LITEMVTime 0.899 0.812 0.579 0.576

Transformers
ConvTran 0.866 0.804 0.570 0.930
TSLANet 0.894 0.727 0.424 0.871

Foundation Models

Chronos (best) 0.927 0.467 0.287 0.513
MOMENT 0.855 0.489 0.662 0.768
OneFitsAll 0.866 0.644 0.266 0.672
aLLM4TS (best) 0.872 0.689 0.472 0.505
VQShape (best) 0.922 0.659 0.368 0.671
Mantis Full FT 0.955 0.697 0.773 0.929

Dataset Channel Dependency Weak Strong Strong Strong

BEST MODEL Mantis InceptionTime ROCKET QUANT

Potential Solutions to Address Strong Channel Dependence. Based on
these findings, we identify several promising directions for improving foundation
model performance on channel-dependent MTSC data: (1) pre-training objec-
tives that explicitly model inter-channel relationships; (2) attention mechanisms
designed specifically for channel dependencies; (3) hybrid architectures combin-
ing foundation model capabilities with channel-aware components like those in
ConvTran; (4) more e”cient fine-tuning strategies that mitigate the prohibitive
computational costs observed in our experiments; (5) data representation ap-
proaches that extend Mantis’ adaptive channel compression techniques to better
preserve cross-channel information, e.g., by redesigning adapters to better cap-
ture dependencies between channels. Our results emphasize that model selection
should be guided by both dataset characteristics and computational constraints,
with specialized approaches like MiniRocket currently still providing more reli-
able and e”cient solutions than foundation models for MTS classification.

6 Conclusion

Our analysis of foundation models for time series demonstrates a consistent pat-
tern in their handling of multivariate data: channels are predominantly processed
independently across all three categories of tokenization-based, patch-based, and



Evaluating Foundation Models for Multivariate TSC 17

shape-based approaches. While this design choice o!ers computational e”ciency
and has proven e!ective for many tasks, it fundamentally limits these models’
ability to capture complex relationships between channels. This limitation stands
in contrast to methods like ROCKET and MiniRocket, which combine channel
information during convolution through weighted summation across channels
and further leverage channel interactions through the classification stage. Fu-
ture development of foundation models for time series may benefit from explic-
itly addressing channel dependencies, either through architectural modifications
or novel pre-training objectives that encourage the learning of cross-channel pat-
terns [20]. As foundation models continue to evolve in the time series domain,
addressing the challenge of modeling inter-channel dependencies while maintain-
ing the computational advantages of current approaches remains an important
area for future research. This could potentially lead to more powerful models
that better capture the complex interactions present in real-world multivariate
time series data.
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