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Abstract. Counterfactual explanations provide an intuitive way to un-
derstand model decisions by identifying minimal changes required to alter
an outcome. However, applying counterfactual methods to time series
models remains challenging due to temporal dependencies, high dimen-
sionality, and the lack of an intuitive human-interpretable representation.
We introduce MASCOTS, a method that leverages the Bag-of-Receptive-
Fields representation alongside symbolic transformations inspired by
Symbolic Aggregate Approximation. By operating in a symbolic feature
space, it enhances interpretability while preserving fidelity to the original
data and model. Unlike existing approaches that either depend on model
structure or autoencoder-based sampling, MASCOTS directly generates
meaningful and diverse counterfactual observations in a model-agnostic
manner, operating on both univariate and multivariate data. We evaluate
MASCOTS on univariate and multivariate benchmark datasets, demon-
strating comparable validity, proximity, and plausibility to state-of-the-art
methods, while significantly improving interpretability and sparsity. Its
symbolic nature allows for explanations that can be expressed visually,
in natural language, or through semantic representations, making coun-
terfactual reasoning more accessible and actionable.

Keywords: Explainable AI (XAI) · Counterfactual Explanations · Time
Series · Model-Agnostic Explanations.

1 Introduction

Time series classification (TSC) plays a crucial role in various fields, including
healthcare, climate science, and engineering. Its wide-ranging applications have
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Fig. 1. A simplified graphical abstract of mascots. Given a time series X classified by
a black-box model b as cylinder, X is transformed into a symbolic representation, z,
using the Bag-of-Receptive-Fields (BoRF) [36]. In this semantic space, X is represented
as symbolic subsequences. To identify a candidate counterfactual, the most important
positive and negative patterns (0,2,2 and 0,1,2 in the illustration) are selected. The
negative pattern is then swapped within the time series to generate a candidate counter-
factual. If the black-box model’s predicted class remains unchanged, the process repeats.
Otherwise, the final counterfactual is returned.

driven the development of increasingly powerful predictors capable of achieving
remarkable classification accuracy. Both univariate and multivariate time series
classification have gained significant research interest, as demonstrated by recent
“bake-offs” [35,32,38], which periodically benchmark the top-performing classifiers.
The findings from these evaluations are consistent: the most effective classifiers
are powerful hybrid ensembles, such as MultiRocket-Hydra [10], Hive-Cote 2 [31],
and InceptionTime [17]. These models leverage both prediction and feature
spaces from multiple underlying algorithms, resulting in state-of-the-art accuracy.
However, their complexity renders them black-box models, meaning they lack
interpretability from a human perspective.

This work aims to enhance the interpretability of black-box models in time
series classification through Explainable Artificial Intelligence (XAI) techniques [5].
While XAI offers diverse tools for explaining complex models, most approaches
have been developed for tabular or image data, with time series explainability
only recently gaining traction [39]. In this domain, explanations commonly
take the form of saliency maps [30], highlighting the most relevant part of
observations contributing to the classification outcome, or subsequence-based
explanations such as shapelets [43] focusing on significant sub-patterns within
a time series. Instead, this work centers on instance-based explanations, where
entire time series serve as the primary explanatory objects. Specifically, we focus
on counterfactual explanations, i.e., minimal semantically valid modifications
to an input time series that alter the classification outcome of a black-box
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model [40,18]. Counterfactual explanations are particularly powerful because,
unlike feature importance methods [30,15], they indicate what must change in a
given instance to achieve a different classification result [14]. They are useful as
they facilitate reasoning about the cause-effect relationships between observed
features and classification outputs [6].

In this work, we introduce mascots, a novel model-agnostic method for
generating counterfactual explanations in time series. mascots leverages symbolic
representations to significantly enhance interpretability while maintaining fidelity.
As depicted in Figure 1, mascots initially converts a given time series into a
Bag-of-Receptive-Fields (BoRF) representation [36], capturing essential symbolic
patterns. It then identifies those patterns most strongly influencing classification
outcomes, both positively and negatively. By iteratively substituting negative
patterns, mascots modifies the original time series until it obtains a valid
counterfactual, ensuring an interpretable and robust explanatory process.

Our contributions are as follows. (i) In contrast to existing methods that
depend on model-specific architectures or autoencoder-based sampling [42,37],
mascots is fully interpretable and model-agnostic. This allows it to be applied
broadly across time series classifiers without making any assumptions about the
internal mechanisms of the black-box models. (ii) To the best of our knowl-
edge, mascots is the first approach that employs a symbolic subsequence-based
semantic space for explainability in the time series domain, providing a semantic-
rich counterfactual generation process that does not depend on nearest unlike
neighbors (NUN) [7]. (iii) mascots facilitates both visual and natural language
counterfactual explanations, improving the interpretability of the counterfactual
generation process. (iv) Furthermore, mascots enables explanations for state-of-
the-art ensemble models, a task where most existing methods fail due to their
reliance on internal model structures. Through extensive evaluation on benchmark
datasets, we demonstrate that mascots achieves comparable performance to
state-of-the-art techniques regarding validity, proximity, and plausibility while
significantly improving the sparsity of counterfactual explanations. By bridging
symbolic representations with counterfactual reasoning, mascots represents a
significant step forward in explainability for time series models.

The structure of this work is as follows: Section 2 examines related research
on counterfactuals, while Section 3 outlines the background of our proposed
methodology. Section 4 elaborates on the approach, followed by experimental
results and analysis in Section 5. Lastly, Section 6 presents the conclusions.

2 Related Works

The simplest counterfactual models for time series rely on classical distance-based
algorithms, such as K-Nearest Neighbors (KNN) or Nearest Unlike Neighbor
(NUN) [7], which identify the closest existing instance of a different class. In
this category, we find approaches like Native Guides [9] and TimeX [12], where
time series are perturbed to generate counterfactuals while adhering to desirable
properties such as proximity, sparsity, plausibility, and diversity. However, these
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approaches are limited to univariate data. CoMTE [1] extends this framework to
multivariate data by modifying time series from the training set, and computing
the minimal number of substitutions necessary to change the original classification.
Since CoMTE primarily operates by identifying and substituting similar patterns
from different classes, it may struggle to produce meaningful counterfactuals
when the dataset lacks sufficiently close examples. AB-CF [25] and DiscoX [3]
take a different approach by focusing on local patterns. They extract fixed-
length subsequences using a sliding window or identify discords via the matrix
profile [44], replacing them with the nearest counterparts from the desired class.
Given their emphasis on locality, these methods may fail to capture global
temporal dependencies, potentially leading to counterfactuals that are locally
valid but globally unrealistic. Finally, in [20], KNN is employed to locally and
globally tweak time series, altering the outcome of specific black-box models.
However, this approach is also restricted to univariate data. Contrary to classical
distance-based approaches, our proposal, mascots, does not rely on NUNs or
Euclidean distance, as it performs perturbations in a semantic space produced
by an interpretable transformation, i.e., the Bag-of-Receptive-Fields [36].

More complex approaches leverage evolutionary algorithms [16] and generative
models, such as autoencoders. Autoencoders come in various forms, including
recurrent neural networks, such as LSTMs, which have been used in [23] to extend
the concept of Contrastive Explanation Methods to time series. Convolutional
neural networks (CNNs) have also been utilized, as seen in LASTS [37], as well
as methods that test both, such as LatentCF++ [42]. The central idea of these
approaches is to perturb time series within a simplified latent space, ensuring
that counterfactuals remain closer to the distribution of the training set. In
this sense, autoencoders can play an indirect role as a loss component that
assesses counterfactual plausibility. Sub-SpaCE [34] exemplifies this approach
by evaluating the plausibility of counterfactuals generated through a genetic
algorithm with tailored mutation and initialization strategies. This method
encourages modifications in a minimal number of subsequences, producing highly
sparse explanations. Plausibility is assessed similarly in TeRCE [2], which leverages
the shapelet transform to identify the most relevant shapelets for a given class,
pinpoint their locations in the input instance, and replace them with values
derived from the NUN. While these methods are model-agnostic, their main
limitation is the requirement to train a separate autoencoder for each dataset [37],
which makes their usage across a wide range of tasks impractical. In contrast,
mascots, does not require any generative model to produce a counterfactual.

Counterfactual explanations can also be model-specific, i.e., designed for
a particular black-box model. With the exception of [20], which targets the
Random Shapelet Forest [19], most model-specific approaches focus on explaining
neural network-based methods. One such example is Glacier [41], an extension of
LatentCF++ designed to generate counterfactuals for any deep-learning-based
model. While this approach is both promising and extensively tested, it is limited
to univariate data. Other notable methods include CELS [26] for univariate data
and M-CELS [27] for multivariate data, both of which employ a gradient-based
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strategy. These methods utilize three interdependent modules to produce sparse
counterfactuals, leveraging a learned saliency map to guide perturbations. The
primary limitation of gradient-based model-specific approaches is that, while
certain deep learning architectures are highly effective for TSC, the current state-
of-the-art consists primarily of hybrid ensemble methods [32]. These ensembles
often integrate multiple classifiers, making it difficult, or even impossible, to
compute gradients, thus restricting the applicability of such techniques. mascots
does not share these limitations as it is model-agnostic.

Finally, to the best of our knowledge, most of the aforementioned methods rely
exclusively on visualizations to convey counterfactual modifications. In contrast,
we enable the generation of counterfactual explanations in a structured, human-
understandable manner using natural language descriptions. Specifically, given a
time series X and its counterfactual X ′, the transformation can be articulated
through a structured statement such as: “To change the prediction of a black-box
model from class ci to cj , the time series X needs to contain pattern a instead of
b.” One approach that might seem similar is PUPAE [11], but the key difference
is that it relies on a predefined set of templates that require domain expertise
to construct. In contrast, mascots derives its explanations directly from the
time series patterns, eliminating the need for manually designed templates. This
makes mascots not only more flexible but also broadly applicable across different
domains without requiring specialized knowledge.

3 Background

This section provides all the necessary concepts to understand our proposal.

Definition 1 (Time Series Data). A time series dataset, X = {X1, . . . , Xn} ∈
Rn×d×m, is a collection of n time series. A time series, X, is a collection of d
signals (or channels), X = {x1, . . . ,xd} ∈ Rd×m. A signal, x, is a sequence of m
real-valued observations sampled regularly, x = [x1, . . . , xm] ∈ Rm.

When d = 1, the time series is univariate, for d > 1 it is multivariate. Time
series datasets can be used in a variety of tasks. This work focuses on supervised
learning, particularly Time Series Classification (TSC).

Definition 2 (Time Series Classification). Let X be a time series dataset and
y ∈ {1, . . . , c}n its corresponding labels vector, where c is the number of classes.
The goal of Time Series Classification is to train a model f that maps each time
series Xi ∈ X to a predicted label ŷi, such that f(Xi) = ŷi for all i ∈ {1, . . . , n}.
This yields the predicted label vector ŷ = [ŷ1, . . . , ŷn] ∈ {1, . . . , c}n.

The goal of time series classification is to ensure that the trained model f predicts
a label ŷ that closely matches the true labels y, typically by minimizing a
classification loss function during training. Many models produce probability
distributions over classes, i.e., Ŷ ∈ [0, 1]n×c, with ŷ determined by the highest
probability. While maximizing accuracy is important, providing explanations
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for the predictions of a given model is becoming more and more relevant. This
work focuses on a specific type of explanation, i.e., counterfactual explanations.
Counterfactual time series show the minimal changes in the input data that lead
to a different decision outcome [39]. Formally:

Definition 3 (Counterfactual). Given a classifier f that outputs the decision
ŷ = f(X) for an instance X, a counterfactual consists of an instance X ′ such
that the decision for f on X ′ is different from ŷ, i.e., f(X ′) ̸= ŷ, and such that
X ′ is similar to X, and that X ′ is plausible.

Similarity (or proximity) usually refers to a distance metric, while plausibility
depends on the counterfactual domain and is assessed by verifying that the
instance is not merely an adversarial example and remains semantically coherent
with the dataset. Other relevant metrics include sparsity, i.e., the number of
features altered to generate a counterfactual, and validity, i.e., the ability of a
counterfactual method to produce a valid counterfactual.

Counterfactuals can be obtained in several ways; here, we propose to adopt
surrogate models. Explanations based on surrogate methods can clarify the
behavior of black-box models, b, by employing a secondary, more interpretable
model, g, to approximate the behavior of the primary black-box model, i.e.,
b(X) ≃ g(X) [5]. By doing so, the surrogate model seeks to provide insights
into the complex model’s decisions by mimicking its outputs while remaining
inherently more interpretable. A great advantage of surrogates is that they are
model-agnostic, i.e., they can explain any black-box without any assumption
about its inner components. Surrogates can be trained on the original raw time
series data or after processing it into a more interpretable tabular representation.

There exist several symbolic representation-based methods for time series
classification, such as MrSEQL [24], MrSQM [33], and SCALE-BOSS-MR [13],
to name a few. However, in this work, we adopt the Bag-of-Receptive-Fields
(BoRF) [36] as our interpretable tabular representation, as it was shown to achieve
better overall accuracy [36], with a very fast prediction time. BoRF extends the
classical Bag-of-Patterns [4] and, akin to the Bag-of-Words approach in text
analysis, converts a time series into a vector of pattern counts. This transformation
is achieved by sliding a potentially strided and dilated window along the time
series to extract all possible receptive fields of a specified length, w. In this context,
a receptive field is just a time series subsequence that can have gaps inside, i.e., can
skip observations. These subsequences are then standardized and discretized into
words of length l ≤ w using the Symbolic Aggregate Approximation (SAX) [28].
SAX uses the Piecewise Aggregate Approximation (PAA) [21] to segment each
subsequence into equal-sized segments and then compute the mean value for each
segment. Finally, these values are quantized using a set of breakpoints, obtained
through the quantiles of the standard Gaussian distribution, which bin values
in equiprobable symbols, α. Thus, from each time series, X, a set of patterns
is extracted, where a single pattern is denoted as p = [α1, . . . , αl] ∈ Al, with A
being a set of finite symbols. Each symbolic pattern is bidirectionally hashed into
an integer k, allowing for both encoding and decoding, and is then stored in the
Bag-of-Receptive-Fields. Formally:
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Definition 4 (Bag-of-Receptive-Fields). Given a time series dataset X ∈
Rn×d×m and a set of h patterns, a Bag-of-Receptive-Fields is a tensor Z ∈
Nn×d×h, where zi,j,k is the number of appearances of the hashed SAX pattern k
in the signal j of time series i.

The Bag-of-Receptive-Fields Z can be flattened into Z ∈ Nn×r, where r is the
total number of patterns across channels, i.e., r = dh. An example of such a
representation is shown in Figure 1 (top-right), where a time series is represented
as four patterns (counts are omitted for better readability). Z can then be used
as a training set for any standard tabular classifier, g, offering the advantage
of interpretable features, specifically, the count of occurrences of each pattern
within a time series. Finally, the classifier can be interpreted using any standard
explainer, such as feature importance-based methods like SHAP [30].

Definition 5 (Feature Importance). Given a single row of Z, z ∈ Rr, a
feature importance matrix, Φ = [ϕ1, . . . ,ϕr] ∈ Rr×c, contains the contribution of
each feature value z ∈ z towards predicting each possible class c.

In the following section, we exploit feature importance in the Bag-of-Receptive-
Fields semantic space, and propose a counterfactual technique based on symbolic
patterns, which iteratively produces interpretable perturbations to generate
counterfactual explanations for time series black-box classifiers.

4 Methodology

In this section, we introduce mascots, a model-agnostic symbolic counterfactual
explanation method for time series classification. mascots combines the Bag-of-
Receptive-Fields (BoRF) representation with symbolic transformations inspired
by Symbolic Aggregate Approximation (SAX) to enhance interpretability while
maintaining fidelity to the original data and model.

mascots takes as input a time series X, a surrogate model g, a training
dataset X for the surrogate, a black-box model b, an attribution method e, and
a penalty hyperparameter λ. In essence, mascots trains a surrogate model on a
Bag-of-Receptive-Fields representation of the time series dataset. This surrogate
serves as an interpretable proxy for the black-box, allowing the extraction of
pattern relevance for classification using a feature attribution method. The
resulting feature importance then guides semantic perturbations of the time
series by modifying symbolic words. The approach is detailed step-by-step in the
following sections, and illustrated in Figure 1.

4.1 Counterfactual Generation Process

The pseudo-code of mascots is reported in Algorithm 1. The first step is to train
an interpretable surrogate model (lines 1-3). To achieve this, mascots requires a
training set X , and obtains the corresponding black-box predictions, ŷ = b(X )
(line 1). Next, the training data X is transformed into a Bag-of-Receptive-Fields
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Algorithm 1: mascots
Data: X - time series to explain, X - surrogate training dataset, g - surrogate

model, b - black-box model, e - attribution method, λ - penalty
Result: Counterfactual X ′

1 ŷ← b(X ); // Predict classes of surrogate dataset
2 Z ← BoRF (X ); // Convert surrogate dataset into Bag-of-Receptive-Fields
3 g ← train(g, Z, ŷ); // Train surrogate
4 ŷ ← b(X); // Predict class of time series to explain
5 X ′ ← X;
6 while b(X ′) = ŷ do // While the black-box prediction does not change
7 z← BoRF (X ′); // Convert time series into Bag-of-Receptive-Fields
8 Φ← e(g, z); // Get attribution matrix
9 ∆← GetPerturbation(X ′, ŷ, z, Φ, λ); // Generate perturbation

10 X ′ ← X ′ +∆; // Perturb time series

11 return X ′

representation, Z, using BoRF [36] (line 2). Finally, the surrogate model is trained
on Z and ŷ, effectively learning to approximate the black-box predictions on
the given dataset (line 3). The black-box is also used to predict the label of the
time series whose prediction we are explaining, i.e., ŷ = b(X) (line 4). Then, X ′,
a copy of X, is created (line 5), and the counterfactual generation loop begins.
The condition of the counterfactual generation loop (line 6) checks whether the
black-box prediction on the perturbed time series X ′ matches that of the original
time series X. While this is true, the loop proceeds as follows. X ′ is converted
into a Bag-of-Receptive-Fields vector, z, (line 7), the attribution method is
used to produce a feature importance matrix, Φ, containing the contribution of
each pattern value in z towards each class (line 8). Then, the GetPerturbation
procedure is invoked to generate the perturbation (line 9), which is subsequently
added to the time series (line 10). After this, the loop condition is re-evaluated,
and the final counterfactual, X ′, is eventually returned.

Using an iterative algorithm reinforces the validity of generated counterfac-
tuals by gradually shifting the black-box model’s prediction toward the target
class, as illustrated in Figure 2. However, multiple changes, even if meaningful,
may overly distort the counterfactual, reducing plausibility. Similar to [41], we set
a task-dependent iteration limit to balance these factors, halting the algorithm
regardless of success. As shown in Section 5, the required iterations remain low
on average, preventing excessive modifications.

4.2 Pattern Swapping

We illustrate the GetPerturbation procedure in Algorithm 2. It begins by utilizing
the feature attribution matrix to identify the most important pattern for the
predicted class, denoted as k+. This corresponds to the symbolic word that has
the highest relevance toward the classification outcome assigned to the time
series X by the black-box model (line 1). We restrict the search to contained
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Fig. 2. Example of the iterative process of mascots: a time series is gradually perturbed
from a cylinder to a bell. Inserted patterns are marked by the black dashed line.

patterns, i.e., patterns where zk > 0, as we want to perturb an existing pattern
in X. Using the inverse hash function provided by BoRF, k+ is then mapped
back to its corresponding pattern vector (line 2), p+. Next, GetPerturbation
identifies the most relevant pattern index opposing the predicted class, k−, i.e.,
the index of the symbolic word that most strongly influences a classification
different from ŷ (line 3). Similar to line 2, the corresponding pattern vector,
p−, is retrieved (line 4). The swapping step alters only these two patterns while
the others remain unchanged, thus intrinsically encouraging the perturbation’s
sparsity. The penalty parameter λ is applied to penalize patterns that deviate
significantly from p+ to ensure that the transformation remains meaningful
and does not introduce too unrealistic modifications. A high value of λ further
encourages selecting similar patterns, reducing the number of altered elements
in the time series. This constraint enhances the proximity property of the
counterfactual, ensuring that modifications remain minimal. At the same time, it
enforces the algorithm to choose locally suboptimal steps, potentially requiring
more steps to create the counterfactual. Proximity and sparsity, paired with
the fact that the swap is performed between two patterns that both exist in
the training dataset, X , push the generated perturbation to remain within a
reasonable semantic range, i.e., they promote plausibility. The vector p+ is then
aligned to the time series to determine the channel, j, and starting timestamp,
t, in X ′ where the perturbation will be applied (line 5). Since a given pattern
can have multiple valid alignments within the time series, a random index is
selected from the available options to introduce variability while maintaining
realism. Finally, the perturbation matrix, ∆, is initialized (line 6) and populated
using the PatternSwap function (line 7).

The PatternSwap function operates on a time series X and takes as input
the two SAX patterns, p+ = [α+

1 , . . . , α
+
l ] and p− = [α−

1 , . . . , α
−
l ]. Its primary

objective is to perturb the subsequence from channel j, starting at index t,
xj,t:t+w = [xj,t, . . . , xj,t+w], which corresponds to the pattern p+, so that when
SAX is applied, this subsequence is instead encoded as p−. Let µ and σ be the
mean and standard deviation of the subsequence, and let x̄ = [x̄1, . . . , x̄l] be
its segmented representation obtained via PAA, where each segment consists
of w/l observations, which are averaged within that segment. To achieve the
transformation, we first define the perturbation needed to shift the segmented
value x̄i from its original symbolic representation α+

i to the target α−
i . This
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Algorithm 2: GetPerturbation
Data: X - time series to swap, ŷ - predicted class, z Bag-of-Receptive-Fields, Φ

- attribution map, λ - penalty
Result: Perturbation - ∆

1 k+ ← arg max
k:zk ̸=0

ϕk,ŷ; // Id of most important word for prediction

2 p+ ← hash−1(k+); // Retrieve important word for prediction
3 k− ← argmin

k
ϕk,ŷ + λ∥p+ − pk∥1; // Id of most important word against prediction

4 p− ← hash−1(k−); // Retrieve most important word against prediction
5 j, t← align(X,p+); // Find pattern channel and timestamp alignment

6 ∆← 0d×m; // Initialize empty perturbation matrix
7 ∆j,t:t+w ← PatternSwap(X,∆,p+,p−); // Swap pattern
8 return ∆

perturbation is given by the difference between x̄i and the central value of the
bin corresponding to α−

i , denoted as qα
−
i . The perturbation is then denormalized

using the inverse standardization formula, incorporating the subsequence’s mean
µ and standard deviation σ. Formally,

δi = (qα
−
i − x̄i)σ + µ, (1)

where δi represents changes that must be added to all observations corresponding
to x̄i to move them into a different breakpoint bin. To apply this perturbation to
the original subsequence xj,t:t+w, we produce δ = [δ1, . . . , δ1, . . . , δl, . . . , δl] such
that each δi is repeated w/l times. Thus, the perturbation is simply ∆j,t:t+w = δ,
which can be summed to the original time series X (line 10, Algorithm 1). This
transformation ensures that the local structure of the time series is preserved
while allowing flexible modifications. Importantly, the locality of perturbations is
not strictly enforced. A single perturbation can potentially influence an extended
portion of the time series, depending on the subsequence length corresponding to
the most important pattern p+. Even if the final modification to the time series
is relatively large, it remains interpretable, as it can be succinctly described using
only l values, where each subsequence segment of length w/l is shifted by a single
scalar, reducing cognitive complexity.

5 Experiments

In this section, we assess mascots on both univariate and multivariate time
series classification datasets from the UEA and UCR repositories [8], comparing
its performance against state-of-the-art methods1. We use the datasets listed
in Table 1, all of which have been featured in multiple studies introducing
counterfactuals for time series [41,27].

1 The code is available at https://github.com/ModelOriented/mascots.

https://github.com/ModelOriented/mascots
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As baseline counterfactual explainers, we employ Glacier [41] and M-CELS [27],
two recently proposed methods that achieve strong results without requiring
extensive training of generative adversarial networks or multiple runs of genetic
algorithms. For Glacier, we use its “uniform” variant, which offers the best trade-
off in terms of proximity and sparsity. Gradients are computed in the latent space
of a 1D-CNN autoencoder, as this setup has been shown to yield the highest
validity scores. Due to Glacier’s limitations, we restrict its evaluation to univariate
data. For M-CELS, we adhere to the hyperparameter settings recommended
by the authors, except for disabling tvnorm and budget, which we empirically
found to improve validity. We use InceptionTime [17] as a black-box model due
to its state-of-the-art performance in TSC and ability to provide model gradients
required by M-CELS and Glacier. While mascots does not rely on gradients,
selecting InceptionTime ensures a fair comparison. Additionally, we include a
qualitative example with MultiRocket-Hydra [10], a model that lacks gradient
access and is therefore incompatible with most counterfactual explainers.

mascots is parametrized by the choice of λ, the surrogate model, the attri-
bution method, and the configuration of the BoRF transformation. Based on
preliminary experiments, we set λ ∈ {0.0, 0.1}. This choice reflects a trade-off
between proximity and validity that can vary depending on the dataset and task.
In practice, while λ = 0.1 generally provided better overall performance, λ = 0.0
often remained a reliable default, highlighting the robustness of the method to
this hyperparameter. The surrogate model, g, is a shallow neural network with
two hidden layers of size 256, followed by a softmax function. Each layer, except
the last one, is followed by a ReLU activation function. The network is trained
by minimizing the categorical cross-entropy using ADAM as the optimizer [22],
with a constant learning rate equal to 0.2, weight decay equal to 0.1, and dropout
equal to 0.2. For each experiment, the batch size is set to 8, and the network
is trained for a maximum of 1000 epochs, with early stopping triggered after
200 epochs without improvement on the validation score. After training, the
checkpoint of the model that performs best on the validation set is retrieved
and used in subsequent experiments. As the attribution method, e, we use Deep
SHAP [30] with default hyperparameters.

BoRF automatically adapts its main hyperparameters to each dataset, taking
into account the number of time steps and channels. To preserve the contiguity
of subsequences, crucial for interpretability, dilation is fixed at 1, ensuring that
symbols correspond to consecutive points in the original series. This avoids sparse
perturbations, which can obscure the meaning of the generated counterfactual.
Additionally, the alphabet size is set to 3, and the stride is defined as w/l (the ratio
of word size to word length), enabling an efficient and informative transformation.
Other parameters, including the number of SAX configurations, word size w, and
length l, are dynamically adjusted to capture both local and global patterns. For
each dataset, the smallest SAX words contain at least 8 points, while the largest
are the highest power of two not exceeding the time series length. Each SAX
word consists of either 2 or 4 symbols. The algorithm is limited to a maximum of
20 iterations to mitigate adversarial effects.
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Table 1. Datasets description follows the notation introduced in Section 3: n (instances),
d (channels), m (points), and c (classes). ACC(b) and FID(g) denote the accuracy of
InceptionTime and the fidelity of mascots’ surrogate, i.e., how well g(X) mimics b(X),
measured in terms of accuracy, respectively.

Dataset n d m c ACC(b) FID(g)

TwoLeadECG 23 1 82 2 1.00 1.00
GunPoint 50 1 150 2 1.00 1.00
Earthquakes 322 1 512 2 0.68 0.82
Coffee 28 1 286 2 1.00 1.00
Wine 57 1 234 2 0.80 0.84
ItalyPowerDemand 67 1 24 2 0.97 0.91
BasicMotions 40 6 100 4 0.50 1.00
Cricket 108 6 1197 12 0.24 0.60
Epilepsy 137 3 206 4 0.30 0.90
RacketSports 151 6 30 4 0.37 0.64

Evaluation Measures. We adopt the primary measures of counterfactual qual-
ity reported in prior studies [41,26]: validity, proximity, sparsity, and plausibility.
The first three are formally defined below, while plausibility is assessed using
Isolation Forest [29], where we report the fraction of counterfactuals classified
as nominal (non-outliers). Additionally, we provide runtime comparisons for all
algorithms using the same hardware setup2.

Validity measures the proportion of generated counterfactuals X ′
i that lead

to a different classifier prediction compared to the original instance Xi. It is
defined as validity(X ,X ′) = 1

n

∑n
i=1 1[f(Xi) ̸= f(X ′

i)], where 1[f(Xi) ̸= f(X ′
i)]

is an indicator function that equals 1 if the model’s prediction changes and 0
otherwise. A high validity score indicates that most counterfactuals effectively
alter the model’s decision. Proximity quantifies the average distance between
original instances and their corresponding counterfactuals: proximity(X ,X ′) =

1
n·d·m

∑n
i=1 ∥Xi−X ′

i∥, where ∥Xi−X ′
i∥ represents the distance between Xi and X ′

i.
Lower proximity values indicate that counterfactuals remain close to the original
data points, making them more realistic and interpretable. Sparsity captures the
fraction of features that remain unchanged between the original and counterfactual
instances: sparsity(X ,X ′) = 1

n·d·m
∑n

i=1

∑d
j=1

∑m
t=1 1[xi,j,t − x′

i,j,t = 0], where
1[xi,j,t − x′

i,j,t = 0] equals 1 if a feature remains unchanged and 0 otherwise.
Higher sparsity values indicate that fewer features are modified, promoting more
interpretable counterfactual explanations.

Results. The experimental results for mascots and the baseline models are
illustrated through box plots in Figure 3 and summarized with mean and standard
deviation values in Table 2. For validity, mascots and Glacier perform particularly
well on univariate data, achieving approximately 41%–44% valid counterfactuals

2 System: 8 cores AMD Rome 7742, 32GB RAM.
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Fig. 3. Box-plots of evaluation measures. For validity, sparsity, and plausibility, the
higher score is better, while for proximity, the smaller the better. mascots stands out in
sparsity with a decent validity and proximity. The difference between mascots-λ = 0.0
and mascots-λ = 0.1 suggests a trade-off between validity and other measures.

Table 2. Mean and standard deviation for the various evaluation measures aggregated
over univariate and multivariate datasets. For mascots, we add the average number of
iterations required to flip a label. Best values are highlighted in bold.

validity↑ proximity ↓ sparsity ↑ plausibility ↑ # iter. ↓

un
iv

ar
ia

te mascotsλ=0.1 0.44± 0.18 0.24± 0.18 0.71± 0.12 0.98± 0.02 3.0± 1.0
mascotsλ=0.0 0.44± 0.21 0.35± 0.25 0.65± 0.15 0.84± 0.29 2.7± 1.3

M-CELS 0.11± 0.08 0.08± 0.10 0.49± 0.00 0.99± 0.01 −
Glacier 0.41± 0.23 2.32± 2.34 0.00± 0.00 1.00± 0.00 −

m
ul

ti
v. mascotsλ=0.1 0.15± 0.12 0.33± 0.19 0.88± 0.03 0.98± 0.02 1.7± 2.7

mascotsλ=0.0 0.18± 0.16 0.47± 0.13 0.87± 0.01 0.96± 0.00 2.4± 3.6
M-CELS 0.12± 0.08 0.96± 0.23 0.49± 0.00 1.00± 0.00 −

on average. On multivariate datasets, both configurations of mascots outperform
M-CELS, although the overall low performance of both methods on multivariate
data suggests the need for further investigation in future work. Notably, setting the
λ parameter to 0.0 slightly improves the validity of counterfactuals generated by
mascots. In terms of proximity, mascots and M-CELS produce counterfactuals
that remain reasonably close to the original observations, while Glacier generates
counterfactuals that are significantly more distant. For multivariate datasets,
mascots consistently outperforms M-CELS in proximity. Regarding sparsity,
mascots excels, altering fewer than 30% of the original features on average.
In contrast, Glacier, due to its gradient-based nature, modifies every point at
least slightly, preventing it from generating sparse explanations. M-CELS, on
the other hand, alters approximately 50% of the time series to construct a
counterfactual. Furthermore, we report the average number of iterations (i.e., the
number of pattern swaps) required by mascots to generate a counterfactual. This
number varies across datasets and configurations but typically does not exceed 3.
This suggests that, on average, mascots can produce effective counterfactuals
with only three meaningful semantic modifications. Finally, regarding runtime,
performance is comparable with an average of 23 minutes for mascots, 26
minutes for Glacier, and 55 minutes for M-CELS.
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MASCOTS M-CELS Glacier

Fig. 4. Example of mascots on the TwoLeadECG dataset to explain InceptionTime.
mascots is able to create sparse counterfactual which maintain its local structure. On
the other hand, M-CELS and Glacier produce small (perhaps adversarial) undesirable
changes to the original time series, varying in this way its initial shape.

0 10 20 30 40 50 60 70 80

Predicted class "abnormal": 0.78

0 10 20 30 40 50 60 70 80

"abnormal" class decreased to 0.74 by
swapping pattern [2, 1, 1, 0] with [2, 2, 1, 0]

on indexes 10-25

0 10 20 30 40 50 60 70 80

"abnormal" class decreased to 0.42 by
swapping pattern [2, 2, 1, 0] with [2, 1, 0, 0]

on indexes 30-37

Fig. 5. Example of mascots on the TwoLeadECG dataset to explain MultiRocket-
Hydra. Changes are presented both as visualization and natural language. If positive
and negative patterns have corresponding symbols (for example, the 1st, 3rd, and 4th
symbols in the middle plot), mascots does not change them.

Qualitative Examples. In Figure 4, we present the counterfactuals (in red)
generated by each analyzed method for a randomly selected time series (in blue)
from the TwoLeadECG dataset [8], which represents heart ECG signals. For
mascots, we set λ = 0.1 to achieve better proximity and sparsity. In this case,
mascots generates a counterfactual by modifying only a single pattern at the
beginning of the signal while preserving its local structure. The changes produced
by M-CELS are also minimal but are distributed across the signal. In contrast,
Glacier introduces significant alterations to the original observation, disrupting
the local structure of the signal.

We also provide an example on TwoLeadECG, focusing on explaining the
MultiRocket-Hydra black-box model [10]. Unlike fully neural network-based mod-
els, MultiRocket-Hydra incorporates non-neural components, making methods
such as Glacier and M-CELS inapplicable. The explanation, provided both vi-
sually and in natural language, is illustrated in Figure 5. The counterfactual is
generated in two iterations. First, mascots introduces a small modification be-
tween indexes 10 and 25. While this initial change does not significantly affect the
black-box model’s prediction, it alters the feature importance matrix Φ, enabling
mascots to identify a more impactful transformation in the second iteration.
This final modification broadens the valley in the signal, ultimately flipping the
model’s classification from “abnormal” to “normal.” The generated counterfactual
can be expressed in natural language as follows: “To obtain a counterfactual for
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an abnormal ECG, the pattern in indexes 10–25 must be replaced with [2, 2, 1, 0],
followed by replacing the pattern in indexes 30–37 with [2, 1, 0, 0].” These pat-
terns differ in length—16 and 8, respectively—demonstrating the flexibility of
mascots in adapting its transformations. In both this example and Figure 5,
the symbols 0, 1, and 2 correspond to “low,” “medium,” and “high” values in the
time series, respectively, providing an intuitive interpretation of the modifications.
This interpretation could be further enriched by domain experts, who may map
these symbolic values onto a domain-specific representation space.

Indeed, although the symbolic representations used in mascots are struc-
turally syntactic, we refer to the resulting explanations as semantic to emphasize
their interpretive potential. The symbolic substitutions themselves operate over
abstract pattern spaces, but their interpretability arises when these patterns are
contextualized through domain-specific knowledge. In practical scenarios, domain
experts are often able to associate particular symbolic motifs with meaningful
physiological events, behavioral signatures, or system states. Thus, while the
mechanics of mascots rely on syntactic operations, the explanations it produces
are inherently semantic to the extent that they can be interpreted and acted
upon by humans within a given application context.

6 Conclusion

In this article, we have introduced mascots, a model-agnostic method for gen-
erating counterfactual explanations in univariate and multivariate time series
classification. By leveraging the BoRF transformation and symbolic representa-
tions, mascots enhances interpretability while maintaining fidelity to the original
black-box model. Unlike prior approaches, it operates in a fully agnostic manner
without the need of autoencoders and without relying on distances or nearest
unlike neighbors. Our evaluation demonstrates its effectiveness, achieving high
interpretability and sparsity while preserving validity and proximity.

A limitation of our approach, shared with existing competitors, is the relatively
low validity performance on multivariate data. This highlights a research gap in
the development of counterfactual methods tailored for multivariate time series,
as well as the need for broader empirical evaluations to understand the underlying
causes of this limitation. To address this, we plan to evaluate mascots on more
tasks and challenging real-world scenarios, such as the satellite telemetry domain.
Further, we aim to extend our approach into a “user-in-the-middle” framework,
allowing expert intervention at each iteration to refine counterfactual explanations.
By selecting among proposed changes, experts can enhance the plausibility of
generated counterfactuals, explore custom “what-if?” scenarios, and even create
artificial observations for manual labelling and integration into training datasets.
This interactive approach could further improve the adaptability and utility of
counterfactual explanations in real-world applications.
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