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Abstract. Knowledge tracing (KT) predicts students’ knowledge mas-
tery based on their interaction history to forecast future performance.
Although current KT methods have achieved good results, because of the
lacking of students’ information, these methods can only make sequence-
level inference, assuming that students are independent and homoge-
neous. Additionally, due to the typically long student sequences in KT
tasks, mainstream RNN-based student state modeling methods suffer
from long-sequence forgetting, while attention-based models require man-
ually set bias functions. To address these issues, this paper proposes
a Dual-Graph Mamba framework for Knowledge Tracing (DGMKT),
which models student profiles based on students’ interaction sequence
through a Dual-Graph Student-Profile Aware Module (DGSPM). Mean-
while, we model student mastery states based on Mamba, avoiding the
long-sequence forgetting problem in RNN-based models and the need for
bias functions in attention-based models for KT tasks. To the best of
our knowledge, this is the first application of the Mamba architecture in
KT tasks. We evaluate DGMKT on four datasets and compare it with
ten baselines to demonstrate its superiority. Furthermore, we showcase
its broad adaptability by integrating DGSPM with various KT models.

Keywords: Knowledge Tracing · Student Profile · Mamba Structure

1 Introduction

With the rapid growth of computer science and cognitive diagnosis, online ed-
ucation platforms like MOOCs, EDX, and Coursera have become increasingly
popular, generating vast amounts of student learning data daily. Using the data
to evaluate students’ knowledge and recommend appropriate exercises is a major
challenge for these platforms.
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Knowledge tracing (KT) addresses this by tracking students’ mastery of
knowledge points to predict their future performance. Most knowledge trac-
ing models are primarily based on Recurrent Neural Network and Self-Attention
mechanism. Although some researchers have explored other neural networks such
as [9,24], the mainstream research still focuses on the exploration of DNN (Deep
Neural network) applied to knowledge tracing tasks.

However, most existing DNN-based studies lack a unique identifier for each
student. These models only receive interaction sequence information and don’t
know the student-specific details corresponding to the sequence, so they can only
make sequence-level inferences. As shown in Figure 1, although the two students’
sequences are the same before time step 6, as distinct individuals, they are likely
to provide different answers at step 6. Existing models often assume that the
two students will provide the same response at time step 6 in this case.

Fig. 1: An illustration comparing sequence modeling methods with and without
the integration of student profiling.

Therefore, we propose the definition of the student profile in the context of
knowledge tracing tasks: The student profile serves as a unique identifier
for students, allowing for the distinction between different students
while also enabling the aggregation of information across similar stu-
dents. In contrast to recent studies that focus on generating high-quality embed-
dings for individual items or concepts, our proposed method can be understood
as generating students’ identifier based on the sequence and frequency of interac-
tions with items by students. These identifiers are then used to guide the model
in tracking the students’ knowledge states throughout the entire process.

Another issue is that since the student interaction sequences in knowledge
tracing tasks are usually quite long, knowledge tracing models based on RNN
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[22,26,15,16] and Self-Attention mechanism [18,2,6,19,13] inevitably suffer from
performance issues due to inherent limitations in their architectures, such as
the forgetting problem in RNN caused by vanishing gradients and the need for
manually defined bias functions in Self-Attention-based architectures. In 2023,
Gu et al. [3] proposed the Mamba architecture, which has been demonstrated to
perform well in long-sequence tasks [28]. Due to the long-sequence issue in KT
tasks, this characteristic makes Mamba particularly suitable for application in
knowledge tracing tasks.

To address these issues, we propose the DGMKT framework, which consists
of three components: the Dual-Graph Student Profile Aware Module (DGSPM)
and the Mamba Sequence Modeling Module (MSMM) and the Integration Mod-
ule. The DGSPM generates two student profiles for each student through their
interaction sequence. Specifically, the dual-graph in DGSPM includes a Student-
Exercise Association Hypergraph (SEAHG) and an Exercise-Directed Transi-
tion Graph (EDTG). For students’ interaction sequences, SEAHG is designed
to capture what exercises students interact with, without considering the order
of interactions. As a complement, EDTG is specifically designed to capture the
sequential order in which students interact with the exercises. In SEAHG, Define
a student as a node, an exercise as a hyperedge, since each student can interact
with an exercise many times, so we allow a hyperedge to connect the same node
many times. as shown in Figure 2, given sequences of two students as in Figure
2(a), Construct the SEAHG as in Figure 2(b). In EDTG, an exercise is defined as
a node, and a transition between two exercises is represented as a directed edge.
Based on the sequence of student2 in Figure 2(a), the corresponding EDTG is
constructed as shown in Figure 2(c).

The Mamba Sequence Modeling Module consists of two components: the
linear layer projects input features to the question embedding dimension, and
the Mamba layer captures sequential dependencies to model students’ states.

Finally, after obtaining the predictions of the two sets of linear-Mamba layers,
In Integration Module, we integrate the two predictions through a method similar
to the online knowledge distillation proposed by DGEKT [1].

In summary, our contributions are as follows:

– We propose the definition of student profiles and introduce a Dual-Graph
Student Profile Aware Module (DGSPM) for modeling student profiles in
Knowledge Tracing tasks through students’ interaction sequences.

– We propose Mamba Sequence Modeling Module (MSMM) to model stu-
dents’ knowledge states, adapting to the characteristics of long sequences in
knowledge tracing tasks.

– We demonstrate the effectiveness and adaptability of the proposed DGSPM
in modeling student profiles by integrating it with different knowledge tracing
methods. Additionally, we showcase the superiority of the proposed MSMM
in modeling students’ mastery compared to mainstream RNN-based and
Self-Attention-based modeling approaches.
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Fig. 2: The process of constructing SEAHG and EDTG through students’ inter-
action sequence.

2 Related Work

2.1 Knowledge Tracing

The development of knowledge tracing methods can be divided into two stages:
the probabilistic graphical model-based stage and the Deep Neural Network-
based stage. Among probabilistic models, Bayesian Knowledge Tracing (BKT)
is one of the most representative models. BKT is a Hidden Markov Model that
models a learner’s latent knowledge state as a set of binary variables, where
each variable represents whether a student has mastered a particular knowledge
concept. Since BKT assumes the homogeneity of both students and problems,
researchers have gradually incorporated personalized components into BKT to
enhance its effectiveness [7,25]. Additionally, some researchers have made per-
sonalized improvements to BKT’s skill-specific parameters [20,21] and student-
specific parameters [29].

With the advent of DNN, the first DNN-based knowledge tracing model [22]
made traditional models less competitive. Modern research focuses on RNN-
based [22,16] and Self-Attention-based [19,18,2] KT models, as well as hybrid
architectures [4,24,13]. However, beacause the length of sequence in KT tasks
is long, RNN often suffer from forgetting issues [4], and Self-Attention models
require manually designed bias functions, which affect performance [19,2,6].
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To address these limitations, we model student mastery states using Mamba,
which has been proven effective for long-sequence tasks [28] and does not require
the setting of a bias function.

2.2 Student Profile

While student profiling is not commonly discussed in Knowledge Tracing tasks,
it is frequently explored in areas like academic failure prediction. For example,
Liang et al. [12] propose a student profiling method based on online learning
behavior data. This method analyzes learning features, behavioral similarity,
and learning attitudes to enhance the quality of student learning and the level
of personalized services in E-Learning platforms through intelligent guidance.
Khasanah et al. [8] employ a feature selection and classification algorithm ap-
proach, using selected features as the basis for student profiling to predict the
likelihood of academic failure. Shen et al. [23] construct student profiles by com-
bining labels that describe students’ personal information and learning behaviors
with the code they submitted, and used these profiles to predict their scores in
programming tests.

Although effective, these methods often depend on personal information like
age or economic status, which is unavailable in traditional Knowledge Tracing
tasks that only provide interaction sequences. To address this issue, we propose a
method capable of modeling student profiles based on their response sequences.
The inspiration for this approach stems from the observation that students with
similar response sequences often share analogous learning factors, such as learn-
ing pace and prior knowledge. Moreover, the correctness of their responses tends
to be more similar.

2.3 Mamba

As a highly promising neural network architecture, Mamba is similar to RNN
in its recursive information propagation. However, it avoids the forgetting issues
commonly associated with RNN. Additionally, its parameterized input structure
dynamically determines the importance of input components without the need
for manually setting bias functions, as required by attention mechanism.

Mamba has demonstrated competitive performance and has even achieved
state-of-the-art results in various tasks, such as biomedical image segmentation
[14], pan-sharpening [5], computer vision [31], and natural language processing
[3]. Notably, Mamba’s advantages become particularly evident in tasks involving
long sequences. These achievements suggest that modeling the student mastery
state in knowledge tracing task as a new application of Mamba could significantly
improve the performance of knowledge tracing models.

3 Method

Given a student sk’s exercise sequence up to time t − 1, denoted as Ek =
{e1, e2, ..., et−1 | i = 1, . . . , t−1}, where ei ∈ E represents the exercise attempted
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by the student at time i, and E denotes the set of all exercises with cardinality
|E|. The SEAHG and EDTG are constructed as shown in Figure 2. With the
two graphs, we will get two student profiles through the Hypergraph Convolution
and the Directed Graph Convolution illustrated in Section 3.1. Then, given Ek

and the corresponding response sequence Ak = {a1, a2, ..., at−1 | i = 1, . . . , t−1}
where ai indicates the correctness of the response at time i: ai = 1 denotes a
correct response and ai = 0 denotes an incorrect response, and the two student
sk’s profiles, we will get sk’s two sets of knowledge mastery state at each time
step through the Mamba Sequence Modeling Module illustrated in Section 3.2.
Finally, we integrate the two sets of knowledge mastery state through the Inte-
gration Module illustrated in Section 3.3 and get the final predictions of time t:
P (at = 1 | Ik, et, sk). The above process can be illustrated in Figure 3.

Fig. 3: The overall framework of proposed DGMKT. Student profiles (sp) are
generated from DGSPM. After concatenating with interaction embeddings (ie),
sp ⊕ ie is passed through the Mamba Sequence Model to generate predictions,
which will be sent to the Integration Module.

3.1 Dual-Graph Student-Profile Aware Module

Student-Exercise Association Hypergraph In student association hyper-
graph, we consider the student set S, with a sample student represented by si
and |S| = n. Similarly, we define an exercise set E with a sample exercise ei and
|E| = m. To avoid confusion, each student in the hypergraph is represented by a
node vi, and each exercise by a hyperedge hj . Since a student may complete the
same exercise multiple times, we allow hyperedges to connect to the same nodes
multiple times.

Based on this, let Hi denote the set of hyperedges connected to a node vi,
with |Hi| ≤ m, and let ho

i represent the number of times this node connects to
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each hyperedge ho. The degree of a node can thus be defined as div =
∑

o=1 h
o
i ,

representing the total number of exercises completed by student si.
Next, we define Vj as the set of nodes connected by hyperedge hj , with

|Vj | ≤ n, and let vkj represent the number of times a particular node vk is
connected by the hyperedge. The degree of a hyperedge hj is then given by
djh =

∑
k=1 v

k
j , reflecting the total number of interactions with the exercise.

With these definitions, we employ an information propagation rule defined
by hypergraph convolutional networks. The convolution operator in each layer
aggregates information from vi itself and from its local neighbors within each
hyperedge to which vi is connected, thereby updating xi:

x
(l)
i,H = σ(

∑
hj∈Hi

1

djh

∑
vk∈Vj

1√
dkvd

i
v

Θl−1x
(l−1)
i,H ) (1)

Where Θ ∈ Rdmodel×dmodel is a learnable weight parameter, and σ is the ReLU
activation function. x(l−1)

i,H ∈ R1×dmodel and x
(l)
i,H ∈ R1×dmodel represent the input

and output embeddings of node vi in the l-th layer, respectively.
Thus, we obtain the profile xi,H for student si generated by the hypergraph,

which primarily captures information on which exercises the student interacted
with.

Exercise Directed Transition Graph In Directed Graph, let the set of
exercises be denoted as E , where |E| = m. For each student sk, the inter-
action sequence Ik includes several tuples (ex, ax) ∈ Ik, representing exer-
cises and responses. From this, we obtain the student’s exercise sequence Ek =
{e1, e2, e3, . . . , eL}. This sequence can be broken down into a series of exercise
pairs, such as Ēk = {(e1, e2), (e2, e3), . . . , (eL−1, eL)}. In student sk directed
graph, we represent all exercises E as nodes V and each individual exercise pair
in a student’s sequence Ēk as directed edges hi,j . A separate directed graph is
constructed for each student, where hi,j represents that exercise ei is immedi-
ately followed by ej . We use gi,j to denote the number of times the pair (ei, ej)
appears. The adjacency matrix A of this directed graph is defined as follows:

Ai,j =

{
1× gi,j if hi,j exists,
0 otherwise.

(2)

Next, we add self-loops to the adjacency matrix by setting Âi,i = Ai,i+1, thereby
constructing the matrix Â. In Â ∈ Rm×m, we treat Â as an adjacency graph
where the degree of node vi ∈ V is defined as div =

∑m
j=1 Ai,j . From matrix Â,

we obtain the degree matrix D̂ ∈ Rm×m and apply the following formula for
graph convolution:

x
(l)
k,D = σ

(
D̂− 1

2 ÂD̂− 1
2x

(l−1)
k,D W(l−1)

)
, (3)
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where W (l) ∈ Rdmodel×dmodel denote a learnable weight matrix, and let σ repre-
sent the ReLU activation function. Specifically, xl−1

k,D and xl
k,D ∈ Rm×dmodel are

the input and output embeddings of node set V, respectively.
Using the student’s exercise sequence Ek, we index these embeddings to

retrieve the convolutional representations of the exercises x̂k,D ∈ RL×dmodel in
the sequence:

x̂k,D = Ek → xk,D. (4)

For a student sk with an interaction sequence length of L, we introduce a set of
learnable weights A = {α1, α2, . . . , αL}, A ∈ RL as the weighting parameters.
After applying the softmax function, these weights are multiplied by the obtained
sequence embeddings x̂k,D to get the student profile of directed graph:

Â = softmax(A) =

[
α̂1 =

exp(α1)∑L
i=1 exp(αi)

, . . . , α̂L =
exp(αL)∑L
i=1 exp(αi)

]
, (5)

x̃k,D =

L∑
o=1

α̂o · x̂o
k,D. (6)

Thus, we derive the representation x̃k,D ∈ Rdmodel for student sk, generated from
the directed graph, which captures the ordering of exercises completed by the
student.

3.2 Mamba Sequence Modeling Module

At this stage, we have obtained the hyper graph student profile xi,H and directed
graph student profile x̃i,D for student si. Next, we concatenate xi,H and x̃i,D

respectively with the interactive embedding xi for further analysis:

xH
input,i = xi,H ⊕ xi,

xD
input,i = x̂i,D ⊕ xi.

(7)

The interactive embedding xi is derived from the exercise sequence Ei = {e1, e2, . . . , eL}
completed by student si and the corresponding response sequence Ai = {a1, a2, . . . , aL},
which are processed through an embedding layer to obtain xe

i and xa
i . These are

then concatenated as described below:

xi =

{
xe
i ⊕ xa

i , if ai = 1,

xa
i ⊕ xe

i , if ai = 0,
(8)

where the embeddings xH
input,i ∈ R3dmodel and xD

input,i ∈ R3dmodel are each passed
through a linear layer and a Mamba layer to obtain the knowledge mastery state
of the student at each time step, denoted as hH

i ∈ RL×dmodel and hD
i ∈ RL×dmodel :

hH
i = Mamba1(Linear1(x

H
input,i)),

hD
i = Mamba2(Linear2(x

D
input,i)),

(9)
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where Mamba1 and Mamba2 represent two distinct Mamba layers, while
Linear1 and Linear2 are two different linear layers with weight matrices shaped
as R3dmodel×dmodel . The execution process of the Mamba block is illustrated in
Figure 4.

Fig. 4: The detail of Mamba Layer, Where xx project represents a simple lin-
ear layer, Conv 1D refers to a one-dimensional convolution. S4D stands for
"shape for dimension," indicating a one-dimensional tensor to be expanded. The
σ function corresponds to the SiLU activation function, while ∆ and × denote
matrix multiplication, and + represents matrix addition. Finally, EYE is used
to initialize a tensor with ones.

3.3 Integration Module

To further integrate the results produced by the two graphs, we employ the
online knowledge distillation integration method proposed in DGEKT. Through
a gating mechanism, hH

i and hD
i are combined into hE

i :

hE
i = g ⊙ hH

i + (1− g)⊙ hD
i , (10)

g = σ
(
(WHhH

i + bH) + (WDhD
i + bD)

)
, (11)
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where WH ,WD ∈ Rdmodel×dmodel , bH , bD ∈ Rdmodelare learnable parameters, σ is
a sigmoid function, ⊙ is a simple multiplication.

These combined representations are then mapped to the problem dimension
through three linear layers with weight matrices shaped as Rdmodel×dc , yielding
logitD, logitH, and logitE ∈ RL×dc :

logitHi = Linear3(h
H
i ),

logitDi = Linear4(h
D
i ),

logitEi = Linear5(h
E
i ).

(12)

Given logitDi , logitHi , and logitEi , we apply the sigmoid activation function to
each, resulting in the final predictions of the three models: pdi , phi , and pei . The
equations are as follows:

pDi =
1

1 + e−logitDi
,

pHi =
1

1 + e−logitHi
,

pEi =
1

1 + e−logitEi
.

(13)

Subsequently, to encourage the predictions of the two single-graph models to
align more closely with those of the dual-graph teacher model, we follow the
approach in DGEKT by using the L1-norm to measure the discrepancy between
the teacher and student models:

Lkd =
1

n

n∑
i=1

(
∥pEi − pHi ∥1 + ∥pEi − pDi ∥1

)
. (14)

During training, we optimize the losses of the two single-graph models, denoted
as Lh

ce and Ld
ce, along with the loss of the dual-graph integrated model Le

ce, as
well as a distillation loss controlled by a constant λ. Unlike in DGEKT, here
λ is fixed as 1/(batchsize × seqlen), where seqlen is the length of the student’s
response sequence. During testing, we use the average of the predictions from
the three models as the final result, instead of using only the teacher model as
the final result in DGEKT [1]:

L = Lh
ce + Ld

ce + Le
ce + λLkd, (15)

pi =
(pEi + pDi + pHi )

3
. (16)

Notably, in this paper, Lce represents the cross-entropy loss function, which can
be calculated as:

Lce = − 1

L

L∑
l=1

(yli log(p
l
i) + (1− yli) log(1− pli)), (17)

where yli represents the correctness of student si’s actual response at time step l,
and pli denotes the model’s prediction of the correctness of student si’s response
at time step l. L denotes the length of student si’s interaction sequence.
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4 Experiments

4.1 Experimental Setting

Benchmark Datasets In the experiment, we used four datasets to evaluate
our model and the proposed methods. The descriptions of the four datasets are
as follows:

Statics2011 1: The Statics2011 dataset was collected from a collegelevel engi-
neering course on statics containing 189,927 responses with 1223 KSs from 333
students

Kddcup2010 2: This dataset was originally used for the 2010 kdd cup compe-
tition. It has 868,410 responses with 660KSs from 690 students.

Assist2017 3: This dataset is gathered from the ASSISTments online tutoring
platform, which contains 525,637 responses with 110 KSs from 4151 students.

Assist2009 4: This dataset is also from the same platform as Assist2009. It
has 942,816 responses with 102 KSs from 1709 students.

The detailed information for each dataset is provided in Table 1. We use the
preprocessed versions of these four datasets provided by the literature on AKT
[2] and DKT [22] for fair comparison.

Table 1: Statistics of the four benchmark datasets.
Dataset Name Students KSs Responses Res.per.stu

Kddcup2010 690 660 868,410 1,258.56

Statics2011 333 1,223 189,297 568.45

Assist2009 5,151 110 325,637 63.21

Assist2017 1,709 102 942,816 551.67

Baseline Methods and Evaluation Metric We compared the proposed
model with the following seven state-of-the-art models:

DKT [22]: The first work to apply deep neural networks (DNN) for knowledge
tracing, using RNN to model students’ knowledge states.

DKVMN [30]: Utilizing a key-value memory network, where the key ma-
trix stores static knowledge concepts and the value matrix tracks the student’s
mastery level, providing a degree of interpretability.

SAKT [18]: The first model to use an attention network for knowledge trac-
ing, predicting mastery by identifying relevant parts of the student’s past inter-
actions associated with the current knowledge concept.
1 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
2 https://pslcdatashop.web.cmu.edu/KDDCup
3 https://sites.google.com/view/assistmentsdatamining
4 https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
4 https://pslcdatashop.web.cmu.edu/KDDCup
https://sites.google.com/view/assistmentsdatamining
 https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
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AKT [2]: An attention-based method proposes a monotonic attention mech-
anism to capture the connections between a student’s current and previous in-
teractions.

KQN [9]: Modeling knowledge interaction as the dot product of the knowl-
edge state and skill vectors, with neural networks encoding student responses
and skills into vectors of equal dimensions.

GKT [17]: Using graph convolutional networks on a graph of knowledge
concepts, constructed through statistical or learning-based methods, to model
students’ proficiency in each concept.

FoLiBiKT [6]: Building on attention networks with a linear bias to model
student forgetting behaviors.

DTransformer [27]: Proposing a stable and truly effective framework for
tracking students’ knowledge status.

StableKT [10]: Proposing StableKT to enhance length generalization in knowl-
edge tracing tasks. It captures the relationships between questions and knowledge
components through a multi-head aggregation module.

ExtraKT [11]: Proposing a framework, which improves length extrapolation
capability by negatively biasing attention scores.

These methods provide a strong baseline for evaluating the DGMKT model.
Following standard metrics in knowledge tracing, we use AUC and ACC to
measure prediction performance.

Implementation Details We conducted 5-fold cross-validation on all datasets
with a 3:1:1 split for training, validation, and test sets. For fairness, we compared
the baserline variant that uses knowledge skill (KS) information, as our model
and all baselines rely exclusively on KS information.

In the experiments, we set exercise and response embedding dimensions to
512 and used four Mamba layers. Sequences longer than 500 were truncated.
Training used a batch size of 24 across all datasets, the Adam optimizer with
an initial learning rate of 0.001 and a decay factor of 0.5, for up to 500 epochs.
Early stopping was applied if validation loss did not improve for five epochs. All
experiments were implemented in PyTorch on two NVIDIA GeForce RTX 3080
GPUs.

4.2 Comparison with Baselines

In Table 2, we present the prediction performance of various methods, showing
the averages and standard deviations across five test folds. It is evident that
the proposed DGMKT consistently outperforms all other methods across all
datasets.

4.3 Adaptability Study of DGSPM in Different Architecture

To validate the Adaptability of our proposed student profiling method, we in-
tegrated the DGSPM into Self-Attention-based knowledge tracing models as
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Table 2: Performance comparison across different models and datasets. The best
AUC value in each dataset is highlighted in bold, and the second-best in italic.
Dataset Statics2011 ASSIST2009 ASSIST2017 kddcup2010
Model AUC ACC AUC ACC AUC ACC AUC ACC
DKT 0.8106 0.7965 0.8023 0.7609 0.7052 0.6807 0.7874 0.8341
DKVMN 0.7966 0.7951 0.7314 0.7185 0.6704 0.6691 0.7823 0.8355
SAKT 0.8022 0.7975 0.7361 0.7205 0.6492 0.6607 0.7736 0.8272
AKT 0.8251 0.8045 0.8053 0.7675 0.6918 0.6821 0.7898 0.8318
FoLiBiKT 0.8232 0.8044 0.8004 0.7643 0.6882 0.6783 0.7917 0.8283
GKT 0.7997 0.7982 0.7708 0.7472 0.6773 0.6720 0.7737 0.8316
KQN 0.8245 0.8041 0.8107 0.7688 0.7200 0.6889 0.7956 0.8390
DTrans 0.8202 0.8044 0.7865 0.7538 0.6859 0.6774 0.7867 0.8323
StableKT 0.8250 0.8052 0.8059 0.7658 0.6963 0.6805 0.7943 0.8320
ExtraKT 0.8215 0.7977 0.8090 0.7670 0.7006 0.6814 0.7947 0.8316
DGMKT 0.8261 0.8058 0.8180 0.7722 0.7339 0.6966 0.7986 0.8391

well as the RNN-based model. We then compared the AUC performance with
dual-graph (model with DGSPM) and no-graph (model) configurations under
identical parameter settings. The results are shown in Table 3. It can be ob-
served that SAKT and DKT with DGSPM acheive better performance in all of
four datasets than their original versions.

Table 3: The performance of proposed DGSPM in RNN-Based method (DKT)
and Attention-Based method (SAKT).
Dataset statics2011 Assist2009 Assist2017 kddcup2010
Model AUC ACC AUC ACC AUC ACC AUC ACC
DKT 0.8106 0.7965 0.8023 0.7609 0.7052 0.6807 0.7874 0.8341
DKTDGSPM 0.8209 0.8028 0.8102 0.7661 0.7183 0.6878 0.7960 0.8378
SAKT 0.8022 0.7975 0.7361 0.7205 0.6492 0.6607 0.7736 0.8272
SAKTDGSPM 0.8108 0.8024 0.7453 0.7246 0.6561 0.6646 0.7852 0.8307

4.4 Ablation Study of DGSPM and MSMM

Dual-Graph Student Profile Aware Module We validate the effective-
ness of the proposed component Dual-Graph Student Profile Aware Module
(DGSPM) by comparing its different variants.

The results presented in Figure 5 demonstrate that the model with the com-
plete proposed method outperforms all ablation models, thereby validating the
effectiveness of the proposed DGSPM.
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Fig. 5: Different variants of DGSPM are proposed to examine the effectness of
DGSPM. Retaining only the SEAHG in DGSPM (DGMKT w/o DG), only the
EDTG in DGSPM (DGMKT w/o HG), or removing both of the two graphs in
DGSPM (DGMKT w/o HG&DG), as well as the complete proposed approach
(DGSPM), while keeping other parameters constant.

Mamba Sequence Modeling Module To validate the effectiveness of the
proposed component Mamba Sequence Modeling Module (MSMM), we compare
Mamba sequence modeling method with RNN-based and Self-Attention-based
sequence modeling method. Similarly, we keep other parameters constant, and
compare three kinds of methods (Mamba-based, RNN-based, Self-Attention-
based) with and without DGSPM. The results in Figure 6 demonstrates that
Mamba as an approach for modeling student learning states, demonstrates supe-
rior performance compared to the mainstream RNN and Self-Attention methods.
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Fig. 6: The performance of the proposed Mamba Sequence Modeling Module
compared with RNN-based and Self-Attention based sequence modeling method.
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4.5 Computational Efficiency Analysis of DGSPM

To rigorously evaluate the computational resource demands of the proposed
DGSPM, we report the resource consumption profiles of various DGMKT vari-
ants on the Assist2017 dataset, as detailed in Table 3. To facilitate computational
efficiency and ensure comparability, we configure the number of Mamba layers
to a single layer (n_layer = 1), while maintaining the embedding dimension at
512, consistent with prior experimental settings.

It can be observed that, in terms of training time, the variant incorporating
only directed graphs exhibits training durations comparable to the comprehen-
sive method, both significantly exceeding that of the variant employing hyper-
graphs. This disparity arises because the Graph Convolutional Network (GCN)
necessitates the generation of a distinct directed graph for each student. The
sequential processing of individual students decomposes batch operations into
serial computations, thereby constraining the parallel computing capabilities of
the GPU.

Regarding memory consumption, the variant utilizing solely hypergraphs in-
curs substantially higher GPU memory usage compared to the variant with
directed graphs. This is attributed to the representation of students as nodes
and exercises as hyperedges, which requires the construction of a hypergraph
structure. Such a structure may encompass millions of connections, forming a
complex hypergraph. The hypergraph convolution process involves aggregating
information across all connected nodes and hyperedges, resulting in significant
GPU memory demands.

Although the dual-graph structure entails additional computational resources,
it is noteworthy that the computational overhead of the dual-graph approach re-
mains within a reasonable range.

Table 4: Computational resource requirements of the four DGMKT variants
Model ParameterGPU UsageTraining Time
DGMKT 26.75 MB 3919 MB 2458.2 s

DGMKT w/o DG 12.14 MB 2515 MB 271.4 s
DGMKT w/o HG 9.17 MB 1571 MB 1803.4 s

DGMKT w/o HG&DG 9.13 MB 1473 MB 107.7 s

4.6 Model Visualization

To evaluate the performance of the proposed DGMKT model in knowledge trac-
ing, we visualize a student’s mastery of various knowledge skills (KS) during 36
exercises, as shown in Figure 7. The top section records the student’s perfor-
mance, with different colors representing the KSs involved in each exercise. The
middle heatmap shows the mastery levels of each knowledge point (KS) over
time, where darker colors indicate higher mastery levels.
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Initially, all KS mastery levels are updated after each exercise. Correct an-
swers increase the mastery level of relevant KSs, while incorrect answers decrease
it. For example, after correctly answering exercises related to "finding-percents"
at step 11, the mastery level for this KS increases in the heatmap. Changes in
other rows highlight potential connections between KSs, where mastering one
skill can influence others. More model visualization experiments can be found in
Appendix A.

Mastery Increase Mastery Decrease

Fig. 7: A student’s knowledge state evolution over 36 time steps.

5 Conclusion

We propose a novel method for modeling student profiles and long-term knowl-
edge states, called DGMKT which contains two main Modules (DGSPM, MSMM)
and an Integration Module. The DGSPM models student profiles from two per-
spectives: the exercises the student has interacted with and the sequence in which
these exercises were interacted with, through the student association hypergraph
and the exercise transition directed graph. Experimental results show that this
student profiling method not only enhances the performance of knowledge trac-
ing models but also demonstrates strong adaptability, making it suitable for
various knowledge tracing model architectures. More importantly, we introduce
MSMM, the first application of the Mamba structure to knowledge tracing tasks,
which avoids the forgetting issue in RNN-based models and the need for man-
ually setting bias functions in Self-Attention-based models, enabling long-term
modeling of student knowledge states. The source code and datasets are publicly
available at https://github.com/collegestu1231/DGMKT/tree/master.
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