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Abstract. The team formation problem assumes a set of experts and
a task, where each expert has a set of skills and the task requires some
skills. The objective is to find a set of experts that maximizes coverage
of the required skills while simultaneously minimizing the costs asso-
ciated with the experts. Different definitions of cost have traditionally
led to distinct problem formulations and algorithmic solutions. We in-
troduce the unified TeamFormation formulation that captures all cost
definitions for team formation problems that balance task coverage and
expert cost. Specifically, we formulate three TeamFormation variants
with different cost functions using quadratic unconstrained binary opti-
mization (QUBO), and we evaluate two distinct general-purpose solution
methods. We show that solutions based on the QUBO formulations of
TeamFormation problems are at least as good as those produced by
established baselines. Furthermore, we show that QUBO-based solutions
leveraging graph neural networks can effectively learn representations of
experts and skills to enable transfer learning, allowing node embeddings
from one problem instance to be efficiently applied to another.

Keywords: Team Formation · Quadratic Binary Optimization (QUBO)
· Graph Neural Network (GNN) · Combinatorial Optimization.

1 Introduction

The team formation problem is commonly defined as follows: given a set of
experts, each possessing a set of skills, and a task that requires specific skills, the
goal is to identify a subset of experts best suited to complete the task. A vibrant
stream of literature has been dedicated to algorithmic solutions for addressing
an ever-expanding universe of variants of this problem [1,2,13,16,18,24,34,35].

The fundamental requirements in most team formation problems is that the
selected experts maximize the coverage of the required skills while minimizing
their cost. Existing work on this problem combines these two requirements, by
setting one as a constraint and the other as the objective. The cost of a team has
many different definitions with each leading to a different problem formulation.
Common cost functions include a linear sum of individual expert costs or a
network-based cost that accounts for the structural connectivity of the selected
experts within an underlying social graph.

Inspired by recent work [25,34], we integrate both the coverage and cost
objectives aiming to find a team x for task J such that λCov(J | x)−Cost(x) is



2 K. Vombatkere et al.

Fig. 1: High-level flowchart of our QUBO framework for TeamFormation.

maximized. We call this general problem TeamFormation. In this formulation,
λ is a normalization factor that balances the two components of the objective.
This formulation is general and can incorporate direct costs associated with
experts or more complex cost functions, e.g., coordination costs.

In this paper, we examine three variants of the TeamFormation problem
resulting from different cost functions, and show that they can be expressed as
quadratic unconstrained binary optimization (QUBO) problems. This perspec-
tive enables us to frame team formation as an energy minimization problem,
drawing parallels with physics-based combinatorial optimization techniques.

We explore two classes of solution methods: one using QUBO solvers [12] and
another leveraging graph neural networks (GNNs) [29]. QUBO solvers provide
exact or near-optimal solutions. However, they operate as black-box solvers that
do not provide any insight into the underlying space of experts and skills, and
their computational complexity grows significantly with problem size.

Motivated by these limitations, and inspired by recent work on deep learn-
ing for combinatorial optimization problems [6,30], we introduce a GNN-based
approach. This approach models the problem as an unsupervised node classi-
fication task; the classification process assigns each expert a binary decision
(selected or not selected in the team) and the GNN learns to classify the experts
by optimizing a QUBO-based loss function that corresponds to maximizing the
TeamFormation objective. Apart from learning good solutions, the embed-
dings learned by the GNN provide a semantic representation of the expert-skill
space, where node proximity reflects relationships between skills and experts.

To the best of our knowledge, we are the first to provide a unified QUBO-
based framework (see Fig. 1) for team formation, enabling a consistent algorith-
mic approach across different TeamFormation variants. In our experimental
evaluation, we utilize real-world datasets from diverse domains, including col-
laboration networks of artists and scientists, and online labor market data. Our
results demonstrate that our general algorithms consistently find high-quality
solutions, often outperforming combinatorial baselines designed specifically for
certain problem variants. Furthermore, our experiments highlight the potential
for transfer learning, where GNNs trained on one problem instance can be effec-
tively used to solve related instances with minimal additional computation.
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2 Related Work

Our QUBO-based formulation for the TeamFormation problem applies to all
variants requiring a balance between coverage and cost. In this way, our work
generalizes a lot of existing work on team formation, relates to work on balancing
submodular objectives with other objective functions, and extends ideas from
QUBO combinatorial optimization and deep learning.
Algorithmic Team Formation. Early work in team formation focused on al-
gorithmic methods to select experts to collectively cover all the skills required
by a single task, while collaborating effectively within a social network [16,18].
Related work considered forming multiple teams of experts to cover the skills
of multiple tasks while bounding the workload or coordination cost across ex-
perts [1,2]. Follow-up works then considered more flexible problem variations
that aim to balance partial task coverage with expert cost, maximum workload,
and coordination cost. These works primarily employ established algorithmic
methods, such as integer programming and greedy heuristics [24,25,34,35].

More recent literature has expanded beyond such methods to leverage deep
learning for various team-formation variants. For instance, deep neural net-
works have been used to recommend new teammates to optimally compose high-
performance teams [8,28]. In another relevant example, a variational bayesian
neural architecture was used to learn representations for teams whose members
have collaborated in the past, enabling the selection of top-k teams of experts
that collectively cover a set of skills [13].

Our TeamFormation formulation generalizes several prior formulations by
incorporating task coverage and a flexible cost definition into a single objective.
Furthermore, our GNN-based method is distinct from the deep learning methods
used in prior work.
Submodular Maximization. The coverage function is monotone and submod-
ular, which is useful within discrete objective functions, as it encodes a natural
diminishing returns property and also comes with an extensive literature on op-
timization techniques [9,10,17]. The greedy algorithm achieves a 1−1/e approxi-
mation for maximizing a nonnegative monotone submodular function subject to
a cardinality constraint [23]. There is also work involving maximizing submod-
ular minus modular or linear functions, where no multiplicative approximation
guarantees are possible in polynomial time due to potential negativity [14,15].

The Cov() function in our TeamFormation objective is nonnegative mono-
tone submodular, and depending on the definition of Cost() used, variants of our
general problem relate to balancing submodular and other functions. However,
our solution framework is general and it does not rely on the fact that our
functions have these properties.
Combinatorial Optimization and QUBO. Many NP-hard combinatorial
optimization problems have been formulated as QUBO problems [11,19]. More
recently, QUBO has been used as a framework for mapping discrete optimiza-
tion problems to quantum and classical solvers. Methods for encoding problem
constraints, such as unbalanced penalization and slack variable techniques, en-
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able the transformation of constrained combinatorial optimization problems into
QUBO [3,22,27,33].

We borrow ideas from prior work to formulate TeamFormation problems
as combinatorial optimization using QUBO, and use the unbalanced penalization
technique [22] to make our formulation more efficient.

Deep Learning for Combinatorial Optimization. Neural combinatorial
optimization has gained traction as an alternative to traditional optimization
methods, and recent work in reinforcement learning has explored policy-gradient
methods and graph-based architectures [4,7]. Neural networks have also been
used to learn representations of discrete sets effectively, enhancing the perfor-
mance of models in tasks involving set-structured data. [32,37].

GNNs have been used to augment existing solvers by identifying smaller
sub-problems to reduce the search space for NP-hard problems such as Set
Cover [31]. More closely related to our work, GNNs have been used to solve
QUBO-formulated combinatorial optimization problems such as Maximum In-
dependent Set and Maximum Cut, by leveraging their ability to encode graph
structures and learn meaningful representations [30].

We extend ideas from the deep learning combinatorial optimization literature
to design our GNN architecture to solve the TeamFormation problem.

3 Technical Preliminaries

3.1 Team Formation

Experts, tasks and skills. Consider a set of n experts X = {X1, . . . , Xn}, and
a single task J . We assume a set of m skills S such that the task J requires a set
of skills (i.e., J ⊆ S) and every expert Xi masters a set of skills (i.e., Xi ⊆ S).

Assignments. We represent an assignment of experts to a task J using x ∈
{0, 1}n; x(i) = 1 (resp. x(i) = 0) if expert Xi is (resp. not) assigned to J .

Task Coverage. Given an assignment x, we define the coverage of task J ,
denoted by Cov(J | x), as the number of skills required by J that are covered
by the experts assigned to J . That is, Cov(J | x) = |(∪i∈xXi) ∩ J |, with 0 ≤
Cov(J | x) ≤ |J |. We denote the size of xi, i.e., the assignment for task Ji, by
zi = ||xi||1. This corresponds to the sum of 1-entries in xi.

Expert Costs. The cost of an assignment x, denoted by Cost(x), encodes the
cost of hiring the experts chosen in x. Inspired by prior related research, we
consider the following established definitions of cost:

Cardinality cost: It is often necessary to constrain the size of the team, such
that the total number of assigned experts is less than or equal to a specified size
constraint k. This can be encoded as:

Costk(x) =

{
0 if |(∪i∈xXi)| ≤ k

∞ otherwise.



A QUBO Framework for Team Formation 5

Linear cost: The linear cost is based on ideas first introduced by Nikolakaki
et al. [25]. In this case, each expert Xi is associated with a cost κi, representing
the cost of hiring that expert. The total cost of an assignment x is the sum of
costs of the individual experts in the assignment:

CostL(x) =
∑
i∈x

κi.

Network coordination cost: When a set of experts is hired, then there is
coordination cost among the experts. We model this by assuming that there
is a graph G = (X , E) between the experts (nodes) and that their pairwise
coordination costs are encoded in the weights of the edges between them. We thus
assume that d(Xi, Xj) : E → R≥0 encodes the coordination cost between two
experts. The relevant literature has suggested multiple definitions of coordination
cost based on such underlying graphs [2,18,34]. Inspired by prior work, we define
the total coordination cost of an assignment x as the sum of pairwise costs of
experts in the assignment:

CostG(x) =
∑

(i∈x,j∈x)

d(Xi, Xj).

3.2 Quadratic Unconstrained Binary Optimization

Quadratic unconstrained binary optimization (QUBO) is a mathematical opti-
mization framework used to model combinatorial problems where variables take
binary values. For a vector x = (x1, x2, . . . , xn) of binary decision variables
(xi ∈ {0, 1}), the objective function is represented as a quadratic expression of
these binary variables:

min
x∈{0,1}n

xTQx = min
x∈{0,1}n

∑
i,j

xi Qij xj , (1)

where Q (i.e. the Q-matrix) is an n×n symmetric matrix, with entries Qij . The
Q-matrix encodes problem-specific interactions between variables. QUBO is an
NP-hard optimization problem [21].

Solvers. Classical solvers, such as Gurobi’s QUBO optimizer and CPLEX, use
mixed-integer programming (MIP), branch-and-bound, and specialized heuristic
methods to find optimal or near-optimal solutions to QUBO problems [12].

Linear Programs as QUBO. A linear program (LP) with binary variables
x can be represented as QUBO by reformulating equality constraints using
quadratic penalty terms [11,27]. Consider an LP of the form min cTx subject
to equality constraints Ax = b, where x is any length-n binary vector, A is a
(m × n) matrix and b is a length-m vector. Denoting C = diag(c), and for an
appropriate scalar penalty p we have the following equivalence:

min
x

cTx (s.t. Ax = b) = min
x

xTCx+ p(Ax− b)T (Ax− b)

= min
x

xTQx+ pbTb.
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The optimal solution to the LP minx c
Tx subject to Ax = b corresponds to the

optimal solution to minx x
TQx, where Q = C + p(ATA)− 2p diag(ATb) is the

Q-matrix of the QUBO encoding, and we dropped the additive constant pbTb.

Unbalanced Penalization. To transform an LP with inequality constraints,
typically slack variables are introduced as follows: given a constraint

∑
i aijxi ≤

bj , where ai, bj ∈ Z for every j = {1, . . . ,m}, a non-negative slack variable
encoded as a sum of binary variables ŝ =

∑
k 2

ksk (where sk ∈ {0, 1}), is added
so the constraint becomes

∑
i aixi + ŝ = bj . The reformulated equality is then

enforced in the objective function using a quadratic penalty term p(
∑

i aixi +∑
k 2

ksk − bj)
2, where p is a sufficiently large penalty coefficient.

The primary drawback of slack variables is the increase in dimensionality of
the LP – and the size of the Q-matrix – by log⌈bj −

∑
i aixi⌉ for each inequality

constraint. Consequently, for the problems in this paper, we eliminate the need
for slack variables by incorporating unbalanced penalization [22]. This technique
encodes an asymmetric penalty function (directly into the QUBO objective)
which is small when a constraint is satisfied and increases significantly when
violated, without increasing the problem’s dimensionality.

We provide all mathematical details to use unbalanced penalization to for-
mulate team formation LPs into QUBO in Section 4.

4 QUBO Framework for Team Formation

In this section we introduce the general TeamFormation problem, and detail
three variants, which we then formulate using QUBO.

4.1 The TeamFormation Problem

Given a set of experts X , and a task J , we define the general TeamFormation
problem as follows: find an assignment x that maximizes the objective

F (x) = λCov(J | x)− Cost(x). (2)

The above function balances the coverage of task J achieved by a specific team
with the cost of the team. Parameter λ is application dependent and can be used
to tune the importance of the two components of the objective.

We now define three instantiations of the TeamFormation problem, which
have different cost functions. We express each of these problems using con-
strained linear programming and apply the unbalanced penalization technique
(see Sec. 3.2) to construct the corresponding Q-matrix.

Throughout this section we use the vector y = s || x which represents the
solution to our problems. We call y the solution vector. This vector is of size
(m + n) and is the concatenation of s and x, where s is a binary vector that
encodes whether a skill i is covered (resp. not covered) by s when si = 1 (resp.
si = 0). We also use the (n×m) skill-membership matrix E such that E(i, j) = 1
(resp. 0) if expert i has (resp. not) skill j.

Due to space constraints, we omit several mathematical details and refer the
reader to the supplementary material for derivations of the QUBO formulations.
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4.2 Max-k-Cover

Problem 1 (Max-k-Cover). Given a set of n experts X = {X1, . . . , Xn}, a
task J , and a cardinality constraint k, find an assignment x of experts such that
the following is maximized:

F (x) = λCov(J | x)− Costk(x). (3)

QUBO Formulation Sketch. Let y = s || x, be the (m + n)-size solution
vector we described above. Now let c be another (m+n) vector such that ci = λ
if i ≤ m and skill i ∈ J , and ci = 0 otherwise. Then, the Max-k-Cover problem
can be expressed by the following linear program:

maximize cTy,

such that
n∑

i=1

xi ≤ k

sj −
n∑

i=1

E(i, j) · xi ≤ 0 for all 1 ≤ j ≤ m, and

si, xi ∈ {0, 1}.

We derive penalty matrices Pk and PC corresponding to the LP constraints.
Then the (m+ n)× (m+ n) square matrix Q = −diag(c)− Pk + PC provides a
QUBO formulation of Max-k-Cover, where minimizing yTQy corresponds to
maximizing F (x) = λCov(J | x)− Costk(x).

4.3 Coverage-Linear-Cost

Problem 2 (Coverage-Linear-Cost). Given a set of n experts X = {X1, . . . ,
Xn} with their corresponding individual costs {κ1, . . . , κn}, and a task J , find
an assignment x of experts such that the following is maximized:

F (x) = λCov(J | x)− CostL(x). (4)

QUBO Formulation Sketch. Let y = s || x, be the (m + n)-size solution
vector we described above. Now let c be another (m+n) vector such that ci = λ
if i ≤ m and skill i ∈ J , ci = −κi−m if i > m; recall that κi is the cost of hiring
expert i (see Sec. 3). Then Coverage-Linear-Cost can be expressed as:

maximize cTy,

such that sj −
n∑

i=1

E(i, j) · xi ≤ 0 for all 1 ≤ j ≤ m, and

si, xi ∈ {0, 1}.

We create penalty matrices P1 and P2 to capture the constraints in the LP. Then,
the (m+n)×(m+n) square matrix Q = −diag(c)−P1+P2 has the property that
minimizing yTQy corresponds to maximizing F (x) = λCov(J | x)− CostL(x).
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4.4 Coverage-Graph-Cost

Problem 3 (Coverage-Graph-Cost). Given a set of n experts X = {X1, . . . ,
Xn} with a corresponding distance function d(·, ·) between any pair of experts,
and a task J , find an assignment x of experts such that we maximize:

F (x) = λCov(J | x)− CostG(x). (5)

QUBO Formulation Sketch. We consider the following constrained linear
program that encodes the Coverage-Graph-Cost problem:

maximize λ ·
n∑

i=1

si −
∑
(i,j)

d(i, j) · (xixj)

such that sj −
n∑

i=1

E(i, j) · xi ≤ 0 for all 1 ≤ j ≤ m, and

si, xi ∈ {0, 1}.

For the QUBO formulation we need the solution vector y, we defined above. We
also need the (m + n) vector c = (c1, . . . , c(m+n)), such that ci = λ if i ≤ m
and skill i ∈ J , and ci = 0 otherwise. Then we compute the (n × n) matrix
D of pairwise distances such that D(i, j) = d(Xi, Xj) and add it to the lower-

right (n × n) submatrix of diag(c) to obtain D̂ = diag(c) +
[
0m×m 0m×n

0n×m Dn×n

]
Now, F (x) = yT D̂y encodes the Coverage-Graph-Cost objective. We cre-
ate penalty matrices P1, P2 to capture the LP constraints; the (m+n)× (m+n)
square matrix Q = −D̂ − P1 + P2 provides a complete QUBO formulation of
Coverage-Graph-Cost; that is, minimizing yTQy corresponds to maximiz-
ing F (x) = λCov(J | x)− CostG(x).

All three TeamFormation problem variants are hard to solve and approx-
imation and heuristic algorithms exist in the literature [14,17,25].

5 Solving TeamFormation Problems

In this section, we describe two different general-purpose methods that leverage
the QUBO formulation to solve TeamFormation problems.

5.1 QUBO Solver

We use a QUBO solver implemented by Gurobi [12]. The solver takes the Q-
matrix corresponding to a QUBO problem as input, and applies mixed-integer
programming methods with specialized heuristics to solve the QUBO instance.
We use Gurobi’s QUBO solver with the Q-matrix corresponding to the Team-
Formation problems, and refer to this method as Qsolver.
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5.2 Graph Neural Networks

Combinatorial optimization problems are formulated as QUBO [30] and rep-
resented as a graph G = (V,E), where each vertex i ∈ V corresponds to
a binary decision variable yi ∈ {0, 1}. The objective function is defined by
a Hamiltonian H(y), which represents the system’s energy. The binary state
yi is relaxed into a continuous representation πi ∈ [0, 1], allowing gradient-
based optimization to be applied. The architecture employs multiple layers of
message-passing neural networks to iteratively update node representations. At
each layer l, the hidden state π

(l)
i of node i is updated based on its current

state and information aggregated from its neighboring nodes N (i): π
(l+1)
i =

σ
(
W (l)π

(l)
i +

∑
j∈N (i) W

(l)π
(l)
j +w0

(l)
)

where W (l) and w0
(l) are the weight

matrix and bias vector for layer l, and σ is a nonlinear activation function. The
loss function is based on the relaxed Hamiltonian H(π), such that the network
is trained to minimize the energy. After training, the continuous node states
πi are projected back to binary yi, yielding a feasible solution to the original
combinatorial optimization problem.

GNNs for TeamFormation. We perform unsupervised node classification
using a GNN to solve the QUBO formulation corresponding to TeamForma-
tion. Given the Q matrix that encodes a problem, the goal is to find the (m+n)-
size solution vector y = s||x that minimizes yTQy, with x = (ym+1, . . . , ym+n)
being the desired solution assignment to the TeamFormation problem.
Graph Creation. We create a graph G = (V,E), where each vertex i ∈ V cor-
responds to a binary decision variable yi ∈ {0, 1}; vertices (1, . . . ,m) correspond
to the set of all skills, and vertices (m+1, . . . ,m+n) correspond to the experts
in the TeamFormation problem instance. For every skill each expert has, we
create an unweighted edge in G between the corresponding expert and skill ver-
tices, i.e. E = {(i, j) : si ∈ Xj}. For Coverage-Graph-Cost, we add weighted
edges between expert vertices to encode the pairwise network coordination costs.
Loss Function and Regularization. Since yTQy is not differentiable and
cannot be used as such within the GNN training process, we follow the approach
of Schuetz et al. [30] to relax each binary variable yi ∈ {0, 1} such that yi →
πi ∈ [0, 1], where these πi can be viewed as selection probabilities, i.e. small πi

implies yi is not selected, and large πi implies yi is selected. We then generate
the following differentiable loss function used for backpropagation:

L(π) =
∑
i,j

πi Qij πj + α ·
∑
i

πi (1− πi).

We include the regularization term α ·∑i πi (1− πi) to encourage the GNN to
converge to binary solutions, where α is a tunable hyperparameter.

We randomly initialize node embeddings for each of the expert and skill
nodes, where the dimension of the embeddings is given by the hyperparameter
d0. We denote the set of (m + n) embeddings by H(0) = H

(0)
S || H(0)

X , where ||
represents concatenation of the m skill embeddings and n expert embeddings.
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H
(0)
S Skill Embeddings (d0) H

(0)
X Expert Embeddings (d0)

H(1) Graph Convolution (d0 × dh)

Batch Normalization

σ1 ReLU

Dropout (pd)

GCN Layer 1

H(2) Graph Convolution (dh × (m+ n))

σ2 Sigmoid

GCN Layer 2

Concatenate & Round

Output: y ∈ {0, 1}(m+n)

Unsupervised training
using gradient descent

with QUBO Loss
L(y) = ∑

i,j πi Qij πj+

α ·∑i πi (1− πi)

Fig. 2: QUBO-GNN model architecture for solving TeamFormation problems.

Graph Convolution. Vertices in G represent skills and experts, and thus we
have two different types of edges: between experts and skills, and between two
experts. To ensure message-passing during GNN training occurs over valid edge
types, we adopt a two-layer (heterogeneous) graph convolution network (GCN)
architecture, with forward propagation given by H(1) = σ1

(∑
r∈R Θ0

rH
(0)

)
and

H(2) = σ2

(∑
r∈R Θ1

rH
(1)

)
, where R is the set of different edge types. H(0)

represents the input node embeddings of size d0, and H(1) and H(2) are the
hidden and output layer representations of sizes dh and (m + n), respectively.
Θ0

r and Θ1
r are trainable weight matrices specific to r, allowing the GNN to

learn different transformations per edge type; σ1, σ2 are non-linear activation
functions, applied element-wise; we use ReLU for σ1 and a sigmoid for σ2.

We add batch normalization after the first graph convolutional layer to nor-
malize activations and stabilize training. We also introduce dropout after the
ReLU activation by randomly setting pd fraction of neurons in the GNN to zero.

We call our method QUBO-GNN and visualize the model architecture in Fig-
ure 2. QUBO-GNN is parametrized by several hyperparameters; Table 1 provides a
summary of the hyperparameters of the QUBO-GNN model, and heuristic ranges
of values to grid-search. The model hyperparameters d0, dh, pd, α and β can be
set heuristically or optimized in an outer-loop using grid-search.

Capturing problem constraints effectively in a QUBO formulation requires
the selection of suitable scalar penalties p1, p2. In practice, we observed for our
problems that the unbalanced penalization scheme yields good solutions for a
wide range of values of p1, p2. However, to enable convergence to better near-
optimal solutions we implement a grid search for p1, p2 over the range of heuristic
values shown in Table 1.
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Table 1: Description of QUBO-GNN model parameters.

Parameter Description Heuristic range

p1 QUBO penalty 1 [10−1, 102]
p2 QUBO penalty 2 [10−1, 102]
λ Normalizing coefficient [1, 102]

d0 Size of node embeddings [(m+ n)1/2, (m+ n)/2]

dh Size of hidden layer [(m+ n)1/2, (m+ n)/2]
pd Dropout probability [0.1, 0.3]
α Binary regularization weight [1, 10]
β Learning rate [10−4, 10−2]

Projection Rounding and Output. At the end of unsupervised training, the
σ2 sigmoid activation layer outputs probabilities πi associated with each node
which we can view as soft assignments. We apply a simple rounding scheme: yi =
int(πi) to project these probabilities πi back to binary assignments yi ∈ {0, 1}.

6 Experimental Analysis

6.1 Experimental Setup

Datasets. We evaluate our methods on several real-world datasets also used
in past team formation papers: Freelancer , IMDB , Bbsm [1,24,25,35]. We fol-
low the method of [2] and create social graphs with expert coordination costs
for our datasets. We provide summary statistics of the datasets in Table 2. De-
tailed descriptions and pre-processing steps of each dataset are available in the
supplementary material.

Table 2: Summary statistics of our datasets.
Dataset Experts Tasks Skills Skills/ Skills/ Average Average

expert task path length degree

Freelancer-1 50 250 50 2.2 4.3 2.6 4.5
Freelancer-2 150 250 50 2.2 4.4 2.4 10.4
IMDB-1 200 300 23 3.3 5.0 3.0 0.4
IMDB-2 400 300 23 3.8 5.3 7.1 0.9
IMDB-3 1000 300 25 4.5 5.2 6.2 2.3
Bbsm-1 250 300 75 12.5 5.5 5.9 1.9
Bbsm-2 500 300 75 13.0 5.5 2.6 9.4
Bbsm-3 1000 300 75 13.1 5.5 2.6 13.3
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Baselines. For each of the TeamFormation variants, we evaluate the perfor-
mance of QUBO-GNN and Qsolver against some problem-specific baselines, which
have the same principles across problem variants. We describe those below.
Greedy: For Max-k-Cover the Greedy baseline iteratively picks the expert with
the maximum marginal skill coverage. For Coverage-Linear-Cost, Greedy
implements the Cost-Scaled Greedy algorithm introduced by Nikolakaki et
al. [25]. For the Coverage-Graph-Cost problem, Greedy picks the expert
that maximizes the ratio of coverage over coordination cost at each iteration.
Topk: This is an objective-agnostic algorithm that ranks the experts based on
their Jaccard similarity with the input task and then picks the top-k most similar
experts, where k is determined by the size of the Greedy (or Qsolver) solution.
Implementation Details. We used single-process implementations on a 14-
core 2.4 GHz Intel Xeon E5-2680 processor for all our experiments. We imple-
ment our QUBO-GNN architecture in Python using PyTorch [26] and Deep Graph
Library[36], and fine-tune model hyperparameters using grid search. For each
dataset, we train separate QUBO-GNN models for up to 100 different tasks. For
the normalizing coefficient we set λ = 50, which yields a reasonable balance
between weighting coverage and cost for our TeamFormation variants. To aid
reproducibility, we report the full set of model parameters used in the supple-
ment, and make our code 3 available online.

6.2 Quantitative Comparison

We evaluate our algorithms against the baselines with respect to our overall ob-
jective (and the corresponding coverage, size and cost). Due to space constraints,
we only show detailed results for Coverage-Linear-Cost, and provide exper-
imental results for Max-k-Cover and Coverage-Graph-Cost in the supple-
ment. Note that the general experimental patterns observed were similar across
all three TeamFormation variants.

We observe that Qsolver has the best performance for all datasets, and
consequently analyze the objective of our methods by first normalizing by the
corresponding Qsolver objective and then taking the mean across all training
tasks. We denote the normalized objective by F̂ (x).
Aggregate Performance Evaluation. Figure 3 presents the mean F̂ (x) across
all training tasks returned by QUBO-GNN, Qsolver, Greedy, and Topk across our
datasets. We observe that Qsolver consistently achieves the highest normal-
ized mean objective values (i.e., values equal to 1): it outperforms the other
methods across all datasets for all three TeamFormation variants. We observe
that Greedy performs slightly worse than Qsolver, and Topk consistently has
the lowest F̂ (x). For most datasets, QUBO-GNN achieves solutions with objec-
tive values that are comparable (but slightly worse) than Qsolver. Overall, this
is expected as Qsolver finds the optimal solution for the same problem that
QUBO-GNNtries to solve. Moreover, the success of both QUBO-based algorithmic
3 https://github.com/kvombatkere/Team-Formation-QUBO
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Fig. 3: Bar plots showing the mean Qsolver-normalized objective, F̂ (x) of
QUBO-GNN, Qsolver, Greedy and Topk, across all training task instances for all
three TeamFormation variants.

solutions demonstrate that our QUBO formulation is appropriate for solving the
original team formation problem.

We use Cov = 1
t

∑t
i=1 Cov(Ji|x) to denote the mean coverage, and z =

1
t

∑t
i=1 zi to denote the mean solution size, across training tasks J1, . . . , Jt. We

observe from Table 3 that all three methods find solutions yielding high coverages
for IMDB and Bbsm. However, QUBO-GNN and Qsolver often find assignments
with a larger solution size (and larger cost) than Greedy. These assignments
– particularly for Freelancer – lead to higher coverages resulting in superior
objective values. This tradeoff highlights the ability of the QUBO formulation to
balance cost and team effectiveness better than greedy approaches. Finally, even
though Greedy was the fastest algorithm in terms of running time, QUBO-GNN
and Qsolver converged to good solutions within a few seconds, even for the
largest datasets (i.e. IMDB-3 and Bbsm-3 ).

Individual Task Evaluation. Figure 4 presents a scatter plot of the objectives
F for each training task instance (for each dataset) for Coverage-Linear-
Cost; the tasks are sorted in decreasing order of F . We conclude that QUBO-GNN
is competitive with Greedy and even outperforms it in multiple cases, demon-
strating that GNN-based approaches can achieve strong performance even with-
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Table 3: Mean task coverage, Cov and solution size, z of QUBO-GNN, Qsolver
and Greedy across all training task instances for Coverage-Linear-Cost.

Dataset Mean Task Coverage, Cov Mean Solution Size, z

QUBO-GNN Qsolver Greedy QUBO-GNN Qsolver Greedy

Freelancer-1 0.88 0.89 0.48 2.8 2.9 1.4
Freelancer-2 0.98 0.98 0.92 3.2 3.2 2.9
IMDB-1 0.99 1.00 0.99 2.3 2.4 2.1
IMDB-2 0.98 1.00 1.00 2.5 2.3 1.8
IMDB-3 0.88 1.00 1.00 2.5 3.2 1.2
Bbsm-1 1.00 1.00 1.00 3.1 2.7 2.0
Bbsm-2 0.97 1.00 1.00 2.8 2.6 1.6
Bbsm-3 0.98 1.00 1.00 1.8 4.2 1.7
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Fig. 4: Comparative performance of QUBO-GNN, Qsolver, Greedy and Topk,
across individual training tasks, in terms of the sorted objective F ().

out explicit heuristic tuning. Furthermore, for the Freelancer-1 dataset, both
QUBO-GNN and Qsolver outperform Greedy by over 30%. In our experiments,
QUBO-GNN consistently selects experts based on their skill relevance and almost
never violates the constraints of the underlying LPs; thus QUBO-GNN can identify
well-balanced teams without the need for additional filtering mechanisms.

Investigating Node Embeddings. Figure 5 shows two scatter plots of skill
and expert node embeddings projected to 2D using t-SNE [20]. Each set of
embeddings was generated by a QUBO-GNN model for Coverage-Linear-Cost
after training on a task from Freelancer-1 . This figure is representative of the
patterns observed in node embeddings for all instances of TeamFormation.
We observe that the embeddings corresponding to task skills and relevant ex-
perts (i.e. experts who have at least one required skill) differentiate themselves
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Fig. 5: Scatter plots of skill and expert node embeddings projected to 2D using
t-SNE. Each set of embeddings was generated by a Coverage-Linear-Cost
QUBO-GNN model after training on a task from Freelancer-1 .

from other skills/experts by forming an outer perimeter and occupying distinct
regions of the plot. Experts with similar skills often cluster together, and their
embeddings are often similar to those of their common skill(s). This indicates
that QUBO-GNN successfully learns representations between skills and experts and
is able to correctly identify sets of experts that are important for covering a task.

6.3 Transfer Learning

Intuitively, we expect a QUBO-GNN model M to learn node embeddings that result
in good assignments for new tasks that are similar to the tasks M was trained
on. Consider t QUBO-GNN models that have been trained on their corresponding
tasks J1, . . . , Jt. Given an unseen task J ′, we first compute the Jaccard similarity
of J ′ with each of J1, . . . , Jt, and select the QUBO-GNN model M′ corresponding to
the task that is most similar to J ′. Next, we initialize the new TeamFormation
instance for J ′ with the pre-trained node embeddings corresponding to M′, and
use model M′ to perform a single forward pass to obtain an assignment x for J ′.
We refer to this method QUBO-GNN-Sim. For each dataset, we evaluate it against
the following two baselines on 100 new tasks.
QUBO-GNN-Rand: We use a random sample of 3 pre-trained QUBO-GNN models.
We perform a single forward pass using each model and select the assignment x
that yields the best objective.
Qsolver-Sim: Given a new task J ′, we use the solution of Qsolver corresponding
to the task (from J1, . . . , Jt) that has the highest Jaccard similarity to J ′ to
compute the objective for J ′.

Figure 6 shows a scatter plot of sorted objectives F of QUBO-GNN-Sim and
the two baselines for 100 new tasks across each dataset for Coverage-Linear-
Cost. The results for the other two problems are shown in the supplement.

We note that QUBO-GNN-Sim outperforms Qsolver-Sim for Freelancer and
IMDB-3 and Bbsm-3 , while the two methods have comparable performance
for IMDB-1 , IMDB-2 , Bbsm-1 and Bbsm-2 . QUBO-GNN-Rand has poor overall
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Fig. 6: Evaluation of transfer learning on 100 new tasks across each dataset for
Coverage-Linear-Cost in terms of the sorted objective F ().

performance. This was expected, since using node embeddings of a random task
would not necessarily aid solving of a new problem. QUBO-GNN-Sim often finds
solutions with high coverages, indicating that the learned node embeddings from
the original model can capture useful relationships between skills and experts
that can then be leveraged for other tasks. We also find, intuitively, that the
efficacy of using node embeddings from a QUBO-GNN model (trained on task Ji)
for a new task Jj , correlates strongly with the Jaccard similarity of Ji and Jj .

7 Conclusions and Future Work

In this paper, we introduced a unified QUBO-based framework for the gen-
eral TeamFormation problem, enabling a versatile algorithmic approach across
problem variants that balance task coverage with expert costs. We then evaluated
our framework using both a QUBO solver, and a GNN method that maximizes
the TeamFormation objective by optimizing a QUBO-derived loss function.
In our experimental evaluation on real-world datasets from diverse domains, we
demonstrated that our methods consistently find expert assignments with high
objectives, often outperforming combinatorial baselines designed specifically for
certain problem variants. Finally, we highlighted the potential for transfer learn-
ing, where learned representations from one problem instance can be effectively
used to solve other related instances.
Future Work. Finding optimal penalty parameters for our QUBO formulations
is challenging, consequently opening up an avenue for future work on efficient
methods to tune these penalties. A natural extension of our work could consider
multiple input tasks and explore more (complex) expert cost functions based on
workload, team diameter, etc. Finally, there is scope for fine-tuning the QUBO-GNN
model architecture to improve performance.
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