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Abstract. Advances in self-distillation have shown that when knowl-
edge is distilled from a teacher to a student using the same deep learning
(DL) model, student performance can surpass the teacher, particularly
when the model is over-parameterized and the teacher is trained with
early stopping. Alternatively, ensemble learning also improves perfor-
mance, although training, storing, and deploying multiple DL models
becomes impractical as the number of models grows. Even distilling a
deep ensemble to a single student model or weight averaging methods
first requires training of multiple teacher models and does not fully lever-
age the inherent stochasticity for generating and distilling diversity in
DL models. These constraints are particularly prohibitive in resource-
constrained or latency-sensitive applications on, e.g., wearable devices.
This paper proposes to train only one model and generate multiple di-
verse teacher representations using distillation-time dropout. However,
generating these representations stochastically leads to noisy representa-
tions that are misaligned with the learned task. To overcome this prob-
lem, a novel stochastic self-distillation (SSD) training strategy is intro-
duced for filtering and weighting teacher representation to distill from
task-relevant representations only, using student-guided knowledge dis-
tillation. The student representation at each distillation step is used to
guide the distillation process. Experimental resultﬁ on real-world af-
fective computing, wearable/biosignal (UCR, Archive), HAR, and image
classification datasets show that the proposed SSD method can outper-
form state-of-the-art methods without increasing the model size at both
training and testing time. It incurs negligible computational complexity
compared to ensemble learning and weight averaging methods.

Keywords: Deep Learning - Self Distillation - Dropout - Time-Series -
Student-Guided Knowledge Distillation

4 Code and supplementary available at: https://github.com /haseebaslam95/SSD
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1 Introduction

Wearable technology has many applications, primarily in healthcare monitor-
ing, such as activity and exercise tracking, sleep analysis, stress detection, and
fall detection. It also includes applications like chronic disease management,
personalized health insights, and human behavior and physiology research by
continuously tracking metrics like heart rate, steps taken, body temperature,
and movement patterns over time. Time-series signals such as electrocardiogram
(ECG), respiration rate, and other biosignals are often multi-dimensional, noisy,
and collected in real time from resource-constrained devices. These signals re-
quire efficient processing methods that balance accuracy with computational
efficiency. Cumbersome methods for performance boosting are less effective for
this application. Knowledge distillation (KD) is typically used for transferring
knowledge from a large, well-trained teacher model to a more compact student
model for deployment, thereby enhancing the latter’s accuracy without incurring
significant computational costs [12].

Self-distillation is a specialized case in KD, where the teacher and student
have the same DL architecture, and the student typically surpasses the teacher’s
performance particularly where the model is over-parameterized i.e., has suf-
ficient capacity and the teacher is trained with early-stopping. This increase
in performance is typically associated with the fact that, with DL models, the
teacher and the student have learned separate discriminative features, and self-
distillation implicitly ensembles the two models [I]. Diversity in the feature space
is a critical factor that enhances the robustness and accuracy of machine learning
models. Diverse representations provide a comprehensive understanding of the
input data, mitigating overfitting and improving generalization across various
tasks [9] [17].

Approaches for ensemble learning leverage the independent training of multi-
ple diverse models to learn more robust decision boundaries, leading to significant
improvements in predictive accuracy. Despite these advantages, deploying deep
ensembles introduces substantial computational and storage overhead, as each
model in the ensemble requires independent training, parameter storage, and
inference pipelines. These constraints are particularly prohibitive in resource-
constrained embedded systems as employed in wearable applications.

State-of-the-art (SOTA) approaches [I] that distill diverse ensemble-based
representations involve the cumbersome process of training the teacher model
multiple times or utilizing complex ensemble learning methods to generate a
pool of diverse teacher models for effective knowledge transfer. These meth-
ods are computationally intensive and may not fully leverage the potential of
stochasticity inherent in DL models for generating diversity.

This paper introduces a KD training strategy called Stochastic Self-Distillation
(SSD) to capitalize on distillation-time dropout, thereby inducing stochasticity
in a single, pre-trained teacher model. SSD generates multiple stochastic feature
representations, effectively simulating a diverse ensemble of DL models without
requiring extensive teacher re-training. This technique aligns with the principles
of Monte Carlo dropout [11I]. Moreover, a Student-Guided Knowledge Distilla-
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tion (SGKD) is introduced to distill the most relevant knowledge (or filter out
noisy representations) to the student model using student-guided attention. This
mechanism allows the student to selectively focus on the most informative rep-
resentations within the teacher’s output space, facilitating a more efficient and
targeted knowledge transfer. Subsequently, feature-level KD is employed to align
the student’s feature representations with the filtered and attention-weighted
teacher feature representation.

The main contributions of this paper are summarized as follows.
(1) We propose SSD, a novel distillation-time dropout strategy to generate di-
verse stochastic representations from a single, pre-trained teacher model.
(2) Within SSD, a novel SGKD mechanism enables the student model to se-
lectively distill knowledge from the most informative teacher representations.
Feature-based KD is used to align the student’s internal feature space with the
teacher, promoting a more granular knowledge transfer.
(3) Our extensive experiments on challenging affective computing benchmark
datasets (Biovid Pain and StressID), biosignal /wearable datasets (from the UCR
Archive), the HAR dataset, and benchmark image classification datasets (CIFAR-
10 and CIFAR-100) show that our SSD training strategy allows training models
that can achieve SOTA performance while maintaining computational efficiency.

2 Related Work

Knowledge Distillation. Originally introduced by [B] [12], the KD domain
has evolved with several refinements in its application and architecture. Romero
et al. [29] introduced the concept of distilling from feature representations instead
of logits. The idea of transferring the attention maps from the teacher model to
the student model was studied by Zagoruyko and Komodakis [41]. Relational
KD proposed by Park et al. [27] studied the benefits of utilizing structural infor-
mation for more fine-grained KD. The KD domain was extended to multi-task,
semi-supervised, and unsupervised learning by Lopez et al. [23]. KD has also
been studied in multimodal systems, particularly with applications like cross-
modal KD [30] privileged KD [3], federated learning [21], are a few examples of
the widespread application of KD in real-world systems.

Deep Ensembles and Model Soups. Ensembling methods improve predic-
tive performance, generalization in neural networks, and uncertainty estima-
tion. Deep ensemble is a simple yet effective technique where a simple aggrega-
tion of independently trained models harnesses the diversity, leading to better
performance than each model. Lakshminarayanan et al. [I7] demonstrated the
effectiveness of deep ensembles for uncertainty estimation, showing that they
outperform many Bayesian approaches in terms of both calibration and robust-
ness. Deep theoretical insights on ensemble diversity were provided by Fort et
al. [9). Moreover, Ovadia et al. [26] highlight the advantages of deep ensembles
in handling distributional shifts, reinforcing their utility in real-world scenar-
ios. Despite their advantages, deep ensembles are computationally expensive,
requiring the training and storage of multiple models, which motivates research
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into alternative methods that capture similar benefits with reduced complexity.
More recently, parameter-efficient fine-tuning techniques like low-rank adapta-
tion (LoRA) [I3] have enabled efficient fine-tuning of large models. For example,
Li et al. [20] introduced Ensembles of Low-Rank Expert Adapters. However,
these techniques still require i) careful adaptation of each model, and ii) storing
all the models for inference.

Model soups [39], is a technique for improving model generalization by av-
eraging the weights of multiple fine-tuned models. Instead of selecting a single
best model, model soups combine the parameters of different models fine-tuned
with different hyperparameters, datasets, or random seeds, resulting in a more
robust model. Two variations of the model soups were proposed: (¢) uniform
soup averages the weights of all fine-tuned models equally, and (ii) greedy soup,
where models are added iteratively using a greedy approach. Model soup does
not increase the model size for inference/deployment, yet it incurs significant
additional train-time computational cost by fine-tuning models multiple times.

Self-Distillation. This term has been used in the literature in two different
contexts: distilling knowledge from deeper layers in a model to shallower layers
of the same model’s instance or through the use of an auxiliary network [19/42],
and knowledge distilled from a model to another instance of the model with
the same architecture [IIT0J25]. In this work, ’self-distillation’ refers to the lat-
ter. Furlanello et al. [I0] proposed born-again neural networks, a seminal work
exploring KD using the same model for teacher and student, showing that the
student can outperform the teacher. Iterative distillation from the trained stu-
dent, used as a teacher for the subsequent student model, also improved perfor-
mance. Dong et al. [?] showed that early stopping is crucial in harnessing dark
knowledge in self-distillation settings. Dark knowledge is the hidden class rela-
tionships encoded in the teacher model’s soft probability outputs, which provide
more information than hard labels. This nuanced information helps the student
model learn better generalization and richer representations. A direct correla-
tion between the diversity in the teacher predictions and student performance
was studied in depth by Zhang et al. [43]. The authors enhanced the predictive
diversity through a novel instance-specific label smoothing.

The concept of self-distillation in a regression setting was first studied by
Mohabi et al. [25], in which the authors provided a theoretical analysis of self-
distillation where only the soft labels from the teachers were used to train the
student. Multi-round self-distillation settings limit the number of basic func-
tions that must be learned. Borup et al. [4] build upon the previous analysis
by including the weighted-ground truth targets in the self-distillation procedure.
They show that for fixed distillation weights, the ground-truth targets lessen
the sparsification and regularization effect of the self-distilled solution. Stanton
et al. [32] studied the paradigm of KD through the lens of fidelity. Their key
takeaway regarding KD and ensembles was that the highest-fidelity student is
the best calibrated, even when it is not the most accurate. The closest work to
SSD was proposed by Allen-Zhu and Li [I], who explored the concept of self-
distillation in conjunction with the multi-view structure of the input data. In



Stochastic Self Distillation 5

this case, the student model was trained on the ground truth labels with addi-
tional supervision from the ensemble of multiple teachers’ soft labels. Multiple
teachers were trained with random seed initialization.

In contrast to these methods, our proposed SSD training strategy obviates
the need for such data augmentations or random seed initialization to generate
diversity in the teacher space. SSD operates in the feature space, using dropout
as a tool to introduce diversity and student-guided attention to distill relevant
information for the student. Consequently, SSD requires significantly less com-
plexity for training when compared to traditional ensemble learning and weight-
averaging methods, and without increasing model size at deployment time.

3 Proposed Method

Notation: Let 7 be a teacher model with model parameters 7 and S be
a student model with parameters 6. For given inputs X = [z1,2,...,Tm],
we obtain the feature vectors f7 = T(&X;07) € R¥>™ and fS = S(X;6%)
€ R¥*™ where d is the dimension of the feature vector and m is the number of
input samples. Let F7 (z) = [f] (z), fJ (z),..., f7 ()] represents the multiple
stochastic teacher representations generated through n forward passes through
T(X;07) for the same input sample z € X.

Problem Definition: Given a trained teacher model 7, the challenge is to
effectively transfer its knowledge to a student model S such that its generaliza-
tion performance is maximized. Standard self-distillation techniques often treat
the teacher’s outputs as deterministic, failing to exploit the inherent stochastic-
ity that can provide richer and more diverse information. On the other hand,
stochastically obtaining the teacher representations introduces diversity but at
the cost of generating noisy representations. The problem, therefore, is to design
a KD framework that leverages the variability in the teacher’s representations,
generated through stochastic mechanisms like dropout, while ensuring that the
student learns task-relevant information in a computationally efficient manner.
The main aim of our paper is to filter out the noisy representations from F7 ()
and obtain weighted teacher representation fT(x) to selectively distill from the
relevant teacher representations.

3.1 Stochastic Self-Distillation

The proposed SSD training strategy generates multiple diverse representations
per sample and uses the current student representation as a reference to rank,
select, and weigh (using student-guided attention) the teacher representations
before distilling. Further, SSD enforces the attention weights of the meaningful
representations to be spread out through temperature scaling, this implicitly
models the feature ensemble to harness diversity. The student representation
guides each distillation step because it is initialized with the same weights as the
main trained teacher. Fig.[[]illustrates the proposed SSD method. The remainder
of this section provides details on the SSD training strategy.
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Fig. 1: Hlustration of the proposed SSD training strategy. The teacher T is
trained, and its parameters are frozen except for the dropout layers in the student
training stage. In SGKD, for each input x € X', n stochastic teacher representa-
tions f/ (), i = 1,2, ...,n, and one student representation is obtained f<, which
are fed to the SSD module that outputs fT(:c) Feature-based KD is then applied
on f7(z) and fS(z), with addition of Ly, and the student model parameters
0s are updated. The part inside the dashed orange block is kept at inference.

Teacher Training. The first step is to train the teacher model and get trained
teacher parameters 67", This step is needed for two purposes: i) because the
trained teacher model is used to generate the stochastic teacher representations
F7T(x), and ii) because these weights are also used to initialize the student model
parameters in the student training step.

Student Parameters Initialization. After the teacher model is trained, the
student model parameters are initialized with the trained teacher weights. This
initialization is also crucial in the proposed training strategy. The proposed
method relies on student guidance to obtain the attended teacher feature vec-
tor f7(x). The initialization of the student parameters with trained teacher
weights lets the student serve as authority to weigh the teacher representations.
As mentioned earlier, the stochastic nature of 97/, necessitates that some of the
generated representations would be misaligned with the learned task-specific
representation and hence would act as noise for the student model. This phe-
nomenon is studied in detail in Section 43|

3.2 Student-Guided Knowledge Distillation

Traditionally, in KD methods, the teacher representation(s) are informative and
serve as additional supervision for the student model. However, if the teacher
representations are generated through a stochastic process, they are not aligned
with the learned class boundary and can be noise for the student model. There-
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fore, we use the current student representation as authority to select represen-
tations aligned with the learned class boundary. The student representation at
each distillation step can be used as the guiding mechanism because the student
model is initialized with the learned weights from the teacher network. This
initialization allows the student to make use of its intermediate representation
fS(x) as an anchor to rank the teacher representation f (z) € F7.

To guide the distillation process using the current student representation, we
first calculate the dot product (¢;) between the current student representation
fS(x) and each teacher representation f/ (x) € F7 (z) and compute attention
weights using:

0~ cxp(¢i/h) 1
CSN exp(ei/h) .

where N is the number of teacher representations and h is a regularization factor
used to smooth the attention weights to ensure that the attended teacher feature
vector fT(x) is not heavily influenced only by a single teacher representation.
This regularization step is crucial since it dictates the attention weights for
teacher representations. Since the way these teacher representations are ranked
is through dot product between current student representation f(z) and each
of the stochastic teacher representation flT (z), the value ¢; naturally would
be the highest for the teacher representation that is the most similar to the
student representation. This renders the entire framework ineffective because
fT () becomes overly similar to £ (z).

The SSD method relies on selecting teacher representations that would mimic
an ensemble of independently trained teacher models. In other words, it masks
out the representations that are too different from the current student represen-
tations. A direct way of selecting such representations would be to use the top-k
strategy at each distillation step. Although this strategy can work, it relies on
k a hyperparameter that is agnostic to the distribution of f/ (z) € F7 at each
distillation step. To avoid a manual selection of meaningful representations using
a top-k strategy, «; is masked for all indices falling outside of the e-th percentile,
denoted by &;.

(2 if i> ’
O 2)
0, otherwise.

where € € [0,100] is the threshold value for masking. Section provides a
more detailed discussion. After obtaining the regularized attention weights &;,
the original teacher feature representations f; (x) are weighed using &; to obtain
the attended teacher feature vector f7 (z) as:

N
fl@) =Y ai ] (x) (3)
=1
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The attended feature vector fT(x) is used to distill the information using the
mean squared error loss:

ﬁdist =

i (£~ i ()’ (4)

IS

The total loss for the student is shown in Eq. [5]
Etotal = ACt'a»sk + )\‘Cdist (5>

where A is the weighting parameter for the distillation loss. The method also
allows for the additional constraint for logit-level distillation and can be added
t0 Liotal- For the unsupervised/contrastive loss-based methods, we use the in-
termediate teacher representations to obtain the fT(x) In case of augmented
views of the input sample, we average the distillation loss from both views. The
pseudo-code for the SSD training procedure is shown in Algorithm

Algorithm 1 - SSD Training Procedure.

Require: Teacher model 7 with parameters 8”7, student model S with parameters 6°,
input samples X = [z1,Z2,...,ZTm]|, weighting parameter \.

Ensure: Trained student model S.

1: Extract teacher feature vectors f7 =T(X;07) € R¥*™.

2: Extract student feature vectors fS=S(X;6%) € R*>*™.

3: for each input sample x € X do

Generate n stochastic teacher representations F; (z) = [f{ (2),..., f.] (z)].
Compute dot products ¢; = f5(z) - f/ (z) fori =1,2,...,n.

Compute attention weights: a; for i = 1,2,...,n using Eq. (1)
Mask «; for all indices outside the e-th percentile using Eq. (2
Compute attended teacher feature vector: fT(a:) using Eq.

9: Compute distillation loss Lajst using Eq.
10: end for
11: Compute total loss Liotar using Eq.
12: Update parameters #° using backpropagation

4 Results and Discussion

4.1 Experiment Setup

SSD is validated on: (i) real-world affective computing datasets: the Biovid Heat
Pain Database [35] and StressID dataset [6], (ii) wearable and biosignal datasets
from the UCR Archive [§], (iii) Human Activity Recognition (HAR) dataset set
from the UCT Archive [2], and (iv) on benchmark image classification datasets.
Appendix A.1 provides details on these datasets, while Appendix A.3 provides
implementation details and results on the CIFAR-10 and CIFAR-100 datasets.
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Biovid Heat Pain Database. For Biovid, we use the EDA modality and LOSO
cross-validation. The proposed method is tested with a SOTA method on the
dataset using the Pain Attention Net [24], which is a transformer-based phys-
iological signal classification network comprised of a multi-scale convolutional
network, as SE residual network, and a transformer encoder block. The batch
size used for teacher training was 128, and the network was optimized using the
Adam optimizer with a learning rate of 0.001. The network was trained over 100
epochs with early stopping. The total number of folds was 87, corresponding
to the total number of subjects. For student training, we keep the same setting
as the teacher. We manually activate dropout layers with a p-value of 0.2 while
keeping the teacher model in inference mode. The total number of repetitions
for generating diverse teacher representations was 30.

StressID Dataset. For the StressID dataset, use the EDA and RR modalities
and apply feature concatenation to fuse the backbone representations. The EDA
backbone was Pain Attention Net [24], and the RR backbone was a 1D CNN
with three 1D conv layers with 16, 32, and 64 channels, respectively, with a
kernel size of 5, and stride equal to 1, followed by three batch normalization
layers. Following the original dataset authors [6], we apply an 80 — 20 split for
the train and test set and further divide the train data and keep 20% of that
for model selection. The batch size used for both teacher and student training
was 128, with the learning rate of 0.001 using the Adam optimizer. The total
number of repetitions was 30. The dropout layer was activated before the feature
concatenation module with a p-value of 0.2.

UCR Archive. For the datasets in the UCR, Archive, the proposed method was
applied to two SOTA techniques — TS2Vec and Soft CLT — for unsupervised time-
series representation learning. We follow the same experimental methodology
proposed in TS2Vec [40] and SoftCLT [18]. For the TS2Vec method, the number
of stochastic teacher representations was 15, with a teacher dropout rate p of
0.2, and the student dropout rate was set to 0.1. The value of H was 5. For loss
weighting, A was set to 0.2. For soft CLT, all the parameters were kept the same
as those for T'S2Vec except for the value of H, which was set to 15.
Computing infrastructure. All experiments were performed on the NVIDIA
A100-SXM4-40GB GPUs with the e value of 90.

4.2 Comparison Against State-of-the-Art Methods

Affective Computing Datasets. Table[[]reports the results of SSD and SOTA
methods on Biovid. SSD improves accuracy by 2.5% over the selected baseline
(PAN without SSD) and 1.7% over the current SOTA. Specifically, accuracy on
Biovid increases from 84.59% (using the EDA modality without SSD) to 86.90%
with the proposed SSD method.

Table 2] compares the performance of the proposed method with SOTA on the
StressID dataset. We achieve 0.7440.02 for the F1l-score and 0.74+0.03 accuracy
without applying SSD. The proposed method improves 3% for the F1-score and
4% in accuracy for the binary classification task over the SOTA. This increase
in predictive performance shows that the proposed method can perform well
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Table 1: Accuracy of SSD against state-of-the-art methods on Biovid data. Base-
line results were obtained using the network architecture without applying the
proposed SSD method (without distillation).

Method Modality [CV Scheme[Accuracy
Werner et al. [38] ICPR 2014 Physio + Vision 5-fold 0.8060
Werner et al. [37] IEEE TAC 2016 Video LOSO 0.7240
Kachele et al. [16] IEEE 1JSTSP 2016 EDA, ECG, EMG LOSO 0.8273
Lopez et al. [23] ACII 2017 EDA, ECG 10-fold 0.8275
Lopez et al. [22] EMBC 2018 EDA LOSO 0.7421
Thiam et al. [33] Sensors 2019 EDA LOSO 0.8457
Wang et al. [36] EMBC 2020 EDA, ECG, EMG LOSO 0.8330
Pouromran et al. [28] PLoSONE 2021 EDA LOSO 0.8330
Thiam et al [34] Frontiers 2021 EDA, ECG, EMG LOSO 0.8425
Shi et al [31] ICOST 2022 EDA LOSO 0.8523
Ji et al [14] ACM SAC 2023 EDA LOSO 0.8040
Jiang et al [I5] ESWA 2024 EDA LOSO 0.8458
Baseline (w/o SSD) - EDA LOSO 0.8459
SSD (ours) - EDA LOSO 0.8690

on real-world time-series dataset tasks by effectively harnessing task-relevant
diversity from stochastic teacher representations.

Table 2: Performance of the SSD against state-of-the-art methods on the StressID
dataset. (MM: Multimodal, NR: Not Reported.)

2-class problem

3-class problem

Method Modality Fl-score | Accuracy | Fl-score [ Accuracy

HC + RF Physio | 0.73 £ 0.02 | 0.72 £ 0.03 | 0.55 4+ 0.04 | 0.56 + 0.03
HC + SVM Physio | 0.71 £ 0.02 | 0.71 + 0.02 | 0.59 4+ 0.04 | 0.59 + 0.03
HC + MLP Physio | 0.70 £ 0.03 | 0.70 £+ 0.03 | 0.54 4+ 0.04 | 0.53 £ 0.04
AUs + kNN Vision 0.70 + 0.04 | 0.69 + 0.04 | 0.54 £ 0.05 | 0.53 & 0.05
AUs + SVM Vision | 0.69 4+ 0.04 | 0.69 &+ 0.04 | 0.55 £ 0.05 | 0.54 £ 0.04
AUs + MLP Vision | 0.70 + 0.03 | 0.70 & 0.03 | 0.55 £ 0.03 | 0.55 + 0.03
HC + kNN Audio 0.67 + 0.06 | 0.60 £+ 0.05 | 0.53 £ 0.04 | 0.52 4+ 0.04
HC + SVM Audio 0.61 4+ 0.06 | 0.54 £+ 0.03 | 0.53 £ 0.08 | 0.48 4 0.04
wav2vec 2.0 Audio 0.70 4+ 0.02 | 0.66 £ 0.03 | 0.56 £ 0.04 | 0.52 £+ 0.04
Mordacq et al. MM 0.69 0.76 NR NR

Baseline (w/o SSD)| Physio | 0.74 £ 0.02 | 0.74 £ 0.03 | 0.61 + 0.01 | 0.59 + 0.01
SSD (ours) Physio |0.77 4+ 0.03(0.77 + 0.03|0.63 + 0.02|0.60 £+ 0.02

Time-Series Datasets (UCR Archive). Table [3| shows the performance of
SSD against the TS2Vec baseline on 12 wearable/biosignal datasets from the
UCR Archive. The student model achieves an average accuracy score of 0.8441.
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Table 3: Accuracy of SSD applied to TS2Vec and SoftCLT baselines for the
wearable biosignal datasets in the UCR, Archive.

Dataset TS2Vec [40]| TS2Vec + |SoftCLT [18]| Soft CLT +
AAAT 22 |SSD (Ours)| ICLR 24 |SSD (Ours)
ECG200 0.9000 0.9100 0.8800 0.9300
ECG5000 0.9348 0.9411 0.9400 0.9413
TwoLeadECG 0.9789 0.9877 0.9762 0.9798
NIFetalECGThorax1 0.9277 0.9318 0.9201 0.9394
NIFetalECGThorax2 0.9389 0.9343 0.9435 0.9480
Chinatown 0.9737 0.9708 0.9737 0.9708
UWaveGestureLibraryX| 0.7995 0.8079 0.8001 0.8143
UWaveGestureLibraryY| 0.7152 0.7317 0.7169 0.7266
UWaveGestureLibraryZ 0.7624 0.7660 0.7674 0.7682
Medicallmages 0.8092 0.8078 0.8171 0.7710
DodgerLoopDay 0.5125 0.5250 0.5500 0.5500
DodgerLoopGame 0.7826 0.8405 0.8260 0.8695
Total 0.8350 0.8441 0.8426 0.8508

Comparison with Traditional Ensembles and Model Soups Table [4 com-
pares the performance of SSD against traditional ensembles and weight-averaging
methods. For simplicity in experimentation and to make sure the results are not
biased by the internal mechanisms of architecture, this comparison is performed
on bare-bones 1D CNN architecture, which serves as the teacher network for
SSD and is also used in the ensembles as well as weight-averaging results.

Table 4: Accuracy of the SSD against state-of-the-art methods with a 1D CNN
and traditional ensembles on the HAR dataset.

Model [Accuracy
1D CNN (Baseline) 0.9002
Ensemble Majority Vote (25 Models)| 0.9135
Ensemble Average (25 Models) 0.9128
Model Soup (10 Models) 0.9101
Model Soup (25 Models) 0.9183
SSD (Student) 0.9182

SSD aims to minimize the space and computational complexity both during
training and testing. Fig. [2| compares the performance gain in terms of model
size at inference. We compare traditional ensembles (majority voting and aver-
aging), stochastic weight averaging, uniform soup (uniform weight averaging),
and greedy soup (a greedy approach for weight averaging). The marker size in
Fig. [2| denotes the model size at inference; since traditional ensembles require
storing all of the trained models for inference, it becomes impractical to deploy
for inference on wearable devices. It can be observed from Fig. [2| that both ma-
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jority vote and averaging-based ensembles increase the model performance, but
the model size proportionally increases; essentially, for an ensemble model with
25 models, it would become 25x the size of the baseline model. On the other
hand, model soups do not increase the model size at inference but are still com-
putationally expensive in terms of train-time FLOPs as shown in Appendix B.
The total number of FLOPs increases from =~ 0.87 G-FLOPs to ~ 21.8 G-
FLOPs. In contrast, the proposed method achieves comparable performance to
the traditional approaches, i.e., 1.8% increase in the accuracy over the baseline,
while keeping the model size the same as the baseline model, and the train-
time computation is significantly less since SSD requires the model to be trained
twice, once in the teacher training process and second for student training.
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Fig. 2: Comparison of the SSD method with baseline (BL), traditional ensembles
with majority vote (Eyrv) and average (Eavg), uniform soup (US) and greed
soups (GS) on HAR dataset in terms of accuracy and model size at inference.

4.3 Ablations

Number of Stochastic Representations. As discussed before, meaningful
diversity in the teacher space is crucial for the superior performance of an en-
semble and, by extension, also crucial in SSD, since it also implicitly ensembles
teacher representations. The number of repetitions dictates how diverse f (z)
is. We evaluated with different settings and reported the results in Table [5] Dis-
till All - the first two rows show the results without applying SSD and learning
from all stochastic representations. This could also be seen as an alternative
way of teaching students to drop out. Rows 3-6 show results with an increasing
number of total repetitions and selected representations. As the total number of
representations becomes too large, the performance drops even when applying
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Table 5: Comparison of schemes for selecting teacher representations on the
StressID dataset. (DS: Dynamic selection. NA: Not available.)
Scheme [# Representations[# Selected[ F1-Score [ Accuracy

Distill All 10 All 0.74 £ 0.02 | 0.74 £ 0.02
Distill All 30 All 4 0.72 £0.02 | 0.72 £ 0.02
top-k 10 3 10.75 £ 0.02 | 0.74 £ 0.02
top-k 20 10 1 0.76 £ 0.03 | 0.76 = 0.02
top-k 30 15 10.76 £ 0.04 | 0.76 £+ 0.04
top-k 50 30 4 0.72 £ 0.02 | 0.73 £ 0.02
DS 30 NA 10.77 &+ 0.03|0.77 £+ 0.03
DS 50 NA 10.77 + 0.03|0.77 £+ 0.04

SSD. This leads us to believe that when you select a more significant number
of representations, the noisy representations bypass through the filtering mech-
anism and become part of the distillation process. This problem also indicates
a simple top-k selection is not the best strategy in this case. Hence, dynamic
selection is applied based on e-th percentile thresholding.

Dropout Rate The extent of diversity in the teacher space is directly related
to the distillation-time dropout rate. To study how the probability value of each
neuron to be deactivated affects the teacher representation space, we plot and
compare the t-SNE plots with different dropout rates. Figs. a)—(d) are plot-
ted with dropout rates 0.1, 0.2, 0.5 and 0.9 respectively. It is observed that for
smaller dropout rates (Fig. [3(a)), the teacher can maintain its discriminative
ability; however, the three teacher representations f{ (x) (triangle), fJ (x) (cir-
cle), fJ (z) (square) mostly overlap each other, effectively meaning there is not
enough diversity in the teacher space. For dropout rate 0.2 (Fig. (b))7 the three
representations are diverse while maintaining the original structure, which shows
that the teacher space has become diverse while maintaining the discriminative
ability. In Fig. c), the three representations are adequately spaced, but the
model loses its discriminative ability.

Class 0: Aff(x) @f/(x) M) Cast: AFfG) @f(x) WX

Tow

b3

P=0.1 P=02 P=05
(@) (b) (c)

Fig.3: t-SNE plots of three teacher representations f{ (z) [triangle], fJ (z)
[circle], f{ () [square] over various dropout rates P showing the effect of the
stochastic representations on the learned feature space.
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To further analyze the impact dropout rate on both variance and overall per-
formance, we conducted an ablation study on the HAR dataset. Fig. [ shows the
effect of dropout rates on the student performance (dashed/black line) and the
variance across teacher representations (colored/solid lines). Variance increases
with the teacher dropout rate. For each dropout rate, the highest variance is ob-
served for the lowest number of repetitions. Conversely, the lowest variance for
each dropout rate is observed with the highest number of reps. Results suggest
that when the number of forward passes is greater, the overall variance decreases.
It may also indicate a more accurate approximation of the true variance because
it is calculated with more samples. In the latter case, it can be observed that
for lower dropout rates, the variances across different number of repetitions are
more accurate approximation of the true variance. In terms of performance, the
model peaks at a dropout rate of 0.2, and the performance starts deteriorating
beyond a dropout rate of 0.5. This phenomenon can be further explained from
Fig. [3] where the t-SNE plots show the model starting to lose its discriminative
ability at higher dropout rates.

100
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0.20 50
100 96
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8 0.15 5
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o =]
I e .o toz S
g B g
[ T e R S S 0y o~
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0.05 . [88
T
r86
0.1 0.2 0.3 0.4 0.5 0.6

Dropout Rate

Fig. 4: Effect of various dropout rates on the performance and variance quantifi-
cation among teacher representations. Accuracy (black/dashed line), and vari-
ance for various no. of reps (colored/solid lines) are plotted against dropout rates
on the HAR dataset

Effect of Attention Weights Regularization. SSD heavily relies on the
diversity in the fT(:zz), implicitly mimicking the ensemble of task-relevant em-
beddings from the teacher space. If the attention weights are not regularized,
the fT(gc) would be highly influenced by one of the teacher embeddings, which
is closest to the current f°(r), essentially rendering the proposed methodology
ineffective. Fig. [5a] shows the attention weights of an input sample z € X. It
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(a) Visualization of attention weights o
for two input samples 1 € X and x2 € X
with and without regularization.
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Fig. 5: Effect of attention weights «; regularization on student performance

can be observed from Fig. [Ba] that, without regularization, the attention weight
is extremely high for as. On the other hand, the weights are more spread out
with regularization, showing that the student model trained with SSD leverages
the diversity in the meaningful teacher representations. Fig. 5b|shows the results
obtained with and without regularization of «;. In all instances, regularization
improves accuracy.

Effect of Student Parameters Initialization with Teacher Weights.

The current student representation guides the distillation process at each step.
This section investigates the impact of student parameter initialization with the
trained teacher weights 07" . Fig. El shows the results obtained by the student
model with the baseline, random initialization, and student parameter initial-
ization with trained teacher weights. It can be observed from the figure that

B Bascline With Teacher Weight Init  BEM Random Init
0.88 0.950
0.80 0.86 0.850 0.925
0.84 0.825 0.900
Lors [y [ z
Q E 0.82 E 0.800 E 0.875
51
h 070 7 080 Boms 2 0850
- 11 Q G 0825
=] < 078 < 0750
065 076 0.800
0725 0775
074
0.60 — 0.700 0.750
StressID Biovid UCR HAR

Fig. 6: Performance of SSD with and without student parameters initialization
with trained teacher weights 7 on various datasets.

in each instance, the random initialization performs even worse than the base-
line. This shows the effectiveness of the proposed method, because if the student
model is not initialized with 97/, the ¢; calculated would be ineffective since the
current fS(z) is not task aligned. Hence adding the additional constraint in the
Liota; term breaks the performance. See Appendix C.1 for detailed results.
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4.4 Discussion

Analysis of Performance on Teacher Network Architecture. SSD can im-
prove performance quite significantly on real-world datasets, particularly with
models that have multiple dropout layers built into the architecture. Methods
like PAN [24] and the fusion-based architecture used for Biovid and StressID
datasets, respectively, have multiple dropout layers throughout backbones and
various modules; in contrast, models for HAR and CIFAR datasets are 1D and
2D-Conv ResNet-based architectures with only one dropout layer. One direct
correlation between the performance and the capacity to generate stochastic
representations can be drawn. The models with a higher number of dropout lay-
ers naturally have a greater capacity to generate stochastic representations with
more diversity, which allows the proposed method to form a more informative
fT(x), consequently leading to a student model with a significant performance
boost over the teacher model.

Supervised vs. Unsupervised Setting. The proposed method can enhance
performance both in supervised and unsupervised settings. The performance
boost observed in the supervised setting is slightly higher than in the unsu-
pervised setting; this could be because the unsupervised contrastive loss-based
methods are already equipped with the ability to learn generalized represen-
tation. The augmented views of the input data in both TS2Vec and SoftCLT
methods lead to more generalized representations.

Why is SSD Different from just Teaching Dropout to the Student
Model? Intuitively, it seems that the proposed method might be an alternative
way of teaching the student model to drop out. However, during both the teacher
training step and student training, the standard training-time dropout is acti-
vated, but the performance boost is not observed. The performance boost can
be explained by the filtering of the teacher representations, where teaching the
student to drop out would be equivalent to distilling from all stochastic repre-
sentations f7 (z) instead of the attended teacher representation f7(x), which is
then filtered through the proposed SSD method (see Appendix D for a detailed
discussion). This explanation is also supported by the results in Table [5| where
we first distill from all fiT (z), and the student performance does not improve.

5 Conclusion

In this work, we introduced SSD, a novel approach to enhancing diversity in the
teacher space by leveraging the stochastic nature of DL models using distillation-
time dropout and applying SGKD to learn meaningful representations. It em-
ploys the student’s current representation as a guide to select meaningful rep-
resentations, implicitly mimicking an ensemble of task-relevant representations.
Extensive experiments on real-world time-series data, complemented by valida-
tion on a benchmark vision dataset, show the effectiveness of SSD in improv-
ing representation learning. While SSD outperforms SOTA methods, its current
evaluation is limited to architectures that already incorporate dropout. Given
that SSD operates in the latent space, we hypothesize that the proposed SGKD
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framework could be extended to other settings where diversity is introduced
through perturbations in the feature space or noise injection. This presents an
compelling avenue for future research and a promising alternative to deep en-
sembles. It also provides an alternative for learning generalized representations
for time-series data, paving the way for more efficient and robust representation
learning in a wide range of applications.
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