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Abstract. Edge-level explainers for Graph Neural Networks (GNNs)
aim to identify the most crucial edges that influence the model’s pre-
dictions in a node classification task. Benchmarking these explainers is
particularly challenging due to the extensive search space of potential ex-
planations and the absence of reliable ground truths for edge importance.
Moreover, the evaluation methods which are prominent in the literature
rely on assumptions about which subgraphs in the input data influence
the classification of a node, yet they provide no guarantee that the model
has effectively learned the intended behavior.
In this paper, we address these limitations by introducing a white-box
GNN model together with a theoretical analysis to identify which edges
are truly important, i.e., when removed, they can alter the classification.
We demonstrate the effectiveness of this framework on both synthetic
and real-world node classification tasks, using metrics that account for
the inherent imbalance between the few relevant edges and the many
irrelevant ones. Our evaluation reveals two recurring issues in current
explainability methods: the frequent misidentification of unimportant
edges as important ones, and numerical instability in some attribution
techniques. To address these issues, we propose two corrective strate-
gies that significantly enhance the reliability of edge-level attributions: a
post-processing method to refine edge rankings and a rescaling of model
weights to stabilize numerical outputs.
Our work provides valuable insights into the strengths and weaknesses
of existing GNN explainers and presents practical solutions to advance
the fine-grained explainability of graph-based models.

Keywords: Explainable AI · Graph Machine Learning · XAI Bench-
marking.

1 Introduction

Graph structures are ubiquitous in data science. From chemical bonds to finan-
cial transactions, graphs encompass many situations where relations between
elements add additional information to the task at hand. In many applications,
Graph Neural Networks (GNNs) have been introduced as an effective tool for
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learning from these relations and performing predictions. However, these meth-
ods are inevitably undermined by their black-box nature. The low human under-
standability of these techniques raises concerns from regulators and practition-
ers alike about their algorithmic decisions. Due to this reason, a large corpus of
works on explainable artificial intelligence has been developed specifically to deal
with graphs’ peculiarities. Nonetheless, a general and common understanding of
what makes a good explanation is still lacking, slowing the adoption of these
techniques.

One of the main obstacles to adopting explainability techniques in graph
machine learning is the inherent difficulty in validating these methods. Proper
validation of a local explanation approach requires: (i) a precise definition of what
constitutes a good explanation, i.e., identifying the elements that the explainer
should consider as important for the model’s decision, and (ii) a robust evalu-
ation framework comprising models, ground truth explanations, and objective
evaluation metrics. Prior research has largely focused on validating explanations
from a true-to-the-data perspective [1, 14], where ground truths are defined by in-
herent data structures or by artificially implanting target structures in the data.
While this strategy may seem promising initially, it assumes that the model has
actually learned the logic behind those inherent or implanted structures. This
is a strong assumption, as models often capture spurious correlations with little
relation to the underlying data-generation process. In contrast, significantly less
attention has been devoted to establishing a true-to-the-model evaluation of ex-
planations (e.g. [15]), which assesses an explainer’s ability to faithfully capture
the intrinsic reasoning underlying a GNN’s classification decision.

In this work, we adopt a true-to-the-model perspective by employing a simple
yet meaningful toy model of a GNN that is fully interpretable: we call it a white-
box model—in contrast with the typical black-box nature of GNNs—to represent
the fact that its inner logic in clearly known and thus defines a ground truth for
the explanation task. We focus on edge-level explanations, which are the most
fine-grained type of explanation available for graph structures. The approach
eliminates the uncertainties about the extent to which the GNN has captured
the true data-generating process, thereby avoiding many of the pitfalls inherent
in a true-to-the-data evaluation framework [4] while enabling a rigorous analysis
of explanation quality.

First, we define an axiom of importance for the edges. Then, leveraging our
knowledge of the model’s inner functioning, we can prove that the important
edges correspond to a human intuition of importance. We apply the model to
synthetic and real datasets in a node classification task. Using metrics that ac-
count for the unbalanced proportion between the minority of relevant edges and
the majority of irrelevant ones, we observe that the explainers cannot always
identify the most relevant edges. In particular, we observe two common prob-
lems. The first is due to certain edge patterns, where the explainer alternates
unimportant edges with important ones. The second problem is the numerical
instability of some of the methods. The first problem can be solved by post-
processing the explanations, while the second can be mitigated by rescaling the



A True-to-the-model Benchmark for Edge-level Attributions of GNN Expl. 3

models’ weights. We show how these patches can improve the quality of the
produced explanations, enhancing the explainability of GNN models.

The main contributions of this paper are summarized as follows:

1. We introduce a white-box GNN along with a theoretical framework for a
true-to-the-model benchmark of edge-level attributions;

2. We examine different metrics for the evaluation of the explanations, and
observe that no explainer is capable of always identifying which of the edges
are the most important;

3. By analysing the cases where the explainers fail the most, we identify two
independent and systematic mistakes in the explanations;

4. Finally, we propose two solutions for overcoming these problems, showing
that simple and fast improvements can lead to increased performance of the
explainers.

We release all the code of the white-box model and the experimental setup for
reproducibility4.

2 Background and related work

Graph neural networks (GNNs) have become essential in both research and
practical applications, with widely used architectures such as Graph Convo-
lutional Networks (GCNs) [11], GraphSAGE [8], and Graph Attention Net-
works (GATs) [20] relying on message-passing mechanisms. Although all of these
message-passing schemes are inherently opaque, our focus is on models like GCNs
and GraphSAGE where the message weights are fixed, as opposed to the dynam-
ically learned weights in attention-based approaches like GATs.

Understanding and interpreting GNN decisions is critical for establish-
ing trustworthy models [27]. In this work, we address post-hoc explainability
methods—generally referred to as "explainers"—that produce edge-level expla-
nations. Explainers can be divided into three classes, depending on the scope
of their explanations: instance-level, class-level, or model-level explainers [12].
We concentrate on instance-level explainers (which consider a single model de-
cision at a time) that provide fine-grained, edge-specific attributions. Edge-level
explainers can be further divided into different categories, as discussed in [24,
12]:

– Mask-based explainers: These methods, that include GNNExplainer [23]
and SubgraphX [25], generate hard or soft masks for the graph’s adjacency
matrix to highlight important edges.

– Causal-based explainers: This category includes explainers that use
causal inference techniques OrphicX [13] and policy-based explainers such
as ZORRO [5].

4 https://github.com/FrappaN/EdgeWhiteBoxBench
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– Perturbation-based approaches: According to [24], both Causal-based
explainers and Mask-Based explainers fall into this broader category, where
edge importance is inferred by analyzing the effect of perturbations.

– Gradient-based methods: Techniques such as Integrated Gradients [19]
and Grad-CAM [16] estimate edge relevance using output gradients.

– Decomposition-based explainers: These methods decompose the
model’s output into contributions from individual edges or features. Ex-
amples include LRP [3], GStarX [28], and FlowX [7]. However, some are
limited to specific tasks (e.g., GStarX for graph classification) or require
model-aware implementations (e.g., GNN-LRP [18]).

– Surrogate-based explainers: Approaches like GraphLIME [10] and PGM-
Explainers [21] build local interpretable models to approximate the decision-
making process, though they generally do not provide detailed edge-level
explanations.

Early studies such as [4] compared different explainability techniques using
synthetic graphs with data-dependent ground truth labels, exposing significant
limitations of this evaluation strategy. Subsequent work [17, 1, 14] has assessed
explainers via multiple model calls and filtered edge masks. In contrast, the
white-box approach proposed in [15] establishes ground truth by leveraging in-
terpretable models but focuses on feature-level explanations. This strategy is
closely aligned with our methodology for benchmarking edge-level explanations.

3 Methods

In this section, we present our methodology for evaluating (and enhancing) edge-
level explanations in GNNs. First, we introduce a white-box GNN model inspired
by the label propagation algorithm, which provides an interpretable and con-
trolled framework for message-passing in graphs (§3.2). Second, we formalize
the concept of edge importance through an axiomatic framework that identi-
fies the minimal subgraphs critical for a model’s prediction (§3.3). Finally, we
propose a post-processing strategy to refine explainer outputs by eliminating
spurious attributions and enhancing explanation fidelity (§3.4).

3.1 Notation

Consider a binary node classification task on a directed graph G = (V,E), where
V is the set of nodes, and each node is associated with features from the set F .
The graph structure is represented by the edges E ⊆ 2V×V and the node-feature
matrix X ∈ R|V |×|F |. For a given node v ∈ V , the model is defined as a function:

M : R|V |×|F | × 2V×V × V → [0, 1] ,

which outputs a prediction score in the interval [0, 1].
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To facilitate explanation, we discretize the model’s output into classes:

M̂(X,E, v) =

{
0, if M(X,E, v) < 0.5

1, if M(X,E, v) ≥ 0.5

We also denote p0(X,E, v) = 1 − M(X,E, v) the probability of v being in
class 0, and similarly p1(X,E, v) = M(X,E, v) the probability of v being in
class 1.

Since our focus is on the influence of edges on the model’s output, we some-
times simplify the notation by omitting X and writing M(E, v) (or pc(E, v)).
An explainer for the model M assigns an importance score to each edge in E
for the classification of node v. We denote this as EM(E, v) = β ∈ R|E|, where
βe is the importance assigned to edge e ∈ E.

3.2 A white-box model inspired by label propagation

To evaluate explanation quality against a well-defined ground truth, we require a
realistic white-box model whose edge importance is both interpretable and con-
trollable, with mechanisms that are learnable by a GNN in a real scenario. For
this purpose, we propose a white-box GNN that approximates the label propaga-
tion, a heuristic widely used for community detection and node classification [29,
6], in which, starting from a subset of labeled nodes, at each iteration each node
adopts the majority label of its neighbours, until all nodes are labelled.

A single-layer GNN can emulate one iteration of label propagation. For sim-
plicity, consider a binary classification task. The model assigns to each node v an
embedding Xv ∈ {(1, 0), (0, 1), (0, 0)}, where (1, 0) corresponds to a node known
to belong to the first class, (0, 1) to one belonging to the second class, and (0, 0)
to any unlabelled node. The model then performs one round of message passing:

H(1)
v = ReLU(

∑
u∈N (v)

XuW ), with W =

(
1 −1
−1 1

)
, (1)

followed by a final transformation:

M(X,E, v) = σ
(
H(1)

v w⊤
)
, (2)

where σ is the sigmoid function, w = (1,−1), and N (v) are the nodes neighbours
of v. To mimic multiple iterations of label propagation, we generalize the model
to L rounds by repeating the propagation step with normalization:

H(l)
v = ReLU(

∑
u∈N (v)

H
(l−1)
u

∥H(l−1)
u ∥

W ) for l = 2, . . . L; (3)

After which, the same final transformation with a sigmoid activation is applied.
Note that scaling the weight matrix W by any scalar factor f does not al-

ter the model’s classification. We will later use this property to improve the
numerical stability of the explanations, as detailed in Section 4.2.
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For multi-class classification, the model can be generalized by encoding node
labels as one-hot vectors. In this case, the weight matrix W is a matrix with 1
on the diagonal and −1 everywhere else. The propagation rule remains the same
as in Eq. 3, and a softmax activation is applied at the output layer. Under this
assumption, a node is assigned to a particular class only if a strict majority of
its labelled neighbours belong to that class.

3.3 Defining edge importance

We define the importance of an edge by its contribution to the model’s prediction.
To formalize this notion, we introduce the concept of important subgraph.

Definition 1. Given a graph G = (V,E) and a binary node classification model
M such that M̂(E, v) = c and the predicted probability pc(E, v) > 0.5 for some
node v, a set of edges A ⊆ E is an important subgraph for M and v iff:

1. Removing A from the graph changes the prediction, i.e., pc(E \A, v) ≤ 0.5;
2. No proper subset B ⊂ A has this effect, meaning that for all B ⊂ A, the

model still predicts class c with pc(E \B, v) > 0.5.

In other words, an important subgraph is a minimal set of edges whose re-
moval causes the model’s confidence to drop below the decision threshold. Dif-
ferent important subgraphs can share multiple edges.

Let I denote the set of all important subgraphs:

I = {A ⊆ E|A is an important subraph for M},

and define the union of all such subgraphs as:

S =
⋃
A∈I

A.

For the evaluation of explainers, we focus on checking whether an edge be-
longs to S. Accordingly, we propose the following axiom:

Axiom 1 Let G = (V,E) be a graph, M a binary node classification model, and
EM an explainer that produces an attribution vector β ∈ R|E|. Denote by S the
union of all important subgraphs for M. Then, for every edge e ∈ S and every
edge e′ /∈ S,

|βe| > |βe′ |.

In other words, we expect that a faithful explainer assigns higher importance
to edges that are critical to the model’s prediction.

Defining important subgraphs in this way also allows us to assess whether an
explainer can capture redundant structures in the graph. While such redundancy
can complicate evaluations based solely on ground-truth data [4], our white-box
model ensures that redundant structures are indeed used by the model, thereby
enabling a more reliable evaluation.
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In our framework, the importance of specific edges is controlled by the initial
node labelling. For a binary classification task, the prediction for a node v de-
pends on the difference nc1,v−nc2,v, where nc,v denotes the number of neighbours
of node v with initial label c.

This intuition is formalized in the following proposition for a 2-layer binary
label propagation model:

Proposition 1. Consider a graph G = (V,E), a node r ∈ V , and a 2-layer
(binary) label propagation model M with initial labels X, such that:

M̂(X,E, r) = c ∈ {0, 1}.

We define the intermediate (after one layer) and initial labels as:

c(1)u = argmax
i

H
(1)
u,i ; c(0)u = argmax

i
Xu,i;

with c
(l)
u = 0.5 if the maximum is not unique. Then, if M(X,E, r) ̸= 0.5, the

following edges are important according to our definition:

1. All edges e = (s, r) ∈ E such that c(1)s = c;
2. All edges e = (t, s) ∈ E such that s ∈ N (r) and c

(0)
t = c

(1)
s = c.

In essence, this proposition shows that all paths from nodes initially labelled
as the predicted class of the target node r are important. This result can be
easily extended to the multiclass case.

Label 0

Label 1
v

̂ℳ (X, E, v) = 0

v

̂ℳ (X, E, v) = 1

v

̂ℳ (X, E, v) = 1

Fig. 1: Examples of the output of the white-box label-propagation-inspired
model: important subgraphs are highlighted with shaded areas.

3.4 Post-processing Edge Importance to Improve Explanations

Our proposed definition of edge importance, which directly ties the relevance of
an edge to its role in the message-passing mechanism, allows us to naturally in-
troduce a post-processing step aimed at refining explanation quality. Specifically,
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Post-processing

T

Relevant

Irrelevant

T

Relevant

Irrelevant

Fig. 2: (left) Example of a misleading attribution pattern for the classification
of node “T”. In the initial explanation, relevant edges are depicted as continuous
orange lines and irrelevant ones as black dotted lines; the false positive edge
is marked with a cross. (right) After applying our post-processing procedure,
the false positive edge is corrected, resulting in an explanation that accurately
reflects the continuous path of relevant edges.

we observed that explainers often assign relevance scores to edges that, by con-
struction, should be considered unimportant for the model’s prediction, forming
recurring misleading attribution patterns (e.g., Figure 2). These patterns typi-
cally involve assigning high importance to edges connecting second-order neigh-
bours to immediate neighbours, even when those edges don’t influence the target
node’s final prediction according to our definitions.

Leveraging our formalization, we identify an intuitive correction rule: if an
edge is deemed unimportant, any edges preceding it in the message-passing path
should also be considered unimportant. More precisely, in a directed graph, if
a node A receives a message from node B along an edge that is considered
unimportant by the explainer, then all edges incoming to node B should also be
considered unimportant with respect to node A’s classification.

To enforce this rule, we define a threshold on edge importance scores to
distinguish between important and unimportant edges clearly. For attribution
methods producing both positive and negative importance scores (e.g., Inte-
grated Gradients, LRP, and Deconvolution), we set this threshold at zero. For
methods generating positive scores in the range [0, 1] (e.g., GNNExplainer), we
use a threshold of 0.5. When an edge that is followed by an unimportant edge
exceeds this threshold, we reduce its attribution score accordingly. In both cases,
applying this threshold results in a noticeable improvement in the quality of the
explanations.

4 Experiments

In this section, we present our experimental evaluation of edge-level explain-
ers. We evaluate the performance of these methods using both synthetic and
real-world graphs. The goal of our experiments is to quantify how well the ex-
plainers capture the edge importance as defined by our white-box label propa-
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gation model, and to evaluate the effectiveness of our post-processing strategy
in refining the explanations.

4.1 Experimental Setup

Synthetic Graphs: We generate synthetic graphs using the Erdős-Rényi model
with a fixed number of 1000 nodes and explore three different edge connection
probabilities: p = 0.005, p = 0.01, and p = 0.05. In order to simulate a super-
vised node classification scenario, we initialize 80% of the nodes with randomly
assigned labels. To introduce a higher degree of homophily, which is a common
assumption in many GNN models, we rewire 1/3 of the edges originating from
labelled nodes to connect them with other nodes sharing the same label. To
evaluate the explanations, we select 100 nodes that were not initially labelled
and for which the model predicts a class with a probability greater than 0.5.

Real Graphs: Our experiments on real data involve three widely-used citation
network datasets: Cora [22], Pubmed [22], and OGBN-ArXiv [9]. In these exper-
iments, we use the multiclass version of the Label Propagation Model. Similarly
to the synthetic setup, 80% are initialized with their true labels. To evaluate
the explanations, we focus on nodes for which the predicted class probability is
strictly higher than that of any other class.

Explainers: Many of the explainers in the literature do not provide edge-
level explanations or are tailored for node classification tasks. For example,
GraphLIME does not provide edge-level attributions, and GStarX is designed
for graph-level tasks rather than node-level ones. Therefore, we consider five
explainers that are both relevant and directly applicable to our setting. These
methods span three categories:

– Gradient-based explainers: Integrated Gradients (IG) [19].
– Mask-based explainers: GNNExplainer [23] and SubgraphX [25].
– Decomposition-based explainers: LRP [2] and Deconvolution [26] (a hybrid

decomposition/gradient method).

For GNNExplainer, we set the number of training epochs to 10, 000, since
we observed the performance increases with the number of epochs. We left the
other parameters to their default values. In contrast, SubgraphX not only re-
quired significantly longer runtimes to generate explanations but also produced
results of lower quality. This discrepancy likely stems from how SubgraphX op-
erates: instead of attributing importance directly to edges, it first selects the
most relevant nodes and then returns the induced subgraph. As a consequence,
its results do not align well with methods that inherently produce edge-level
explanations.
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Evaluation Metrics: To quantitatively assess the quality of edge-level expla-
nations, we use two evaluation metrics: the Receiver Operating Characteristic
Area Under the Curve (ROC-AUC) and the Precision-Recall Area Under the
Curve (PR-AUC). These metrics are computed over the set of edges in the 2-
hop neighbourhood of each target node, where each edge is labelled as either
relevant or irrelevant based on our ground truth.

Due to the inherent class imbalance—where irrelevant edges vastly outnum-
ber relevant ones—the Precision-Recall metric is particularly effective in captur-
ing the performance of edge-level explainers. Our evaluation further considers
variations in graph properties by testing on random graphs generated with dif-
ferent edge connection probabilities (p = 0.005, 0.01, and 0.05), which influence
the overall density and the ratio of relevant to irrelevant edges.

4.2 Results

Impact of Graph Density on Edge-Level Explanation Performance

In Figures 3a and 3b we present violin plots of the ROC-AUCs and PR-AUCs,
respectively, across random graphs generated with varying edge probabilities
(p). For each graph, we evaluate the explainers on a sample of 100 nodes. These
metrics are computed based on the ground truth labelling of edges—relevant
versus irrelevant—in the 2-hop neighbourhood of each target node.

The main difference between these metrics is in their treatment of false
positives. While ROC-AUC uses the false positive rate (FPR), defined as
FPR = FP

FP+TN , PR-AUC relies on precision, defined as Precision = TP
TP+FP ). As

shown in Figure 4, although the FPR remains close to zero beyond a threshold
t = 0 for all explainers, precision is more sensitive to threshold variations. This
observation highlights that even a small number of false positives can signifi-
cantly affect the ratio of true positives. This sensitivity makes PR-AUC particu-
larly effective for evaluating edge explanations in settings with a high imbalance
between relevant and irrelevant edges.

Recurring Misleading Attribution Patterns

In experiments on sparse, small graphs, we observed that explainers consistently
assign importance to edges in recurring, misleading patterns, as exemplified by
Figure 2.

To address this issue, we implemented the post-processing procedure detailed
in Section 3.4 that adjusts the importance scores based on the message-passing
paths. This post-processing step significantly improves performance, as shown
in Figure 5 and Table 1. In particular, all explainers benefit from this correction
except for GNNExplainer, which consistently assigns importance to all edges in
the entire misleading pattern rather than just a subset of its edges.
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(a) Violin plot of ROC-AUC scores. The red dashed line indicates the random baseline
at 0.5.
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(b) Violin plot of PR-AUC scores. The red dashed line indicates the random baseline.

Fig. 3: Violin plots displaying the distribution of ROC-AUC (a) and PR-AUC (b)
scores for edge-level explanations on a 2-layer label propagation model. Evalua-
tions were performed on 100 nodes sampled from Erdős-Rényi graphs with vary-
ing edge connection probabilities. Black points correspond to the mean scores.

Results on empirical graphs

The same problems and behaviours observed on synthetic graphs have also been
observed in our experiments on real-world datasets. We evaluate the explainers
on three empirical graphs: Cora, PubMed, and OGBN-ArXiv, where 80% of the
nodes are initialized with their true labels. For sparser graphs, Cora and PubMed,
the explainers achieve near-perfect performance, indicating that the underlying
sparsity and homophily help to generate accurate edge-level attributions. In
contrast, performance on OGBN-Arxiv, which is both a denser and larger graph,
is comparatively lower.

Detailed results are presented in Table 1, Figure 6, and Figure 7. In particu-
lar, the post-processing procedure consistently increases the performance of all
explainers across these datasets. These results reinforce our observations from
synthetic graphs and emphasize the importance of addressing false positives.
Moreover, in the next section, we show how weight scaling further benefits the
explanations, particularly in denser graph settings.

Numerical Stability of Explanations

Our experimental results from Figure 5 show that as graph density increases,
the performance of several explainers degrades, even after applying our post-
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Fig. 4: On the left, the mean precision of the explainer at different attribution
value thresholds on a sparse graph with p = 0.01; on the right, the mean false
positive rate on the same graph; in both plots, the shaded areas correspond to
the standard deviation across the explained node predictions.
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Fig. 5: Mean PR-AUC across nodes before and after post-processing of explana-
tions on the same Erdős-Rényi random graphs of Figure 3; there’s an improve-
ment for most explainers, apart from GNNExplainer.

processing procedure. In particular, while GNNExplainer remains relatively sta-
ble, both LRP and Deconvolution exhibit improvements in PR-AUC with post-
processing but still fall short of the performance achieved by Integrated Gradi-
ents on dense graphs.

To gain further insights into this behaviour, we analyzed the cumulative dis-
tribution of non-zero edge attributions produced by Integrated Gradients, LRP,
and Deconvolution (see Figure 8). The results show that Integrated Gradients
covers a broader range of attribution values, as its cumulative curves increase
more gradually. In contrast, LRP and Deconvolution tend to concentrate their
attributions around small values near zero, particularly in denser graphs, indi-
cating underflow issues when assigning edge importance.

We traced back this problem to the dependency of the explanation scores
on the model weights. In our white-box framework, this issue can be mitigated
by scaling the weights by a fixed factor. Figure 9 shows that when we multiply
the weights in the graph convolution layers by a scaling factor f ≤ 1 and apply
the modified model to our datasets, the performance of Deconvolution (after
post-processing) improves significantly, reaching levels comparable to Integrated
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Fig. 6: Violin plot of the PR-AUCs on the three real datasets, across a sample
of 100 nodes, with the points corresponding to the mean.

Table 1: Mean PR-AUC across a sample of 100 nodes of the explainers on the
real datasets, with standard deviation, we show both the original performance
and after the post-processing described in Section 3.4; Darker shades highlight
the best results, with different colors used for each dataset.

Dataset Post-processing? GNNExp. IG Deconv. LRP

Cora ✗ 99.1±7.6 99.5±2.2 91.3±18.1 99.4±2.4
✓ 99.5±4.0 100.0±0.0 99.7±2.9 100.0±0.0

PubMed ✗ 99.1±4.8 98.8±5.7 95.3±12.1 98.9±5.3
✓ 99.1±4.8 99.8±1.9 98.7±6.6 100.0±0.0

OGBN-ArXiv ✗ 95.3±13.3 92.1±16.5 65.7±30.0 97.5±6.5
✓ 95.8±12.6 96.9±10.0 96.2±12.8 99.2±4.1

Gradients. Similar improvements are observed for LRP, not shown because the
results overlap those of Deconvolution.

5 Conclusion

This paper introduces a novel, true-to-the-model benchmark for evaluating edge-
level explanations of Graph Neural Networks using a white-box model. Our ap-
proach provides a controlled and interpretable environment, enabling a system-
atic comparison of state-of-the-art explainers. Through extensive experiments on
both synthetic and real-world graphs, we identify key methodological challenges
and offer practical solutions to improve explanation quality.

A critical finding of our work is that some evaluation metrics are more
effective in capturing the performance of edge-level explainers. In particular,
Precision-Recall curves offer a more sensitive measure of the ability of explain-
ers to distinguish relevant from irrelevant edges, when compared to ROC-AUC
scores, particularly for dense input graphs.

Our evaluation revealed two recurrent issues: first, many explainers produce
explanations that are inconsistent with the actual computations of the GNN;
second, some explainers suffer from numerical instability, which is amplified in
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Fig. 7: Plot with precision of wrong difficult negatives at different thresholds for
the three real datasets Cora, PubMed, and OGBN-ArXiv
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Fig. 8: Cumulative distributions of non-zero edge attributions produced by Inte-
grated Gradients, Deconvolution, and LRP on an Erdős-Rényi graph with 1000
nodes. Results are shown for two edge connection probabilities (p = 0.01 and
p = 0.05), illustrating that Integrated Gradients covers a broader range of attri-
bution values, while Deconvolution and LRP concentrate their attributions near
zero, particularly in denser graphs.

denser graphs. To address these issues, we propose two corrective strategies. We
introduce a post-processing step that adjusts the attribution scores to better
reflect the true message-passing paths, thus mitigating the problem of inconsis-
tent explanations. Additionally, we show that scaling the weights of the model
significantly reduces numerical instability, bringing the performance of methods
like LRP and Deconvolution closer to that of Integrated Gradients.

Overall, our framework not only benchmarks the strengths and limitations
of current edge-level explainers but also provides practical solutions to improve
their reliability. Future work may extend this framework to link and graph-level
tasks, incorporate other white-box models that implement different interpretable
heuristics and mimic attention mechanisms, and inspire the development of new
explainers that inherently overcome these issues.
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