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Abstract. Scattering networks are deep convolutional architectures that
use predefined wavelets for feature extraction and representation. They
are mathematically well-understood, and have proven effective for clas-
sification tasks in limited training data scenarios, where traditional deep
learning methods struggle. However, the opposite holds in larger data
regimes, resulting in a performance gap between well-understood learn-
ing architectures and non-transparent yet highly effective paradigms. Our
work addresses this gap on the domain of graphs by adapting the choice of
diffusion operator that constructs the scattering network to the data, al-
lowing better task-wise geometric representation. The resulting architec-
ture preserves stability guarantees with respect to input perturbations.
Continuous diffusion is applied in the learning process for more refined
weight updates. Numerical experiments on benchmark datasets show
that our approach consistently outperforms traditional graph scattering
with predefined wavelets, expanding the scenarios where interpretable
scattering architectures are competitive or superior to deep learning
methods, and further reducing their aforementioned performance dis-
parity.

Keywords: Graph learning · Scattering networks · Interpretability.

1 Introduction

Euclidean scattering networks are deep convolutional architectures analogous to
Convolutional Neural Networks (CNNs). Unlike standard CNNs, which employ
learnable filters at each layer, these networks are equipped with mathematically
predefined wavelets selected from a multi-resolution filter bank ([15,3]). This
distinction allows Euclidean scattering networks to serve as mathematically well-
understood models that capture the principles underlying the empirical success
of CNNs. Specifically, they exhibit proven robustness to small perturbations that
are close to translations in the underlying domain ([3]). For classification, these
models serve as efficient feature extractors, requiring only the classifier to be
trained. This is especially beneficial with limited data, enabling state-of-the-art
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performance while maintaining efficiency comparable to learned deep networks
on simpler datasets.

The increasing focus on graph-structured data has spurred interest in adapt-
ing CNN architectures to these domains, leading to the development of effective
graph convolutional models and variants (e.g. [14,26]). Naturally, proposal on ex-
tending the theoretical and practical benefits of Euclidean scattering networks
to geometric data follows. [33] first introduced graph scattering networks using
spectral wavelets ([13,22]) and analyzed its stability with respect to permutations
of the nodes and perturbations on the spectrum of the underlying graph domain.
Subsequently, [10] established improved stability bounds for this family of graph
scattering transforms, applicable to more general graphs and independent of
their spectral characteristics. Alternatively, [9] introduced graph scattering em-
ploying diffusion wavelets ([6]), using the lazy diffusion operator induced from
normalized adjacency, and analyzing stability using diffusion metrics ([18,5]).
Following this, [11] proposed an alternative graph scattering transform based
on lazy random walk diffusion, demonstrating expressivity through extensive
empirical evaluations.

A fundamental characteristic shared by all these scattering architectures is
the use of fixed, often manually selected filters. This contributes to scattering
networks’ mathematical intepretability, and in low data scenarios helps them
achieve higher classification performance than deep learning methods considered
as black boxes. In larger data regimes, the performance of scattering architec-
tures plateaus, while deep learning’s becomes much higher than any predefined
representations [20]. This work aims to bridge the performance gap between
these interpretable and non-transparent learning paradigms in graph domains.

In particular, we consider diffusion graph scattering network [9], constructed
from wavelets [6] which extract multiscales information in a single geometric dif-
fusion process. Given a dataset, different diffusion operators can extract different
properties via the use of diffusion map [7]. The selection of diffusion, which can
be labor-intensive if manually done, is thus critical to the performance of the
scattering network. Our approach for the diffusion scattering is thus to make
the corresponding diffusion operator learnable, training it at the same time with
the classifier. One operator is used throughout the network, making the number
of additional parameters small. Our method also preserves expressivity and sta-
bility properties of the resulting architecture, maintaining the interpretability
aspect of the original scattering.

The paper is organized as follows. In Section 2 we discuss related works.
Section 3 provides the necessary background. Section 4 discusses the frame-
work for defining diffusion wavelets and metrics (Sec. 4.1) and constructing the
diffusion-based graph scattering transform (Sec. 4.2). Section 5 demonstrates the
importance of diffusion operator selection with examples, introduces a learnable
operator design (Sec. 5.1), establishes energy conservation bounds for wavelets
(Sec. 5.2), provides a stability analysis of the resulting learnable diffusion scat-
tering transform (Sec. 5.4), and complexity analysis (Sec. 5.5). Section 6 presents
numerical results for graph classification tasks on low to medium data regimes.
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2 Related Works

The performance gap between scattering architectures and deep learning meth-
ods in larger data regimes has been widely discussed, particularly in the context
of Euclidean scattering, but remains less explored for graphs. For geometric
data, [24] introduced a scale-adaptive extension of the lazy random walk dif-
fusion scattering transform, enabling adaptive wavelet scale adjustment. Their
approach demonstrated competitive performance compared to popular GNNs
and the original graph scattering network.

For Euclidean image, [20] showed that the initial layers of a CNN can be
replaced with a scattering network, forming a hybrid architecture that achieves
competitive performance. [31] further demonstrated that learning in later CNN
layers can be reduced to a dictionary matrix that computes a positive sparse
l1 code. Their model outperformed AlexNet on ImageNet 2012 while remaining
mathematically interpretable. Additionally, [30] introduced a scattering-based
model, in which only 1 × 1 convolutional tight frames are learned for scat-
tering feature projection. This approach delivered performance comparable to
ResNet-18. The authors of [12] investigated the role of non-linearity in deep
CNNs and identified a phenomenon called “phase collapsing”. They applied this
into a Learned Scattering with 1× 1 complex convolutional operators to achieve
performance of ResNets of similar depths.

Adaptive diffusion for GNNs has also been explored in prior works [32,23].
These studies consider the weighted sum of outputs from each step of a predefined
diffusion process as multiscale information, and propose learning these weights
for adaptivity. In contrast, our approach focuses on adapting the diffusion opera-
tor, while multiscale feature extraction is handled by the scattering architecture
using wavelets [6]. Unlike previous methods that emphasize multi-hop aggrega-
tion, we focus on improving how the diffusion process extracts information.

3 Preliminaries

We start with some background that will be used throughout the paper (most
of which can be found in standard textbooks (e.g. [21,16])):

Metric space: A metric space is a tuple consisting of a set X and a distance
function d, which satisfies the metric properties: ∀x, y, z ∈ X: (i) positivity:
d(x, y) > 0, ∀x ̸= y; (ii) reflexivity: d(x, x) = 0; (iii) symmetry: d(x, y) = d(y, x),
and (iv) triangle inequality: d(x, y) ≤ d(x, z) + d(z, y). A weighted undirected
connected graph G = (V,E,W ), where W assigns positive weights to the edges,
is an example of a metric space with the distance between two nodes x and y
defined by d(x, y) = infpx,y

∑
e∈px,y

we, where px,y is a path connecting x and y.
Measure space: A measure space is a triple (X,Σ, µ), where X is a set,

Σ is a σ-algebra on X (a nonempty collection of subsets of X closed under set-
theoretic operations: complement, countable union, and countable intersection)
and µ is a measure on (X,Σ). A metric measure space is a triple (X, d,m)



4 T.V. Tran and H.S. Nguyen.

of a space X, metric d and a Borel measure m. For a finite graph G, mostly
considered is the counting measure µ where µ{u} = 1, ∀u ∈ V .

Multiresolution analysis: A multiresolution analysis of L2 of a metric
measure space (X, d, µ) is a sequence of subspaces {Vj}j∈Z, each of which is
called an approximation space. In the case of L2(R), the sequence {Vj}j∈Z
satisfies the properties:

(i) limj→−∞ Vj =
⋃+∞

j=−∞ Vj = L2(R)
(ii) limj→+∞ Vj =

⋂+∞
j=−∞ Vj = {0}

(iii) Vj+1 ⊆ Vj , ∀j ∈ Z
(iv) There exists a Riesz basis that spans V0.

The detail space Wj is defined as the orthogonal complement of Vj in Vj−1;
in other words, Vj−1 = Vj ⊕⊥ Wj , ∀j ∈ Z. The orthogonal projection of a sig-
nal x on Vj−1 can thus be decomposed as PVj−1

x = PVj
x + PWj

x. The pro-
jection of a signal x on Wj captures the "details" of x that are present in
the finer-scale space Vj−1 but absent in the coarser-scale Vj . Given a mother
wavelet ψ, the translations of ψ after being dilated onto scale 2j , denoted
as {ψj,n}n∈Z = { 1√

2j
ψ( t−2jn

2j )}n∈Z, compose an orthonormal basis of Wj . On
said basis, the projection of x on Wj can be obtained by a partial expansion:
PWj

x =
∑+∞

n=−∞⟨x, ψj,n⟩ψj,n.
Scattering transform is a mapping which takes an input signal x and re-

turns a representation Φ(x), calculated based on a deep convolutional architec-
ture, stable to small deformations while preserves high-frequency information.
Φ(x) is computed by applying sequentially three elements: A filter bank of
band-pass wavelets {{ψj,k}K−1

k=0 }Jj=1, a pointwise nonlinearity ρ (modulus or
ReLU), and an average operator U . In the Euclidean setting, the filter bank
consists of rotated and dilated versions ψj,k of a mother wavelet ψ with scaling
parameter j and angle parameter k, with the angle θ ∈ {2πk/K}k=0,...,K−1. The
scattering representation of x is defined as:

Φ(x) = [S0(x), S1(x), . . . , Sm−1(x)] , where

Sk (x) =
[
UΠk

i=0 (ρψαi
) (x)

]
α0,α1,...,αk

= [U (ρ (. . . ρ (ρ (x ∗ ψα0
) ∗ ψα1

) . . . ∗ ψαk
))]α0,α1,...,αk

.

(1)

where αi, i = 0, ..., k represent the scale parameters.

4 Graph Diffusion Scattering Transform

4.1 Graph Diffusion Wavelets and Diffusion Distances

The works in [8,6] introduce a framework for multiscale and multiresolution anal-
ysis on the domain of graphs, based on polyadic powers of a diffusion operator.
We consider an undirected, weighted, and connected graph G = (V,E,W ), with
|V | = n nodes, edges set E and adjacency matrix W ∈ R+n×n. The random
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walk matrix T =WD−1 of G defines an induced diffusion process on its nodes,
where D = diag(d1, ..., dn), and di, i = 1, ..., n are the degrees of the nodes of G.
For stability, the lazy diffusion P = 1

2 (I + T ) can be employed. Given that P is
left-stochastic and guaranteed to have postive entries at indices (u, v) whenever
(u, v) ∈ E, it can also be interpreted as a transition matrix of a random walk
process on G.

The operator P is mass-preserving (i.e.
∑

(u,v)∈E P [v, u] = 1 for any fixed u),
contractive (∥P∥ ≤ 1), and positivity-preserving (x ≥ 0 ⇒ Px ≥ 0). Consider a
random walk on G with P as the transition matrix, the probability distribution
starting from an initial p0 (e.g. a Dirac delta δu at any node u of G) becomes
increasingly "smoothed out" as over time, as observed from the fact that P tp0
converges to a stationary distribution when t → ∞, and this distribution is
independent of p0.

Based on this "smoothening" property, P can be interpreted as a dilation
operator, acting on signals on L2(G). An analog to the multiresolution analysis
can thus be constructed, as proposed in [6]. In a more general perspective, we
consider a diffusion semigroup {At}t≥0 induced by a general diffusion operator
A acting on L2(X,µ) which satisfies the following properties:

(i) ∥At∥p ≤ 1, for every 1 ≤ p ≤ +∞.
(ii) Atx ≥ 0, for every x ≥ 0

Semigroups as such are referred to as Markovian semigroups. We fix a pre-
cision level ϵ < 1. Define AL2(X) = span{x ∈ L2(X) : ∥x∥ ≤ 1, ∥Ax∥

∥x∥ ≥ ϵ}.
Let λmin = infx∈L2(X), ∥x∥≤1

∥Ax∥
∥x∥ , and λmax = supx∈L2(X), ∥x∥≤1

∥Ax∥
∥x∥ . As

∥A∥ ≤ 1, it follows that dim(AL2(X)) ≤ dim(L2(X)). The operator A con-
tracts the functional space L2(X) after each application. The inequality may be
strict, as there are signals in some parts of L2(X) have their norm contracted
by λmin, which may already be smaller than ϵ.

At times tj = γj+1, where γ > 1 (commonly set to 2), we discretize {Aj}
following classical wavelet theory, having wavelets are dilated at scales of polyadic
powers. We define the approximation spaces Vj analogous to a multiresolution
analysis of L2(X) as AtjL2(X). We also conventionally define V−1 = L2(X).
A family of multiresolution filters, analogous to the wavelets filter bank in the
Euclidean setting, can thus be defined as:

ψ0 = I −A , ψi = Ati−2 −Ati−1 = A2i−1

−A2i(i > 0) (2)

These filter can be understood as projecting a signal x onto the complement of
Vj in Vj+1, analogous to the partial expansion of x in the wavelet basis {ψj,n}
of Wj ([9]), thereby extracting the details of x at coarser scales as j increases.

A diffusion distance can also be constructed on the operator A ([5]). If A
is left-stochastic (i.e. it can be considered as a transition matrix of a Markov
chain) and positivity-preserving, then the diffusion distances at time t between
two nodes u and v is given by: dt(u, v) = ∥Atδu −Atδv∥, with the norm induced
from the inner product weighted by 1/πA. This distance considers all path of
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length t between u and v. If there are many connecting short paths between the
two nodes, then dt(u, v) will be small. It is, as a consequence, robust to noise,
unlike the shortest path distance. An additional consequence is that dt(u, v) is
small if u’s and v’s neighborhoods are similar.

A distance between two graphs of equal size can also be defined based on
this node-level one. Given two graphs G = (V,E,W ) and G′ = (V ′, E′,W ′)
with |V | = |V ′| = n and respective symmetric diffusion operators AG and AG′ ,
the normalized diffusion distance between G and G′ at time t is defined in [9]
as:

d̃t(G,G
′) = inf

Π∈Πn

∥(At
G)(A

t
G)

∗ −Π−1(At
G′)(At

G′)∗Π∥ (3)

where Πn is the space of all n × n permutation matrices, A∗ is the adjoint
of operator A. (At

G)(A
t
G)

∗ is the Gram matrix of the system At
Gδuu∈V . The

distance thus compares the 2 vector systems intrinsic to G and G′ at time t, and
is invariant to permutation and orthonormal transformation. It is also robust to
noise similarly to the node-level one. For simplicity, we consider t = 1 in this
work. As random walk matrices are not generally symmetric in the same inner
product, a weighted variant of (3) can be considered:

d(G,G′) = inf
Π∈Πn

∥(AG)DAG
(AG)

∗ −Π−1(AG′)DAG′ (AG′)∗Π∥

= inf
Π∈Πn

d(G,G′, Π)
(4)

where DA = diag(π) where π is the limiting distribution of A.
Each entry of (A2

G)(A
2
G)

∗ is (W 2)u,v/ deg(u) deg(v), representing a form of
local normalization, thus using (3) focuses on structural equivalence. In con-
trast, a global normalization takes the form (W 2)u,v/vol(G)

2, where vol(G) =∑
u∈V deg(u), giving more weights to important nodes (i.e. those with high de-

gree). The distance in (4) normalizes by
√
deg(u) deg(v)vol(G), thereby bal-

ancing between the two. In this work, we consider the distance on graphs of
equal sizes; however, it can be naturally extended to graphs of different sizes by
replacing permutation matrices with soft-correspondences, as in [2] ([9]).

4.2 Graph Scattering Transform

The construction of the multiresolution analysis, and thus an analog of the
wavelets filter bank on the domain of graphs, paves the way for the extension
of graph scattering transform. Let Ψn : L2(X) → (L2(X))Jn be the wavelet
decomposition operator that maps x to (ψjx)j=0,...,Jn−1, with ψj defined as in
the previous subsection. Following the Euclidean setting described in Section 3,
the diffusion graph scattering transform ΦG(x) is also defined from three com-
ponents: the wavelet decomposition operator at each layer k: Ψk; a pointwise
nonlinearity ρ; and a low-pass operator U . The representation Φ(x) is calculated
analogously to the scattering transform in Section 1 (see Figure 1).

In [9], ΦG(x) is introduced with the multiresolution filters being constructed
from the intrinsic lazy normalized symmetric adjacency P = 1

2 (I +M) of G =
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Fig. 1: Illustration of graph scattering transform with m = 3 layers, scales J1 = 3
and J2 = 2.

(V,E,W ), where M = D−1/2WD−1/2. Although P is not mass-preserving, there
is a spectral theory to this operator, with respect to the canonical inner product
on L2(G). This is desirable in many cases - for example, when constructing a
diffusion embedding such that the Euclidean distance in the embedding space
corresponds to the diffusion distance in the original graph space [7]. Moreover,
since P is contractive (due to its self-adjointness and having spectral radius
ρ(P ) ≤ 1) and positivity preserving, the multiresolution analysis construction
remains valid. The average operator U is taken to be the infinite-time diffusion
limit limt→∞ P

t
, expressible as Ux = ⟨vT, x⟩, where v = d1/2

∥d1/2∥2
= ( d

∥d∥1
)1/2

is the eigenvector of P corresponding to the eigenvalue 1, d being the degree
vector of G, and x1/2 is the vector with square root of every entry of x.

5 Graph Scattering Networks with Learnable Diffusion

In this section, we first discuss examples of how different diffusion kernels can
capture different properties of a dataset via the use of diffusion map, as part of
our motivation. We then propose a formulation of a learnable diffusion operator
that we will use in our experiments as an example to demonstrate the enhanced
performance. In subsequent parts, expressivity and stability bounds for wavelets
and scattering networks constructed from said operator are established.

5.1 Learnable Diffusion Kernels and Diffusion Operators

We consider some examples of X approximately lying on some submanifolds M
of Rn, characterized by a density function p(x), to show how different kernels
can captures different properties, e.g. the intrinsic geometry of the data points,
its distribution density, or a combination of both ([7]). This feature extraction is
done via the use of diffusion map [5]. Between two points x, y of X, let k(x, y) be
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the “affinity function” that is symmetric, positivity-preserving, and positive semi-
definite. k(x, y) can be interpreted as the analog of edges weight between graph
nodes. Let d(x) =

∫
X
k(x, y)µ(y) be an analog of degrees of nodes, where µ is a

probability measure. The random walk diffusion operator A can thus be defined
as As(x) =

∫
X
a(x, y)s(y)dµ(y), where s is a signal on X, and a(x, y) = k(x,y)

d(y) .
Two examples of diffusion kernels are given in [7], one accounting for the

density of the points in X, and the other captures the geometry irrespective of
density. Consider the random walk diffusion Aϵ constructed from an isotropic
kernel kϵ(x, y) = exp(−∥x − y∥2/ϵ). If p(x) is uniform, Aϵ approximate the
Laplacian-Beltrami operator ∆ on M, as ϵ→ 0 ([1]). On the other hand, if p(x)
is not,Aϵ tends to a more general operator of the form∆+Q, whereQ(x) = ∆p(x)

p(x)

acts as a potential term, reflecting the influence of the non-uniform density.
An alternative normalization is introduced that captures the geometry of

the data points by taking into account the non-uniformity of p(x): Let pϵ(x) =∫
X
kϵ(x, y)p(y)dy, and define the new kernel k̂ϵ(x, y) = kϵ(x, y)/pϵ(x)pϵ(y). The

corresponding random walk diffusion Âϵ then serves as an approximation of the
Laplace-Beltrami operator at time ϵ, regardless of density variations.

These examples show that the embeddings obtained are highly sensitive to
the choice of kernel. Depending on the task, one may prefer this diffusion to an-
other. For example, the second kernel discussed above are used for segmentation
with spectral clustering [28], while the first one can be used for analysis solely
on the topology of the domain. Thus, there are cases where data-driven diffusion
is naturally preferable.

For each node u of a graph G, we define the descriptor gu to be a vector
that has the characteristics of u, e.g. its node degree. Between every two adjacent
nodes u and v, let k(u, v) be the kernel that quantifies the affinity between the
two, being positive if u and v are adjacent. Taking inspiration from attentional
diffusion in [4], we propose the affinity kernel between two distinct, adjacent
nodes to be given by:

k(u, v) = exp

(
⟨W (gu),W (gw)⟩
∥W (gu)∥.∥W (gv)∥

k1

)
(5)

where ∥ ·∥ is the vector norm, W is a mapping from the descriptor space G to an
embedding space W (G), and k1 is a hyperparameter to be tuned. This formu-
lation differs from the affinity used in scale-dot attention ([25]), which is given
by ksd(u, v) = exp(

(WKgu)
TWQgv

de
), in two key aspects: First, k is symmetrized

by letting WK = WQ, where both mappings can be nonlinear transformations
(e.g. a simple MLP), thereby preserving generalization capability. Second, the
inner product is normalized to be the cosine-similarity. In our experiments, we
found out that the resulting attention weights without normalization tend to
be “extreme”, i.e. one neighbor would dominate, causing the attention values to
be reduced to either 0 or 1. As cosine similarity is at most 1, we introduce a
relaxing hyperparameter k1 ∈ [0,∞), to extend the possible magnitude range



Learnable Diffusion for Wavelets in Scattering Networks 9

of the affinity function. One can apply random walk normalization to k to con-
struct the diffusion kernel. However, for stability and convergence reasons, we
reformulate the diffusion kernel a(u, v) between any two nodes (either adjacent
or identical) as follows:

a(u, v) =
[
k(u, v)/Ku

]
∗
[
σ(α(u)) ∗ (1− k2) + k2/2

]
if u ̸= v,

a(u, u) = 1−
[
σ(α(u)) ∗ (1− k2) + k2/2

] (6)

where Ku =
∑

v∈N (u) k(u, v), σ denotes the sigmoid function, k2 ∈ [0, 1] is an
additional hyperparameter, and α(u) = ⟨W (gu), α⟩, with α is a learnable vector
of dimension dim(W (G)). We introduce α to also allow learnability into self-
diffusion, which is necessary for the convergence of the diffusion process. k2 here
is used to control the possible range of a(u, u), thereby preventing it becomes
too “extreme”. We would like to remark that k1 and k2 can be interpreted as reg-
ularization hyperparameters, as setting k1 = 0 and k2 = 1 recovers the standard
random walk diffusion kernel for the unweighted version of the graph G.

Let A : G → (L2(G))2 be the operator which maps g to a diffusion matrix A
of g. By definition, A is left-stochastic. To enhance stability during the training
process, we employ a multi-head attention mechanism analogous to that intro-
duced in ([25,26]) by taking the average across the heads: A(g) =

∑h−1
k=0 Ak(g)

h .
This matrix can then be used directly as diffusion operator A = A(g).

However, modeling the diffusion in graph neural networks (GNNs) as a
continuous-time process has been shown to enhance both training stability and
performance ([27]). The same approach could thus be done for the above for-
mula. One could discretize update step between two consecutive powers of A by
taking fractional temporal difference. Temporal discretization schemes for con-
tinuous process, such as Euler or Runge-Kutta, can be used for such purpose.
A quick discussion of these schemes is given in the supplementary materials 1.
Further experiments are presented and discussed in Section 6.

5.2 Wavelets with Learnable Diffusion

The construction of wavelets, in general, relies on the framework of multireso-
lution analysis, which we have mentioned in Section 4.1. For such construction
to be possible, the diffusion operator used must have a single limiting distribu-
tion. This condition is satisfied, as our diffusion operator A above is irreducible
(since the underlying domain G is connected and a(u, v) > 0 if (u, v) ∈ E) and
aperiodic (∃u : A(u, u) > 0). This is a basic result from the theory of Markov
processes.

Having our multiresolution analysis, constructed using A with the filters in
Section 4.1, we can now obtain a wavelet decomposition operator Ψ for the pro-
posed adaptive scattering network. We now prove Ψ is a frame analysis operator,
i.e. it defines a frame. This ensure expressivity guarantees on the representation
1 Supplementary materials are provided at https://github.com/toanvtran/learnable-

diffusion-scattering

https://github.com/toanvtran/learnable-diffusion-scattering
https://github.com/toanvtran/learnable-diffusion-scattering
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returned by Ψ . Notationally, ⟨x, y⟩DA
= xTDAy is a weighted inner product,

where DA = diag(πA) and πA is the stationary distribution of A. ∥ · ∥DA
refers

to the weighted ℓ2-norm induced by this inner product. ⟨·⟩ and ∥ · ∥ refers to the
canonical inner product and ℓ2-norm, respectively.

Proposition 1. On a connected domain G, let Ψ be the wavelet decomposition
operator on L2(G) based on the non-negative matrix A defined as above. Assume
that for every x ∈ L2(G) satisfying ⟨x, πA⟩DA

= 0, ∥Ax∥DA

∥x∥DA
< 1. Let βA =

infx(1 − ∥Ax∥DA

∥x∥DA
). Then, there exists constants M(βA), N(βA) > 0 depending

only on βA such that for any x as above:

M(βA)∥x∥2DA
≤

J−1∑
j=0

∥ψjx∥2DA
≤ N(βA)∥x∥2DA

(7)

The proof is presented in the supplementary materials. The existence of the
two bounds is a necessary and sufficient condition that there exists a bounded
inverse for each decomposition on the image space Im(Ψ). This means Ψ defines
on L2(G,µπA

) a complete and stable representation.
According to the general Perron-Frobenius theory, any irreducible and ape-

riodic matrix A with non-negative elements has a unique eigenvector πA corre-
sponding to its largest eigenvalue, 1, up to a constant multiple. Furthermore, the
remaining eigenvalues of A, considered in the unitary space, have strictly smaller
moduli. However, there is no guarantee that the orthogonal complements MπA

of
span(πA) in L2(G) will remain invariant under the action of A. As every signal
which is a multiple of πA lose all of its information under the wavelet decom-
position, to prevent unnecessary information loss, we would want to design A
such that AMπA

⊆ MπA
. A straightforward family of matrices satisfying this

property is the class of self-adjoint matrices. Ensuring symmetry in the affinity
function k, as in our construction, is a sufficient condition for this.

It is also worth noting that the condition that G be connected can be re-
laxed. Specifically, G can consist of p connected components that are pairwise
disconnected, provided p ≪ |V | = n. This condition is necessary because each
component can have its own stationary distribution, making the subspace of
stationary distributions of A on L2(G) of multiple dimensions, with a maximum
dimension of p. Any signal in this subspace will lose all of its information upon
applying Ψ , thus rendering Ψ useless for such signals. For simplicity, we continue
to consider the case where G has only 1 connected component.

5.3 Graph Scattering Transform with Learnable Diffusion

We construct our adaptive variant of Graph Scattering Transform similarly to
the one in Section 4.2 by replacing the fixed decomposition operator with the
adaptive version we defined above. Additionally, we employ the average mean
pooling operator U , which is independent of A: Ux = ⟨1/n, x⟩. In particular, on
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a connected graph G with a graph signal x, the transformation at each layer is
given by:

ϕk = U(ρΨ)kx =
[
UΠk

i=0 (ρψji) (x)
]
j0,j1,...,jk

= [Uρψjk . . . ρψj1ρψj0x]j0,j1,...,jk .
(8)

where {ψji}ji are multiresolution filters constructed using the adaptive operator
A. Thus, the scattering representation obtained from an m-layer network is:

Φ(x) = [Ux, ϕ1(x), . . . , ϕm−1(x)] =
[
Ux,UρΨx, . . . , U(ρΨ)m−1x

]
(9)

In the following we provide the stability analysis of the adaptive graph scattering
transforms using our learnable diffusion operators:

5.4 Stability Analysis

A robust and meaningful signal representation should exhibit stability to noise,
meaning that a small change in the input signal yields proportionally small vari-
ations in the output representation. As mentioned in Section 4.1, the matrix A,
being a random walk operator, naturally induces a graph-level diffusion distance.
We begin by establishing the stability of the wavelet decomposition operator in
the following lemma.

Lemma 1. On two distinct graphs G and G′ with |V | = |V ′| = n, let ΨG and ΨG′

be the wavelet decomposition operators induced from respectively AG and AG′ .
Consider all signal x with both ∥AGx∥

∥x∥ and ∥AG′x∥
∥x∥ < 1. Let β = min{infx(1 −

∥AGx∥
∥x∥ ), infx(1 − ∥AG′x∥

∥x∥ )}. Let δπ = max{mini{πAG,i},minj{πAG′ ,j}}. Assume
that the spectra of AG and −AG′ are disjoint, where every pair of eigenvalues
are at least δ from each other. We have:

inf
Π∈Πn

∥ΨG −ΠΨG′ΠT∥ ≤ CAG,AG′d1(G,G
′) (10)

where d1(G,G′) = infΠ∈Πn

[
d(G,G′, Π) + (1− β)2∥πAG

−ΠπAG′Π
−1∥∞

]
,

CAG,AG′ =
√
2C1+4C2

δπ
, C1 = n

κ(DAG
)κ(DA

G′ )

δ

2

, C2 = (1−β)2(2−2β+β2)
(2β−β2)3 , DA =

diag(πA), κ(DA) =
√

maxi πA

mini πA
, and d(G,G′, Π) as presented in Sec. 4.1.

The complete proof is presented in the supplementary materials. Since AG and
A′

G may not be symmetric with respect to the same weighted inner product, an
additional term is introduced to measure the discrepancy between their station-
ary distributions. If this discrepancy is small, then the bound can be character-
ized as linear in d(G,G′), which is discussed in Sec. 4.1. This lemma serves as
the primary tool in proving the next result, which establishes stability bounds
for an m-layer graph scattering network under small perturbations to the graph
structure:
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Theorem 1. Let x ∈ Rn and ΦG(x) be the m-layer scattering representation of
a signal x on a graph G, and let ΦG′(x) be the same respectively on graph G′.
With the same assumption and notation as in Lemma 1, let N = max{N(βAG

)
κ(DAG

), N(βAG′ )κ(DAG′ )}, N(βA) be as in Proposition 1. We have:

∥ΦG(x)− ΦG′(x)∥2 ≤
m−1∑
k=0

[
kNk−1CAG,AG′d1(G,G

′)
]2 ∥x∥2 (11)

The proof is presented in detail in the supplementary materials. Theorem 1
provides the stability bound for the scattering representations of the same signal
x on two different graphs G and G′. Each graph has its own multiresolution
analysis, and if the distance d1(G,G′) between the two graphs is small, then the
discrepancy between the resulting representations will also be small. Since m ≤ 5
in most applications (as the scattering energy rapidly diminishes in deeper layers
with increasing m ([3])), the change in the learnable scattering representations
due to a small topological perturbation is effectively characterized by a linear
dependence on d1(G,G′).

5.5 Complexity

Number of parameters: In this work, we adopt the traditional architecture of
the scattering transform, where the same wavelet decomposition operator is used
throughout, and all of its wavelets are generated from a single mother wavelet.
Consequently, only one filter needs to be learned across the entire scattering net-
work. The additional number of parameters compared to traditional scattering is
O(KPH), where K is the size of each descriptor, P is the number of parameters
in the mapping W , and H is the number of heads. This does not depend on the
size of the scattering network or the size of the graph G.
Memory requirement: We consider a scattering network of m layers, and each
layer has k wavelets. Since the model has to store the attributes in each wavelet
scale for doing low-pass averaging and diffusion in subsequent layer, the memory
requirement is O(CkmN), where C is the number of input channels, N = |V | is
the number of graph nodes. Since m and k are predefined hyperparameters, with
m ≤ 5 in most applications, the memory requirement effectively scales linearly
with the number of graph nodes.

6 Numerical Experiments

In this section, we empirically demonstrate the discriminative power of the scat-
tering transform with learnable diffusion in classification tasks on two types of
datasets: social networks and bioinformatics, particularly in low- to medium-data
regimes. Our results show the method extends the scenarios where interpretable
models are competitive to non-transparent deep learning methods in term of
performance.
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Table 1: Classification accuracies as a function of percentage of training data
used in the social network dataset (IMDB-BINARY) and the bioinformatics
dataset (MUTAG). The highest, second-highest, and third-highest accuracies
are highlighted in blue, orange, and red, respectively.

Deep learning Traditional scattering Ours
Training GIN-0 UGformer GS-SVM GSN LD-GSN
amount∗ (MLP-sum) +MLP +MLP

IM
D

B
-B

IN
A

R
Y 1%(10) 58.52± 5.37 56.96± 2.33 59.81± 5.27 60.21± 4.17 63.03± 3.70

2.5%(25) 63.45± 7.18 60.71± 3.63 61.27± 3.45 62.79± 3.15 65.17± 3.20

5%(50) 65.40± 2.07 64.52± 2.15 61.88± 1.98 64.70± 2.40 66.83± 1.96

7.5%(75) 67.63± 1.47 65.99± 1.93 63.45± 1.68 64.84± 1.64 68.15± 2.06

10%(100) 68.36± 1.52 67.92± 0.94 65.62± 2.93 65.15± 1.99 68.58± 1.02

20%(200) 70.51± 0.97 70.20± 0.92 66.46± 1.56 66.56± 3.43 70.90± 4.63

M
U

T
A

G

2%(3) 70.90± 3.24 68.82± 7.35 70.08± 2.74 70.55± 2.72 71.85± 4.36

2.5%(4) 71.78± 3.40 69.28± 8.93 71.65± 2.95 71.11± 1.98 72.87± 2.52

5%(9) 75.51± 3.20 72.41± 2.25 72.84± 3.56 74.86± 3.47 77.08± 3.85

7.5%(14) 77.89± 3.07 76.84± 3.15 75.24± 2.61 75.63± 3.17 79.41± 2.77

10%(18) 79.04± 3.81 78.91± 2.78 75.47± 2.61 77.24± 3.80 80.83± 3.17

20%(37) 82.98± 2.34 80.50± 3.13 77.11± 2.27 79.51± 2.22 81.51± 2.36

∗ Percentage of dataset used for training, followed by the actual number of samples

We conduct experiments on well-known social network and bioinformatics
datasets as described in [17]. To maintain consistency with our theoretical frame-
work, we restrict our experiments to 2 datasets comprising of connected graphs,
namely, IMDB-BINARY and MUTAG, and perform graph-level classification
on them with varying amount of training data. A detailed description of these
datasets is provided in the supplementary materials. For each node u, the de-
scriptor gu is chosen to be a vector consists of topological features of u and
its neighborhood: degree, eccentricity, clustering coefficient, number of trian-
gles contains u as a vertex, core number, clique number, and PageRank. While
MUTAG provides intrinsic node features, which can be used as input to the
diffusion process, we use the descriptors as proxies for the featureless IMDB-
BINARY dataset. Some discussion on the alternative usage of node features in
place of descriptor can also be found in the supplementary materials.

For the classification task, we employ a model that integrates our learnable
diffusion graph scattering network as a feature extractor with a simple MLP as
the classifier, denoted as LD-GSN+MLP. Using the MLP allows the learning of
the kernel weights in our model via backpropagation. As a baseline, we imple-
ment the same architecture but with a lazy random walk operator 1

2 (I+WD−1),
referred to as GSN+MLP. We compared our method against traditional scatter-
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ing methods (GSN+MLP, GS-SVM [11]), graph transformer (UGformer [19]),
and graph neural network (GIN-0 (MLP-sum) [29]). These models were chosen
for their publicly available implementations.

Performance: Table 1 presents classification accuracy as a function of train-
ing data percentage, with the rest used for validation. Further experimental
details are provided in the supplementary materials. As expected, increasing
training data generally improves accuracy across all models. LD-GSN+MLP
consistently outperforms competitors, whether when traditional scattering sur-
passes deep learning or when deep models regain dominance with more data. The
only exception is MUTAG at 20% training data, where deep learning begins to
recover its advantage. LD-GSN ranks second, with a statistically minimal gap
to the top-performing GIN-0.

LD-GSN benefits from the stability of scattering networks while improving
adaptability through learnable diffusion, regulated via parameters introduced
in Sec. 5.1. This adaptivity, shown by our experiments, results in a consistent
performance advantage over both deep learning and traditional scattering ap-
proaches in low to medium data regimes, further expanding the applicability of
interpretable models for graph data.

Fig. 2: Total running time versus classification accuracy on IMDB-BINARY with
2.5% data for training.

Running time: We compare the end-to-end runtime of the five models using
2.5% of IMDB-BINARY as training data on an NVIDIA A100 40GB GPU (Fig-
ure 2, logarithmic scale). GIN-0, UGformer, and LD-GSN+MLP require adding
node features, while GS-SVM and GSN+MLP also extract scattering represen-
tations. Neural networks train for 200 epochs, whereas GS-SVM is fitted once.
LD-GSN+MLP runs ≈ 3.5× slower than GSN+MLP and GIN-0 due to back-
propagation through the scattering architecture but achieves significantly higher
accuracy.
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Fig. 3: Training accuracies as a function of epoch for different time step and
approximation scheme choices on IMDB-BINARY with otherwise same configu-
ration and initialization.

Effect of temporal discretization schemes: As mentioned in Sec. 5.1,
the diffusion process can be modeled as a continuous one. We perform additional
experiments to investigate how the choice of time step or temporal discretiza-
tion schemes affect the stability of the training process (Figure 3). Increasing the
time step or employing discretization schemes with higher numerical accuracy
improves the numerical precision of each weight update, resulting in a more sta-
ble and refined training curve, similarly to adjusting the learning rate. However,
in our case, due to the highly non-convex nature of the optimization problem,
this does not necessarily translate to better performance as observed in [27] for
linear GCNs. A balance should be achieved between stability and the ability to
escape local minima. Consequently, we treat the time step as a hyperparameter
in our experiments.

7 Conclusions

In this work, we introduced a framework to incorporate learnable diffusion into
graph scattering network, allowing for data-driven feature extraction. The model
is mathematically interpretable, with expressivity and stability guarantees main-
tained. We show that our approach expand the scenarios where scattering ar-
chitectures are competitive to deep learning in term of performance, and re-
duce the performance gap between well-understood and non-transparent learn-
ing paradigms on larger data regimes, via graph classification experiments on
social network and bioinformatics datasets.

Our results open up several promising research directions. One is to explore
more designs of learnable operators beyond the self-adjoint constraint. Another
is developing scattering-based models with interpretable later modules, akin to
the Euclidean case, while integrating learnable diffusion into the scattering trans-
form. For completeness, we note that preliminary experiments on much larger
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data regimes, which are not discussed in detail here, indicate that the current
scattering framework does not maintain a performance advantage compared to
deep learning in those settings and is still outperformed by a significant, albeit
narrowed, margin. We leave further investigation to future work.
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