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Abstract. We study the problem of finding consistent hypotheses over finite met-
ric spaces, focusing on hypothesis classes formed by weakly convex subsets of
the domain. These hypotheses are closed under geodesics of length below a given
threshold and exhibit a natural partitioning. Their generalization performance is
strongly correlated with the number of blocks in the partition: fewer blocks yield
greater generalization power. We prove that finding consistent weakly convex
hypotheses with a minimum number of blocks is NP-hard. To address this nega-
tive result, we propose a novel greedy heuristic for computing compact solutions
across a broad class of metric spaces and analyze its formal properties. Unlike
standard approaches that calculate a single global distance threshold, our heuris-
tic dynamically adjusts multiple local thresholds to seek compact hypotheses. To
evaluate our method, we consider the specific case where the underlying metric
space is the Hamming space, corresponding to learning weakly convex Boolean
functions. Our empirical results demonstrate that our general-purpose algorithm
outperforms the method specifically designed for learning this kind of Boolean
functions in both model compactness and predictive performance. In fact, our ap-
proach generates hypotheses that are near-optimal with respect to the number of
blocks in most cases.

Keywords: concept learning · consistent hypothesis finding · finite metric spaces
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1 Introduction

One of the core problems of supervised learning is the consistent hypothesis finding
(CHF) problem. This problem involves identifying a hypothesis within a predefined
hypothesis space that achieves zero empirical error on a given set of training exam-
ples. The CHF problem has been studied for numerous concept learning problems over
different domains, including tabular data, propositional logic, first-order logic, graphs,
and geometric concepts (see, e.g., [1, 2, 17, 18, 20–22, 24]). In this work we propose a
generic heuristic that efficiently solves the CHF problem for a broad class of concept
learning problems defined over finite metric spaces. Building on the fact that metric
spaces admit the notion of weak convexity, our algorithm solves the CHF problem by
computing consistent weakly convex hypotheses as in [14, 23]. Unlike [14, 23], how-
ever, our approach produces more compact hypotheses with better generalization per-
formance. These hypotheses are subsets of the domain, consisting of pairwise disjoint
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blocks that are distant from one another. They are closed under geodesics between spe-
cific point pairs. More precisely, for any pair of points with a distance below a threshold
specific to the pair, all points on all geodesics between the two points are included in
the subset.

The idea of using weakly convex hypotheses was coined in [14] for learning Boolean
functions. Specifically, [14] restricts the hypothesis space to Boolean functions with a
particular property: Their true points (those satisfying the function) can be partitioned
into subcubes of the d-dimensional Boolean cube such that each pair of subcubes has
a Hamming distance greater than a positive integer k. Such Boolean functions can be
can be represented by disjunctive normal forms (DNFs) in which the subcubes cor-
responding to the conjunctive terms are pairwise disjoint. One of the main results of
[14] is that the CHF problem can be solved in polynomial time for hypothesis spaces
formed by these so-called k-convex Boolean functions. The key insight is that, for some
k ≥ 0, there always exists a largest k-convex hull of the positive examples that is dis-
joint from the negative examples. Building on this, [23] generalizes the concept of k-
convex Boolean functions and the associated CHF algorithm, extending them to weakly
convex hypotheses over a broader class of metric spaces.

The generalization power of weakly convex hypotheses is strongly correlated with
the number of their blocks. Specifically, hypotheses with fewer blocks exhibit higher
generalization performance. This raises an important question: Can consistent weakly
convex hypotheses with the minimum number of blocks be found in polynomial time?
As a first contribution, we answer this question negatively, proving that the problem is
NP-complete.

In line with this negative result, both algorithms in [14] and [23] fail to effectively
optimize the number of blocks. A closer examination reveals that these approaches de-
termine a global distance threshold for the output hypothesis. This threshold is defined
as the minimum distance between two blocks across all block pairs (e.g., pairs of sub-
cubes of the Boolean cube in the case of k-convex Boolean functions) that cannot be
merged without violating consistency. However, the global nature of this threshold has
a detrimental effect: it can force block pairs to remain separate, even if they could be
merged into a single block at a larger distance threshold without violating consistency.

As a second contribution, we propose the LOCAL CONVEXIFICATION METHOD
(LCM) to address this problem. It constructs compact weakly convex hypotheses by
greedily merging blocks in order of increasing distance, while maintaining consistency
and dynamically adjusting distance thresholds. A distinguishing feature of LCM, com-
pared to [14, 23], is its ability to compute multiple local thresholds that vary across
different pairs of points. Applying LCM requires implementing certain operations (e.g.
the join operation for blocks) specific to the underlying metric space. To illustrate this,
we consider k-convex Boolean functions as an example, demonstrating that this step
generally does not present significant challenges. Importantly, we emphasize that LCM
is a general method applicable to CHF problems across various finite metric spaces, not
just the Hamming space.

We study some formal properties of LCM. In particular, we show that it is sound
(i.e., it returns a consistent weakly convex hypothesis). Moreover, LCM is efficient
whenever the abovementioned functions specific to the underlying metric space can be
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computed in polynomial time. Regarding optimality in terms of the number of blocks,
the hypotheses generated by LCM are at least as compact as those produced by the al-
gorithm in [23]. Additionally, LCM can achieve an exponential-size compression ratio
compared to the hypotheses returned by [23]. As a further contribution, we conduct an
experimental evaluation of LCM, our general-purpose heuristic, in the special case of
Hamming spaces. We compare its performance against the CHF algorithm designed for
k-convex Boolean functions in [14] and against DNFs extracted from Boolean deci-
sion trees. Our results demonstrate that LCM significantly outperforms both baselines
in terms of model compactness and predictive performance. Furthermore, the number
of terms in the DNFs produced by LCM is very close to the optimal value.

The rest of the paper is organized as follows. Section 1.1 reviews related work, while
Section 2 introduces the necessary background notions. Section 3 defines locally con-
strained block systems, which constitute the hypotheses of the hypothesis class explored
in this study. The negative result concerning the complexity of finding block-minimum
consistent weakly convex hypotheses, along with the proposed heuristic, is presented in
Section 4. The experimental results are presented and discussed in Section 5. Finally,
Section 6 concludes the paper and suggests potential directions for future research.

Due to space limitations, we omit most proofs and offer a simplified adaptation of
our approach–originally developed for interval convexity [4]–to the case of geodesic
convexity. Full formal statements and their proofs will be provided in an extended ver-
sion of this work.

1.1 Related Work

Closure systems (resp. closed sets) [11] can be regarded as a generalization of the family
of all convex subsets of Rd (resp. convex sets in Rd). Abstract closure systems have
been studied also in the context of the CHF problem, e.g., in [17, 21]. Recently, there is
an increasing interest in geodesic or shortest-path convexity [25] in machine learning,
e.g., for vertex classification in graphs [12, 22–24] and recovering clusterings [3].

The relaxation of convexity to weak convexity and to similar notions was stud-
ied before for discrete metric spaces (see, e.g., [6–9]). In machine learning, k-convex
Boolean functions were first investigated in [14]. In our general results, we utilize ab-
stract interval functions [4] to extend the concept of weak convexity to weak interval
convexity. Our notion of locally constrained block systems generalizes the concept of
θ-decompositions of weakly convex sets defined in [23]. In particular, the CHF problem
for learning weakly convex sets is solved in [23] (see, also, [14]) by finding the largest
θ-convex hull of the positive examples over all θ ≥ 0 that is consistent with the neg-
ative examples. We are interested in consistent locally constrained block systems, i.e.,
consistent hypotheses formed by unions of weakly (interval) convex sets, that are more
compact in terms of their number of blocks. This is due to the property that the number
of blocks is inversely correlated with the block system’s generalization power.

2 Preliminaries

This section collects the necessary concepts and defines the notation. Unless otherwise
stated, all sets and metric spaces are assumed to be finite. Special attention will be
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given to the Hamming space, denoted by MH = (Bd, DH), where Bd = {0, 1}d is
the d-dimensional Boolean cube and DH denotes the Hamming distance.

The power set of a set X is denoted by 2X . A closure system (see, e.g., [11]) C over
a set X is a collection of subsets of X that contains X and is closed under arbitrary
intersections. It has a corresponding closure operator ρ : 2X → 2X that is extensive
(i.e., A ⊆ ρ(A) for all A ∈ 2X ), monotone (i.e., ρ(A) ⊆ ρ(B) for all A,B ∈ 2X with
A ⊆ B), and idempotent (i.e., ρ(ρ(A)) = ρ(A) for all A ∈ 2X ) and which satisfies
C ∈ C iff C = ρ(C) for all C ⊆ X . The fixpoints of ρ are referred to as closed sets.

Ordinary and abstract convexity are used explicitly or implicitly by many learning
algorithms. Examples include support vector machines [10] (half-spaces are convex
subsets of Rd) or learning separating half-spaces in graphs [22] (half-spaces are defined
by abstract convexity over the vertex set of a graph). For a metric space M = (X,D),
C ⊆ X is geodesically convex or simply, convex if for all x, y ∈ C and z ∈ X , z ∈ C
whenever z lies on a geodesic between x and y, i.e., D(x, y) = D(x, z)+D(z, y). The
family of all convex subsets of a metric space M = (X,D) is denoted by C. As an
example, consider the function over Bd that maps all subsets A of Bd to the smallest
subcube C of Bd that contains A. It is elementary to check that C is convex for MH .
Note that C can be represented by a conjunction over 2d Boolean literals.

Hypothesis classes formed by convex subsets of the domain can be disadvantageous
for machine learning, as they cannot capture multiple well-separated regions of interest.
This limitation is addressed in [23] by generalizing the notion of convexity to that of
weak convexity: A subset C of a metric space (X,D) is weakly convex (or θ-convex)
for some θ ≥ 0 if, for all x, y ∈ C and z ∈ X , z ∈ C whenever D(x, y) ≤ θ and
D(x, y) = D(x, z) +D(z, y). The collection of all θ-convex subsets of X is denoted
by Cθ.

Our focus will be on hypotheses formed by pairwise disjoint “contiguous” blocks.
To this end, we need to define the notion of “contiguity” for metric spaces. Specifically,
a sequence x1, . . . , xℓ of pairwise distinct elements of X forms a θ-path for some θ ≥ 0,
if D(xi, xi+1) ≤ θ for all i = 1, . . . , ℓ − 1. A set A ⊆ X is θ-connected if for all
x, y ∈ A, there exists a θ-path in A connecting x and y (i.e., x1 = x and xℓ = y).
Clearly, A is diam(A)-connected, where diam(A) = max{D(x, y) : x, y ∈ A} is the
diameter of A. The proof of the proposition below is immediate from the definitions.

Proposition 1. Let (X,D) be a metric space and A ⊆ X . Then for all θ ≥ 0,

(i) if A is θ-connected then A is θ′-connected for all θ′ ≥ θ,
(ii) A has a unique θ-partitioning defined by θ-connectivity, i.e., for all x, y ∈ A, x and

y are in the same θ-connected component if and only if they are θ-connected.

The connectivity index of A in the above proposition, denoted by CI(A), is defined
as the smallest value θ for which A is θ-connected. This is well-defined, as X is finite.

Theorem 1 below, a decomposition result from [23], provides a characterization
of θ-convex sets. Specifically, it states that Cθ, the collection of θ-convex sets, forms
a closure system. Moreover, every θ-convex set can be expressed as a family of θ-
connected and θ-convex sets that are pairwise θ-distant from each other.

Theorem 1. Let θ ≥ 0 and M = (X,D) be a metric space. Then (i) Cθ forms a closure
system and (ii) for all C ⊆ X , C ∈ Cθ if and only if there exists a family P = {Bj}j∈J
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for some index set J with C =
⋃

j∈J Bj that satisfies the following properties for all
j ∈ J:

(α) Bj is θ-convex,
(β) Bj is θ-connected, and
(γ) for all i ∈ J with i ̸= j, D(Bi, Bj) > θ.

As a consequence of Proposition 1, P in the theorem above forms a unique partition of
C. We will therefore refer to P as the θ-convex decomposition of C. The Bjs will be
called θ-convex blocks, or simply blocks of C. Furthermore, (i) of Theorem 1 implies
that there exists a closure operator ρθ : 2X → 2X with A 7→

⋂
{C ∈ Cθ : A ⊆ C} for

all A ⊆ X . In other words, ρθ maps A to the (unique) smallest θ-convex set in Cθ that
contains A. Henceforth, it will be referred to as the θ-convex hull of A.

The fundamental properties of weak convexity, as stated in Lemma 1 below, will be
used frequently throughout the remainder of this paper.

Lemma 1. Let M = (X,D) be a metric space, θ ≥ θ′ ≥ 0, and S ⊆ X . Then

(i) C ⊆ Cθ ⊆ Cθ′ , i.e., convexity implies θ-convexity, which in turn implies θ′-convexity,
(ii) ρθ′(S) ⊆ ρθ(S), and

(iii) if C = ρθ(S) and P = {Bj}j∈J is the θ-convex decomposition of C, then Bj =
ρθ(S ∩Bj) for all j ∈ J .

Properties (i) and (ii) of Lemma 1 establish that monotonicity for the θ-convex hulls
holds not only with respect to the input set but also to the distance threshold θ. This
result, when combined with the decomposition theorem (Theorem 1), implies that the
generators of a θ-convex set C determine its blocks, as stated in Property (iii).

3 Locally Constrained Block Systems

This paper is concerned with the consistent hypothesis finding (CHF) problem for learn-
ing weakly convex concepts. We first consider the following CHF problem:

Problem 1. Given a metric space M = (X,D) and E+, E− ⊆ X , find a θ ≥ 0 and a θ-
convex set H ∈ Cθ that is consistent with E+ and E− (i.e., E+ ⊆ H and E−∩H = ∅);
or return “NO” if there is no such H .

To solve Problem 1, [23] (cf. [14]) employs the decomposition theorem (Theorem 1).
Specifically, the solution involves computing the largest θ-convex hull of E+ over all
θ ≥ 0 that remains disjoint from E−. Since ρ0(A) = A for all A ⊆ X , a consistent
hypothesis is guaranteed to exist when E+ and E− are disjoint. Depending on the con-
text, this hypothesis will be referred to as the consistent globally constrained θ-convex
hypothesis, or simply the consistent θ-GC hypothesis.

Example 1. To illustrate the above concepts, consider the Hamming space MH =
(Bd, DH) for d = 8. Let E+ = {u1, u2, v1, . . . , v4} and E− = {w} with

u1 = (00001111), u2 = (00010111)
v1 = (11111000), v2 = (11111011), v3 = (11111101), v4 = (11111110)
w = (00100111) .
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The consistent θ-GC hypothesis is attained for θ = 2. To seee this, note first that
ρ2(E

+), which can be represented by the DNF ϕ = x1x2x3x6x7x8 ∨ x1x2x3x4x5, is
consistent, as it is not satisfied by the negative example w. Furthermore, w ∈ ρθ(E

+) =
B8 for all θ > 2. Notice that the two subcubes represented by the terms in ϕ fulfill all
properties required in (ii) of Theorem 1 for the blocks of a 2-convex decomposition of
ρθ(E

+). Notably, they are separated by a distance of 3 from each other. ⊓⊔

A major limitation of the approach in [23] is that the consistent θ-GC hypothesis
may contain an excessively high number of blocks. This can lead to an overly specific
solution, potentially resulting in overfitting. The issue arises from a fundamental prop-
erty of the approach: Although the value of θ corresponding to the θ-GC hypothesis
is determined by local regions induced by the training examples, it is applied globally
across the entire training set. The following example illustrates this problem.

Example 2. Consider the set E+ of positive examples in Example 1. Let E− = {w′},
where w′ = (00011111). Since the negative example w′ satisfies the conjunction
x1x2x3x6x7x8, which represents ρ2({u1, u2}), we have w′ ∈ ρ2({u1, u2}) ⊂ ρ2(E

+).
Consequently, given that ρ0(E+) = ρ1(E

+) = E+, the consistent θ-GC hypothesis is
identical for θ = 0 and θ = 1, comprising |E+| singleton blocks. The local distance
constraint defined by u1, u2, and w′ prevents the algorithm from generalizing the posi-
tive examples v1, . . . , v4 for all θ > 1. However, they can be generalized for θ = 2 with-
out violating consistency. Specifically, ρ2({v1, . . . , v4}), represented by x1x2x3x4x5,
does not contain w′ and is at a distance of 4 > 2 from both u1 and u2. ⊓⊔

To address this limitation, we consider other weakly convex sets as potential candidate
hypotheses. The above observations motivate the following definition.

Definition 1 (Locally Constrained Block Systems). Let M = (X,D) be a metric
space and θ ≥ 0. A set B = {(Bj , θj)}j∈J with θj ≥ θ for some index set J is a
locally constrained block system for θ, or θ-LC block system for short, if the following
properties hold for all j ∈ J:

(α’) Bj is θj-convex,
(β’) Bj is θj-connected,
(γ’) for all i ∈ J with i ̸= j, D(Bi, Bj) > max{θi, θj}.

A set A ⊆ X is covered by B in Definition 1 if A ⊆ dom(B), where dom(B) =⋃
j∈J Bj denotes the domain of B. Definition 1 is inspired by the characterization of

weakly convex sets in (ii) of Theorem 1. The key distinctions between (α) and (α’) and
between (β) and (β’) lie in the relaxation of the distance thresholds from the global θ in
Theorem 1 to some local θj ≥ θ. Consequently, the pairwise distance constraints in (γ)
must hold for the maximum of the blocks’ distance thresholds in (γ’). It is worth noting
that the θj values in the definition are not required to be pairwise distinct. Furthermore,
different θ-LC block systems can share the same domain.

Example 3. For E+ in Example 2 we have that B = {(T1, 0), (T2, 0), (T3, 2)} is a 0-LC
block system, where T1 = x1x2x3x4x5x6x7x8, T2 = x1x2x3x4x5x6x7x8, and T3 =
x1x2x3x4x5 represent ρ0({u1}) = {u1}, ρ0({u2}) = {u2}, and ρ2({v1, . . . , v4}),
repectively. ⊓⊔
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We note that dom(B) of a θ-LC block system B is the union of pairwise distant
weakly convex sets, each discretely connected for some (local) distance threshold (see
Example 3). The decomposition result in Theorem 1 suggests that dom(B) itself is a
weakly convex set. Proposition 2 below addresses this observation (cf. (ii)). However,
although each block Bj of B is θj-connected (cf. (iii)), the θ-convex decomposition of
dom(B) might comprise even more blocks, as θj may be strictly larger than θ.

Proposition 2. Let M = (X,D) be a metric space, θ ≥ 0, and B = {(Bj , θj)}j∈J a
θ-LC block system over M. Then

(i) dom(B) ⊆ X ,
(ii) dom(B) is θ-convex,

(iii) for all j ∈ J , Bj is a θj-convex block, and
(iv) for every J ′ ⊆ J with J ′ ̸= ∅, B′ = {(Bj , θj)}j∈J′ is a θ-LC block system.

Conversely, Proposition 4 below asserts that the θ-convex decomposition of a θ-convex
set C ⊆ X can be regarded as a θ-LC block system in a straightforward manner. More-
over, this canonical θ-LC block system is the “finest” among all possible θ-LC block
systems covering C, in the following sense: A θ-LC block system B = {(Bj , θj)}j∈J

over a metric space M = (X,D) for some θ ≥ 0 is considered coarser than a θ-LC
block system B′ = {(B′

k, θ
′
k)}k∈K for some θ′ ≥ 0, denoted B ≼ B′ (or equivalently,

B′ is finer than B, denoted B′ ≽ B), if for every k ∈ K there exists j ∈ J such that
B′

k ⊆ Bj . Clearly, B ≼ B′ implies dom(B) ⊇ dom(B′). Our focus will be on θ-LC
block systems that contain no irrelevant blocks with respect to the set of positive ex-
amples, meaning that every block contains at least one positive example. Specifically,
B is S-relevant for some S ⊆ X if S ⊆ dom(B) and for every j ∈ J , S ∩ Bj ̸= ∅.
We restrict the ≼ relation to this type of block systems. In particular, B ≼S B′ denotes
that B ≼ B′ and both B and B′ are S-relevant. As mentioned earlier, S will later be
restricted to the set of positive examples. Clearly, B ≼S B′ implies that all blocks of B
contain a block of B′, leading to the following claim.

Proposition 3. Let M = (X,D) be a metric space, S ⊆ X , and let B = {(Bj , θj)}j∈J

and B′ = {(Bk, θk)}k∈K be θ-LC and θ′-LC block systems, respectively, for some
θ, θ′ ≥ 0. If B ≼S B′, then |J | ≤ |K|, i.e., the number of blocks in B is bounded by
that in B′.

We employ the notation ≻S and ≺S when |J | < |K|. In the following proposition, we
establish a relationship between the θ-convex decomposition of a θ-convex set C ⊆ X
and the θ-LC block systems that cover C.

Proposition 4. Let M = (X,D) be a metric space, θ ≥ 0, B = {(Bi, θi)}j∈J a θ-LC
block system, C ⊆ X a θ-convex set covered by B, and P = {Pk}k∈K the θ-convex
decomposition of C. Then

(i) B′ = {(Pk, θ)}k∈K is a θ-LC block system with dom(B′) = C,
(ii) B ≼ B′, i.e., any θ-LC block system covering C is coarser than the θ-convex de-

composition of C, and
(iii) if B is C-relevant then |J | ≤ |K|, i.e., the number of blocks in a C-relevant θ-LC

block system is bounded by that in the θ-convex decomposition of C.
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Proposition 4 (iii) suggests that θ-LC block systems can cover the consistent θ-GC
hypothesis studied in [23], potentially using fewer blocks. In Section 5, we provide
experimental evidence demonstrating that the consideration of this broader hypothesis
class for the CHF problem results in a substantial reduction in the number of blocks.

4 The Local Convexification Method

Under some natural assumptions, the consistent θ-GC hypothesis can be found in poly-
nomial time [23]. As discussed earlier, it is not optimal in terms of the number of
blocks compared to consistent θ-LC block systems; a θ-LC block system B is con-
sistent with the sets E+ and E− of positive and negative examples if E+ ⊆ dom(B)
and E− ∩ dom(B) = ∅. The following theorem demonstrates, in the specific case of
k-convex Boolean functions, that a consistent θ-LC block system can be exponentially
more compact than the consistent θ-GC block system considered in [14, 23].

Theorem 2. For all sufficiently large positive integers d, there exist E+, E− ⊆ Bd and
a θ-LC block system B consistent with E+ and E− such that the size of the consistent
θ-GC block system Bc relative to B satisfies

|Bc|
|B|

= 2Ω(d) .

Proof. Let d′ = d− 7 and let S be a largest subset of Bd′ such that the pairwise Ham-
ming distance between any two elements of S is at least 3. By the Gilbert-Varshamov
bound (see, e.g., Chapter 8 in [16]), a fundamental result in coding theory, we have

|S| ≥ 2d
′∑2

j=0

(
d′

j

) = 2Ω(d) . (1)

Let E+ = {x, y} ∪ S′ and E− = {z}, where x = 03040d−7, y = 13040d−7, z =
001040d−7, and S′ = {0314 ⊕ s : s ∈ S}. Here, aℓ and ⊕ denote the ℓ-fold repetition
of the symbol a and the string concatenation, respectively.

Since DH(x, y) = DH(x, z) +DH(z, y) and DH(x, y) = 3, there is no consistent
3-convex Boolean function. In contrast, there exists a consistent hypothesis for θ = 2.
On the one hand, the consistent globally constrained θ-convex hypothesis Bc for θ = 2
contains |S|+2 = 2Ω(d) blocks by (1), each of which is a singleton. On the other hand,
utilizing the fact that the convex hull of a set of at least 3 points of Bd is always 2-
connected [13], the 2-LC block system B = {({x}, 2), ({y}, 2), (convex hull of S, 2)}
is consistent and contains only three blocks. ⊓⊔

Using the notion of optimality in terms of number of blocks, Theorem 2 gives rise
to the following CHF problem.

Problem 2 (Block-Minimum CHF Problem). Given a metric space M = (X,D) and
E+, E− ⊆ X , find a θ ≥ 0 and a consistent θ-LC block system B = {(Bi, θi)}i∈{1,...,k}
with the smallest k, or return “NO” if there are no such θ and B.
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The following theorem presents a negative result on the complexity of Problem 2.

Theorem 3. Problem 2 is NP-complete.

Proof. Given a finite set B ⊆ 2X × [0,∞) over a metric space M = (X,D) and
θ ≥ 0, it can be decided in polynomial time whether B is a θ-LC block system that is
consistent with E+ and E−. Thus, Problem 2 is in NP. To show that it is NP-hard, we
use a reduction from the disjoint version of the boxes class cover (BCC) problem [19]
defined as follows: Given disjoint finite sets B of blue and R of red points in the plane,
find a minimum cardinality set H of pairwise disjoint axis-aligned rectangles such that
every blue point is contained in a rectangle and none of the red points belongs to any of
the rectangles in H. This problem is NP-complete [19, Theorem 4.10].

The main idea behind the reduction is that for an instance B,R of the disjoint ver-
sion of the BCC problem, we construct a finite rectangular grid graph G = (V,E) with
vertices containing B∪R such that the shortest path between any two vertices in B∪R
is at least 3, where the distance between the vertices is defined by the shortest-path
distance. We have that a subset C of V is θ-convex for all θ ≥ 2 iff the subgraph of
G induced by C is a grid graph. This property allows us to establish the connection
between solutions of the disjoint version of the BCC problem containing k rectangles
and those of Problem 2 containing k blocks.

More precisely, for an instance B,R of the disjoint version of the BCC problem
with |B ∪ R| = n, construct a graph G = (V,E) as follows: For all p ∈ B ∪ R,
take a vertical and a horizontal line through p. Sort the points in B ∪ R according
to their x-coordinates and for each adjacent points (x, y), (x′, y′) with x < x′, select
three values x1, x2, x3 satisfying x < x1 < x2 < x3 < x′ and take the three vertical
lines through (x1, 0), (x2, 0), (x3, 0), respectively. In a similar way, sort the points in
B ∪ R according to their y-coordinates and for each adjacent points with different y-
coordinates take three pairwise different horizontal lines. In this way we obtain a grid
in the plane with vertices defined by the set of pairwise intersections of the horizontal
and vertical lines. Define V by the set of vertices of this grid and add edge {u, v} to
E iff they are adjacent in the grid. For any u, v ∈ V , define their distance D(u, v) by
their shortest-path distance in G. By construction, G is a rectangular grid graph with
B ∪R ⊆ V and D(u, v) > 2 for all u, v ∈ R ∪B with u ̸= v.

It holds that if C ⊆ V induces a connected subgraph of G and C is θ-convex for
some θ ≥ 2 then C is θ-convex for all θ ≥ 2 (i.e., C is convex) and that C induces a
rectangular subgrid graph of G. Since the size of G is O(n2), the reduction is polyno-
mial.

It is easy to check that for all k > 0, there exists a hypothesis H containing k pair-
wise disjoint axis-aligned rectangles in R2 that is consistent with B ∪R iff there exists
a θ-LC block system B over M for θ = 2 that consists of k blocks and is consistent
with E+ = B and E− = R. This completes the proof of the NP-hardness. ⊓⊔

4.1 The Algorithm

Motivated by the aforementioned negative result, we present a greedy heuristic called
the LOCAL CONVEXIFICATION METHOD (LCM; see Algorithm 1) for finding compact
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Algorithm 1 LOCAL CONVEXIFICATION METHOD

Require: metric spaceM = (X,D) and threshold τ ≥ 0
Input: E+, E− ⊆ X
Output: θ-LC block system B for some θ ≥ τ which is consistent with E+ and E− if such θ

and B exist; otherwise “NO”

1: B ← {(B, τ) : B ∈ WEAKLYCONVEXHULL(τ, E+)}, F ← ∅
2: if ∃(B, θB) ∈ B, e ∈ E− such that MEMBERSHIP(e,B) = TRUE then return “NO”
3: while A := {((R, θR), (S, θS)) ∈ B2 : R ̸= S, {R,S} /∈ F} ̸= ∅ do
4: λ← min{DISTANCE(R,S) : ((R, θR), (S, θS)) ∈ A}
5: choose ((R, θR), (S, θS)) ∈ A such that DISTANCE(R,S) = λ
6: D ← {(R, θR), (S, θS)}
7: B ← JOIN(max{τ, λ}, R, S), θB ← max{τ, CONNECTIVITYINDEX(B)}
8: while ∃(Q, θQ) ∈ B \ D with DISTANCE(B,Q) ≤ max{τ, θB , θQ} do
9: B ← JOIN(max{τ, θB , θQ}, B,Q),D ← D ∪ {(Q, θQ)}

10: θB ← max{τ, CONNECTIVITYINDEX(B)}
11: if ∃e ∈ E− such that MEMBERSHIP(e,B) = TRUE then F ← F ∪ {{R,S}}
12: else B ← (B \ D) ∪ {(B, θB)}
13: return B

consistent θ-LC block systems. The main idea of Algorithm 1 is to greedily join pairs
of blocks in ascending order of their distance until any further join would result in an
inconsistency.

Algorithm 1 operates on a finite metric space M and requires a threshold τ ≥ 0.
Regarding τ , a user-specified lower bound on θ for the consistent θ-LC block system
computed by the algorithm, it has been shown in [23] that certain metric spaces permit
a compact representation of the blocks in θ-convex decompositions of θ-convex sets.
In particular, some representation schemes make use of the fact that blocks are convex
sets. For instance, the terms of a DNF representing a weakly convex Boolean function
correspond to convex subsets of Bd. This property can also be leveraged for θ-LC block
systems. However, this requires the value of θ for a block to exceed a certain threshold
τ , which is intrinsically tied to the underlying metric space. More precisely, a metric
space is blockwise convex for some θ ≥ 0 if every θ-convex block (i.e., θ-connected
and θ-convex set) is convex. For representation languages restricted to convex blocks,
τ should be at least the smallest value of θ for which the metric space is blockwise con-
vex. As an example, k-convex Boolean functions can be represented by DNFs whose
conjunctive terms correspond precisely to the blocks in their respective decomposi-
tions [14]. In this specific case, τ = 2, since the blocks of 2-convex subsets of MH are
convex [13].

In each iteration of the outer loop, Algorithm 1 computes a strictly coarser consis-
tent θ-LC block system from the current consistent θ-LC block system B by joining
block pairs in their increasing distance order. This is an iterated process that is repeated
as long as the resulting block is consistent with the negative examples and does not
violate any of the blocks’ local distance constraints. If a join operation results in an in-
consistency, the algorithm does not stop the computation. Instead, it returns to the state
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before the invalid join, adds the pair of blocks that led to the inconsistency to a set of
forbidden pairs, and continues with the next pair of blocks.

We do not provide the pseudocode of the subroutines in Algorithm 1. Semantically,
they are defined as follows: For E+ ⊆ X , e ∈ X , blocks B,R ⊆ X , and θ ≥ τ ,

– WEAKLYCONVEXHULL(θ, E+) computes the set of blocks of ρθ(E+).
– MEMBERSHIP(e,B) decides whether or not e ∈ B.
– DISTANCE(B,R) computes the distance D(B,R) = minb∈B,r∈R D(b, r).
– CONNECTIVITYINDEX(B) calculates the connectivity index CI(B) of B (i.e., the

smallest θ′ such that B is θ′-connected).
– JOIN(θ,B,R) computes the join of B and R defined by ρθ(B ∪ R). Note that

ρθ(B ∪ R) constitutes a single block whenever θ ≥ D(B,R), a condition that is
always fulfilled during the entire execution of Algorithm 1.

Algorithm 1 starts by calling WEAKLYCONVEXHULL(τ, E+) and initializing F as an
empty set. It is used to store forbidden pairs of blocks, i.e., which cannot be joined.
According to Proposition 4 (ii), this initial step produces the finest θ-LC block system
containing E+ for some θ ≥ τ . If the resulting hypothesis is inconsistent with the nega-
tive examples E−, the algorithm must return “NO”, as there is no consistent hypothesis.
This consistency check is performed in line 2. It follows from the definition of weakly
convex hulls and Lemma 1 (iii) that the initial hypothesis B in line 1 is E+-relevant.

When entering the main loop of Algorithm 1 (line 3), the properties of θ-LC block
systems (see Definition 1) are preserved. Among the block pairs in B that are not in
F , a pair with the smallest distance, denoted λ, is selected (lines 4-5). However, the
new block B, obtained by joining the two selected blocks (line 7), may violate local
distance constraints with other blocks in relation to the updated connectivity index.
To address this, further joins of violating blocks with B are computed in the inner
loop (lines 8-10), if necessary. During this process, the connectivity index is updated
to ensure that the properties of θ-LC block systems remain satisfied. Additionally, the
join operation could potentially cause an inconsistency with E−; this is checked in
line 11. If an inconsistency is detected, the initial pair of blocks is added to the set F of
forbidden joins. Otherwise, the data structure B is updated by removing the blocks that
were joined into B and by adding B, along with the maximum of τ and its connectivity
index θB . In each iteration of the main loop that modifies B, the update results in a
consistent coarsening of B. This guarantees a consistent hypothesis for both E+ and
E− while ensuring that it remains E+-relevant. The following theorem addresses the
soundness and computational complexity of Algorithm 1.

Theorem 4. The following properties hold for Algorithm 1:

(i) It returns a consistent E+-relevant θ-LC block system B for some θ ≥ τ , or “NO”
if such θ and B do not exist.

(ii) It runs in time polynomial in |E+|, |E−|, and the parameters of the underlying
metric space M, provided that all five functions called by the algorithm also run
in time polynomial in |E+| and the parameters of M.

It remains to ask whether Algorithm 1 always returns at least a block-minimal con-
sistent θ-LC block system. Specifically, a θ-LC block system B with θ ≥ τ is consid-
ered block-minimal consistent if it is consistent with E+ and E−, E+-relevant, and
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e− B′

B1

B2

Fig. 1. An example for which Algorithm 1 returns a consistent θ-LC block system that is not
block-minimal consistent. The output is B = {(B1, 1), (B2, 1)}. However, B = {(B′, 1)} is a
consistent E+-relevant 1-LC block system with B ≻E+ B′.

there exists no consistent E+-relevant θ′-LC block system B′ for some θ′ ≥ τ such
that B′ ≺E+ B. Recall that E+-relevance guarantees that B has no block that is disjoint
with E+. Note further that block-minimal consistency of a θ-LC block system does not
imply that its number of blocks is minimum across all consistent θ-LC block systems.
Example 4 below demonstrates that the answer to the above question is negative.

Example 4. We present an example which shows that the output of Algorithm 1 is not
block-minimal consistent in general. The underlying metric space in this example is
formed by the vertex set of an (unweighted) connected graph and the shortest-path
distance. To this end, note first that CI(B) = 1 for every θ ≥ 1 and for every θ-convex
block B. Indeed, if B is a θ-convex block and u, v ∈ B, then there is a θ-path u =
p1, p2, . . . , pℓ = v between u and v that lies in B. Furthermore, since D(pi, pi+1) ≤ θ,
all shortest paths between pi and pi+1 are contained in B, for all i = 1, . . . , ℓ − 1.
Choose one such shortest path between pi and pi+1, for alli. The concatenation of these
paths is a 1-path between u and v. Hence, B is 1-connected implying CI(B) ≤ 1. Since
CI(B) ≥ 1, CI(B) = 1.

For the example, let G = (V,E) denote the cycle consisting of 16 vertices given
in Figure 1. Let the positive examples E+ consist of the points depicted in red and
the negative example E− = {e−} be the single point depicted in blue. Consider the
subgraphs B1 and B2 consisting of 5 positive examples each, as shown in the figure.
Using CI(B1) = CI(B2) = 1, one can easily check that the output of Algorithm 1 will
be B = {(B1, 1), (B2, 1)}.

Now consider the 1-LC block system B′ = {(B′, 1)}, where B′ consists of the 10
red and 3 purple points as shown in Figure 1. It is an 1-LC block system, E+-relevant,
consistent, and B ≻E+ B′. Hence, B is not block-minimal consistent. ⊓⊔

Note that B′ in the example is not convex. In the theorem below, we give a sufficient
condition for Algorithm 1 to return block-minimal consistent hypohteses. It requires,
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among others, that the underlying metric space is blockwise convex. However, whether
this condition is also necessary remains an open question.

Theorem 5. Let M = (X,D) be a blockwise convex metric space for some τ ≥ 0. If
there exists some constant σ > 0 such that CI(B) = σ for all θ′-convex blocks B ⊆ X
with θ′ ≥ τ , then the output of Algorithm 1 is block-minimal consistent.

5 Application: Learning Weakly Convex Boolean Functions

To demonstrate the performance of our general-purpose heuristic LCM in practice, we
consider the CHF problem for the special case where the underlying metric space is
the Hamming space MH = (Bd, DH). This case gives rise to weakly convex Boolean
functions, i.e., whose sets of true points are θ-convex [14]. As previously discussed,
such functions can be represented by DNFs, where the terms correspond to the θ-convex
blocks of their sets of true points. The CHF problem for this class of Boolean functions
was studied and solved in [14], using a domain-specific algorithm that computes con-
sistent θ-GC hypotheses.4 One can verify that MH is blockwise convex for all θ ≥ 2
(cf. [13]) and that CI(B) = 1 for all θ ≥ 2 and all θ-convex convex blocks B, leading
to the following result by Theorem 5:

Corollary 1. For M = MH and τ = 2, all θ-LC block systems returned by Algo-
rithm 1 are block-minimal consistent.

For all experiments, we set τ = 2 based on the rationale discussed above. The appli-
cation of Algorithm 1 to weakly convex Boolean functions involves the implementation
of the following subroutines for (irredundant) terms B and R over variables x1, . . . , xd

(m⊕ and m⊖ below denote |E+| and |E−| in Algorithm 1, respectively):

– WEAKLYCONVEXHULL(θ, E+) computes a set of conjunctive terms representing
the blocks of ρθ(E+) in O(dm2

⊕) time (see [14] for details).
– MEMBERSHIP(e,B) determines in O(d) time whether e ∈ Bd satisfies B.
– DISTANCE(B,R) computes the distance between the two subcubes of Bd repre-

sented by B and R in O(d) time.
– CONNECTIVITYINDEX(B) returns 1 in constant time (see the remark above).
– JOIN(θ,B,R) computes the conjunction representing the smallest subcube of Bd

containing the subcubes represented by B and R in O(d) time.

Since all functions run in time polynomial in m⊕ and the parameter d, Algorithm 1 runs
in time polynomial in m⊕, m⊖, and d by Theorem 1 (ii).

5.1 Experimental Results

In this section, we present our experimental results on learning θ-convex Boolean func-
tions. We empirically compare the number of blocks and the predictive accuracy of the
output of Algorithm 1 with those of two baseline methods. The first one is the algorithm

4 In [14], the authors use the notation k instead of θ and refer to k-convex Boolean functions.
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in [14], developed specifically for this task. It computes a DNF representing the con-
sistent θ-GC hypothesis. As the second baseline method, we compare the results with
the DNFs extracted from Boolean decision trees learned on the same training data. The
rationale for considering this baseline is that Boolean decision trees represent DNFs.

Datasets For each DNF learning task, we first generated t conjunctions, each with the
following procedure for parameters d̃, θmin, θmax ∈ N: Tossing a biased coin d̃ times
independently and with success probability ℓ/d̃ for some random integer 0 ≤ ℓ ≤ d̃,
we have generated a subset V of the Boolean variables x1, . . . , xd̃. For each xi ∈ V ,
we then tossed an unbiased coin and, depending on the outcome, added either xi or xi

to the conjunction. For each pair of the t conjunctions, a distance θ′ ∈ N is generated
uniformly at random within the interval [θmin, θmax]. It determines the number of con-
flicting new variables–distinct from those in V –that must be added to both terms. Thus,
after processing all pairs, we obtain a θ-convex DNF over d ≥ d̃ Boolean variables for
some θ ≥ θmin, consisting of t terms. This DNF was used as the unknown target weakly
convex Boolean function. Finally, the positive (resp. negative) training examples E+

(resp. E−) of varying sizes were chosen uniformly from this DNF’s true (resp. false)
points.

Parameters We considered all combinations of t ∈ {4, 5}, d̃ ∈ {10, 15, 20}, and
ℓ ∈ {4, 5}. θmin = 3 and θmax = 6 were constant as a compromise between vari-
ability of the distances and dimensionality of the underlying Hamming space. Re-
garding the training examples, we considered two cases, the balanced with |E+| =
|E−| and the imbalanced one with |E−| = 150000 ≫ |E+|. In both cases, |E+| ∈
{10, 20, . . . , 100, 200, . . . , 1000, 1500, 2000, . . . , 5000}. In order to estimate mean and
standard deviation of the performance measures, the experiment was repeated i = 50
times, independently for each parameter combination.

Limitations The experimental design described above has some inherent limitations.
Most importantly, due to the addition of conflicting variables during the concept gener-
ation, the dimension d of the underlying Hamming spaces is also determined randomly.
However, as the VC-dimension of weakly convex Boolean functions is tied to the di-
mension of the surrounding space, this has a direct impact on learnability. In particular,
none of the parameter combinations we considered satisfies any bounds for efficient
PAC-learnability [14]. This limits the number of terms that can be considered, as in this
case much more training examples are needed. Interestingly, the number of negative
examples appears to govern this effect, which was investigated in the imbalanced case
described above. Furthermore, it is known that there is an inherent imbalance between
true and negative points in weakly convex Boolean functions [14]. This is reflected nei-
ther in the balanced nor in the imbalanced cases described above, as otherwise we would
end up with high probability with none or only very few positive examples. Notice that
the DNF generation is biased also in the sense that the conflicting variables are disjoint
for distinct term pairs, except for the initial d̃ common variables. Increasing the over-
lap of common conflicting variables results in smaller blocks, further emphasizing the
imbalance between true and negative points of the generated DNFs. As mentioned, the
goal of our experiments is to examine, as a proof-of-concept, Algorithm 1 in terms of
compactness (number of blocks) and predictive performance by comparing its output
hypotheses to those of the two baseline algorithms. Accordingly, since our general-
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Fig. 2. Mean F1-score obtained by θ-LC (orange lines), θ-GC (blue lines), and DTC hypotheses
(purple lines) depending on the number |E+| of positive examples drawn from target concepts
with t = 4 (dashed lines) and t = 5 terms (solid lines). The balanced case (left plot) with |E−| =
|E+| is distinguished from the imbalanced case (center plot) where |E−| = 150000≫ |E+| is
constant. The compactness (right plot) is the ratio of the θ-GC over θ-LC hypotheses’ number of
blocks (i.e., terms in the output DNFs). All values are averaged over 50 independent iterations.

purpose algorithm does not utilize any domain-specific knowledge, except for setting
τ = 2, a comparison with state-of-the-art algorithms specific to learning DNFs is out
of the scope of this work. For all learning tasks and iterations, the decision tree model’s
hyperparameters were individually optimized using cross-validated grid search.

Results For each learning task, the three algorithms are called with E+ and E−, using
τ = 2 for the first two algorithms. The corresponding three DNFs are denoted by ϕGC
(consistent θ-GC hypothesis, i.e., the largest consistent θ-convex hull of E+ [14]), ϕLC
(consistent θ-LC block system produced by Algorithm 1), and ϕDTC (decision tree).
The hypotheses are compared with each other by their number of terms (i.e., blocks)
and F1-score. The results5 for t ∈ {4, 5} and d̃ = 15 are shown in Figure 2. Notice
that the output hypotheses of all three algorithms show higher predictive performance
for target concepts with t = 4 terms (dashed lines) compared to t = 5 (solid lines).
This is expected because a) there are more examples per block for t = 4 than for t = 5,
and b) the dimension d of the Hamming space increases with t due to the addition of
conflicting variables to the terms. Specifically, d ranged from 27 to 48 (mean 37.84, std.
dev. 3.82) for t = 4 and from 36 to 66 (mean 52.92, std. dev. 5.29) for t = 5.

Notice that the DNFs extracted from decision tree classifiers (DTC) for the balanced
case (left plot) performed very poorly, regardless of t and the number of examples.
However, |E+| = |E−| ≥ 1000 examples suffice for Algorithm 1 to return excellent

5 The algorithms and the experiments were implemented in Python 3.11 using the
sortedcontainers package for managing the underlying data structures of Algorithm 1
and the θ-convex baseline algorithm [23]. For the decision tree models, we used the imple-
mentation of the sklearn package.
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θ-LC hypotheses with a stable F1-score of almost 1.0 (mean 0.998, std. dev. 0.037)
for target concepts with t = 4 terms (dashed lines). For t = 4 and |E+| ≥ 1000, the
returned hypotheses even coincide exactly with the unknown target concepts in more
than 95.4% of the cases; for t = 5 and |E+| ≥ 1000, in about 52.89% of the cases. The
average F1-score also drops substantially in the latter case (t = 5) but was still 0.84
(std. dev. 0.32) for |E+| = |E−| = 5000 positive and negative examples. In contrast,
the θ-GC hypotheses performed far worse than θ-LC hypotheses. In particular, they
coincided with the unknown target concepts exactly only in 19.6% of the cases with an
average F1-score of 0.75 (std. dev. 0.39) for t = 4 and not even once with an average F1-
score of only 0.03 (std. dev. 0.15) for t = 5, for |E+| ≥ 1000 in both cases. It is worth
mentioning that the θ-GC hypotheses have a very high precision (near 1.0 almost all the
time) but a poor mean recall of 0.03 (std. dev. 0.13). This is a direct consequence of the
effect of the global distance constraint θ, which prevents the necessary join operations
leading to hypotheses with several very small blocks, often even only singletons. In
other words, the θ-GC hypotheses do not generalize at all from the training data.

A comparison between the balanced (left plot) and the imbalanced case (center plot)
reveals that the predictive performance of θ-GC hypotheses is not affected by the ad-
ditional negative examples. This is to be expected because, as discussed before, θ-GC
hypotheses appear to often overfit E+. In contrast, since Algorithm 1 greedily joins
blocks until inconsistency with E−, it benefits more from the additional negative exam-
ples. It is remarkable, that it obtains an excellent F1-score of 0.99 (std. dev. 0.09) even
for t = 5 terms when provided with |E+| ≈ 1000 positive and |E−| = 150000 nega-
tive examples. Another difference to the balanced case is that the DNFs extracted from
decision tree classifiers also appear to benefit from the additional negative examples.
Still, they perform significantly worse than the θ-LC hypotheses for both t = 4 (mean
0.68, std. dev. 0.22) and t = 5 (mean 0.48, std. dev. 0.32).

The right plot in Figure 2 shows the mean ratio of the lengths (i.e., number of
blocks) of θ-GC hypotheses over θ-LC hypotheses. θ-GC hypotheses have up to almost
three orders of magnitudes more terms than θ-LC hypotheses. On average, the factor is
141.13 (std. dev. 245.38) for unknown target concepts with t = 4 and 230.04 (std. dev.
293.29) with t = 5 terms.

In summary, our experiments show that Algorithm 1 solves the CHF problem for
weakly convex DNFs with significantly less blocks and with a (much) better average
predictive performance compared to the related baseline decision tree and weakly con-
vex DNF learning algorithms [14, 23].

6 Concluding Remarks

Weak convexity [14, 23] has proven to be a powerful parameterized tool for solving
the CHF problem for hypotheses composed of pairwise separated blocks. A major lim-
itation of the approaches in [14, 23] is that the pairwise distances between blocks of
consistent θ-GC hypotheses are often determined by the local configuration of only a
few training examples. As our experimental results in Section 5.1 demonstrate, this can
lead to poor generalization performance. To address this issue, we introduced and stud-
ied LC block systems, a general framework for discontiguous hypothesis classes that
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extends weakly convex hulls in finite metric spaces. Motivated by the negative com-
plexity result in Theorem 3, we proposed a greedy heuristic to compute consistent and
compact LC block systems.

For simplicity, this short version restricts the discussion to geodesic convexity, a
special case of interval convexity [4]. In addition to the Hamming space considered
in this paper, this special case covers other metric spaces commonly used in machine
learning, such as those formed by the vertex set of a graph equipped with the shortest-
path or weighted shortest-path distance (see, e.g., [3, 12, 22, 24]).

In the special case of learning weakly convex Boolean functions, our heuristic LCM
is optimal, meaning that no coarser consistent LC block system exists with fewer blocks
than the output of our algorithm. Our experimental results clearly show that the hy-
potheses generated by our general-purpose heuristic achieve significantly better pre-
dictive performance compared to those produced by the domain-specific method in
[14] and by Boolean decision tree learning algorithms. The improvement over [14] can
largely be attributed to the compactness of the output hypotheses: our approach gener-
ates hypotheses with significantly fewer blocks than those produced by the method in
[14]. In fact, they are near-optimal in terms of the number of blocks in most cases.

The approach and results of this paper raise several questions for further research.
For instance, is the sufficient condition of block-minimal consistency in Theorem 5 also
necessary? If not, what properties characterize this kind of optimality? Another interest-
ing question is whether our heuristic can be adapted to unsupervised learning problems.
This question is motivated by the strong relationship between LC block systems and
density-based clusters [5, 15], which share similar definitions of connectedness, global
parameters that limit expressivity, and similar algorithmic strategies for greedily joining
blocks or clusters by ascending distance.

Another promising avenue for future research could involve relaxing the strictness
of LC block systems to tolerate a certain amount of misclassifications, akin to soft mar-
gin support vector machines [10]. Additionally, motivated by various learning prob-
lems over infinite domains, extending the results of this paper from finite to infinite
metric spaces presents an important and challenging task. This extension is nontrivial,
requiring a careful integration of concepts from topology, computational complexity,
and machine learning.
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