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Abstract. Recent advancements in foundation models, particularly Vis-
ual-Language Models (VLMs) have enabled effective zero-shot Out-of-
distribution (OOD) detection. Existing methods attempt to generate the
names of OOD classes similar to in-distribution (ID) classes to explore
the textual space of VLMs. However, they fail to integrate relevant ID
information to reveal specific OOD features, thus limiting the distinc-
tion between ID and OOD classes. To address this issue, we propose
a simple yet effective zero-shot OOD detection approach incorporating
a specific semantic text generation strategy and a new regionally en-
hanced semantic OOD scoring function. In detail, we employ meticu-
lously designed prompts to generate challenging OOD label texts using
Large Language Models (LLMs). Subsequently, the specific semantic text
generation strategy leverages LLMs to capture fine-grained textual rep-
resentations of both ID and OOD classes. Additionally, the regionally
enhanced semantic OOD score is formulated by adjusting the confidence
of ID classes to improve OOD detection. Experiments demonstrate that
our method achieves state-of-the-art (SOTA) performance on multiple
OOD detection benchmarks. The code is available at [repository.

Keywords: Out-of-distribution Detection - Zero-shot Learning - Visual-
Language Models.

1 Introduction

With the continuous development of deep learning and foundation models, the
research community has shifted from traditional i.i.d. assumptions towards open-
world scenarios. Consequently, traditional models exhibit performance degrada-
tion on OOD data [T2I3J4529130052]. In response, OOD detection has become
essential for identifying and rejecting invalid inputs and ensuring safety. This
capability is particularly crucial in high-stakes domains such as autonomous
driving [6/7] and medical diagnostics [§].

To address these challenges, existing methods can be categorized into two his-
torical stages: 1) vision-only methods [QTOITT2/T3I3T]. and 2) vision-language
methods. The vision-only approaches primarily focus on utilizing external OOD
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Fig. 1. Image-Text Similarity of Sheep and Deer: Comparing Common and
Specific Features. Specific features refer to the unique characteristics of sheep or deer,
while common features represent the shared traits. The right side shows the similarity
scores between images of sheep/deer and text descriptions that include ‘common’,
‘specific’, or ‘common+specific’ features. For each image, we aim to maximize similarity
with the corresponding class description while minimizing similarity with descriptions
of unrelated classes.

images to enhance model robustness or exploring uncertainty in visual repre-
sentations across varying distributions, without taking into account the poten-
tial benefits introduced by textual information [I4/15]. With the development of
foundation models, VLMs [16] exhibit strong generalization capabilities after be-
ing trained on large-scale image-text pairs. In recent years, an increasing number
of works [I7UI8] focus on leveraging textual modality features for OOD detection
using VLMs. These approaches demonstrate superior performance compared to
previous OOD detection methods. However, these methods primarily utilize ID
class names and lack comprehensive exploitation of the textual modality. Re-
cent works have begun to explore more extensive information from the textual
modality. Several approaches [I4/I5] endeavor to generate OOD class names us-
ing resources such as WordNet [19], while others [20] leverage LLMs [21I] to
generate semantic descriptions of ID classes for zero-shot OOD detection.
However, existing methods tend to overlook the integration of ID information
necessary for capturing distinctive OOD textual features. We argue that relying
solely on textual features derived from OOD names or ID class descriptors is in-
sufficient for effectively distinguishing hard OOD instances. Leveraging VLMs’
ability to align textual and visual features, we can guide the model to focus on
regions unique to hard OOD instances. To verify the intention, we first analyze
the influence of common and specific features, as depicted in Fig[l] Possibly,
here give an example of a common feature and an example of a specific feature
by combining descriptive terms (e.g., “a photo of a sheep with white wool, com-
monly found in grasslands and farms”) and computing similarity with both sheep
and deer images, we observe that common features lead to misclassification.
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In contrast, more specific features help reduce it. Acquiring such fine-grained
textual descriptions of OOD classes can significantly enhance OOD detection
performance. Unfortunately, large lexical databases like WordNet, while useful
for constructing categorical relationships, lack the contextual specificity needed
to capture specific features for each category. With the advancement of LLMs
trained on extensive text, these models have acquired broad knowledge and the
capability to analyze relationships and distinctions between categories. This work
we harness the power of LLMs to generate fine-grained textual descriptions.

Therefore, we propose a simple yet effective zero-shot OOD detection ap-
proach that utilizes LLMs to generate names for hard OOD classes resem-
bling ID classes while systematically excluding synonyms and near-synonyms
through similarity calculations. To enhance VLMs’ OOD detection capacities,
fine-grained descriptions are generated by simultaneously considering both ID
and OOD class names. Specifically, this work uses LLMs to generate descriptions
for ID classes. Subsequently, LLMs are also employed to generate OOD classes
that are prone to be misclassified as the given ID classes, along with specific fea-
tures that distinguish these hard OOD classes from their ID counterparts. This
approach aims to maximize the separation of textual feature spaces between hard
OOD and ID classes. Furthermore, the impact of shared features between OOD
and ID classes on OOD detection performance is analyzed using information
entropy, demonstrating that common features adversely affect OOD detection.
To address this, we propose a novel scoring method that adjusts the confidence
of ID samples based on their similarity to hard OOD classes. Extensive experi-
ments demonstrate that our method achieves SOTA performance across multiple
datasets. This approach enhances the model’s performance in hard OOD detec-
tion tasks and exhibits strong generalization capabilities. In summary, our key
contributions are as follows:

— We further explore the textual space at the regional feature level using se-
mantic texts generated by LLMs, aiming to identify discriminative regional
features between ID and OOD counterparts and maximize their separation.

— We analyze the influence of common and specific features on OOD detection.
Moreover, we propose a regionally enhanced semantic OOD score, adjusting
ID confidence based on similarity to synthesized OOD classes.

— The effectiveness of the proposed method is validated across diverse set-
tings, encompassing both simple and challenging OOD tasks. Experimental
results indicate that this approach achieves SOTA performance across mul-
tiple OOD detection benchmarks.

2 Related Work

Traditional OOD Detection is typically categorized into two types: training-
time regularization [2223I24125]26]128] and post hoc methods [2IT2/T312732I33I51].
Training-time regularization methods assume that a subset of OOD data is ac-
cessible during model training. CSI [22] enhances the OOD detector through
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the application of contrastive learning. MOS [23] pre-groups all categories and
introduces an additional class to each group, redesigning the loss function for
training. VOS [24] improves energy scores by generating virtual anomalies. Log-
itNorm [25] offers an alternative to cross-entropy loss by separating the influence
of the logit norm from the training process. CIDER [26] improves OOD detection
performance by optimizing contrastive loss.

Post hoc methods do not alter the model’s parameters; instead, they typi-
cally focus on designing an OOD score. MSP [2] utilizes the highest predicted
softmax probability as the OOD score. ODIN [27] refines MSP by applying in-
put perturbations and rescaling the logits. Energy [13] introduces the use of an
energy function [34] to quantify OOD. Mahalanobis [I12] calculates the OOD
score based on the minimum Mahalanobis distance between the feature and
the centroids of each class. GradNorm [32] develops the OOD score by utilizing
the gradient space. ViM [35] integrates the norm of feature residuals with the
principal space created by training features and the original logits to determine
the degree of OOD-ness. KNN [33] explores the effectiveness of non-parametric
nearest-neighbor distances for identifying OOD samples.

OOD Detection based on VLMs has been developed using CLIP [I6] as
the foundation, leveraging its powerful vision-language alignment capabilities.
MCM [17] introduced this approach by utilizing maximum softmax probabilities
to assess the similarity of images to known classes, thereby identifying OOD
images. ZOC [36] train image decoders for extracting textual information from
images. CLIPN [I8] proposes constructing negative sample pairs and conducting
pre-training to learn a ‘no’ concept for each class. MMOOD [20] propose using
LLMs to generate additional descriptive terms for ID classes to enrich textual
semantic information. Recent studies [I4/T5] have explored methods to lever-
age VLMs’ zero-shot inference capability by generating OOD categories through
various approaches, aiming to represent potential OOD scenarios. Specifically,
EOE [I4] utilizes LLMs to generate potential outlier class and designs an out-
lier penalty function to detect OOD samples. NegLabel [I5] acquisition utilizes
WordNet to gather a diverse set of OOD category names, complemented by a
scoring function to identify the OOD class with low similarity to current IDs.
Large Language Models such as GPT-3 [37], LLaMA-3 [38], GPT-4 [39],
are leading advancements in natural language processing. These models are
trained on massive datasets with parameters ranging from hundreds of billions to
trillions. LLMs represent significant advancements in natural language process-
ing, pushing boundaries in language understanding, generation, and adaptation
across various domains. Given LLMs’ broad knowledge base, they are instru-
mental in providing similarities and differences among categories akin to ID.

3 METHODOLOGY

This section details the proposed approach. Section defines the notation and
outlines the problem. Section [3.2] introduces a method for generating outliers
and fine-grained features by leveraging LL.Ms to augment class descriptions. The
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complete framework is depicted in Figf3] In Section [3:3] a novel OOD detection
scoring function is presented, which clusters ID and OOD categories.

3.1 Notation and Preliminary

Without loss of generality, assume that we have n images which are denoted
as X = {1, -+ ,x,}. The ID class names set Y (¥ = {ygid), e ,ygid)} is also
available, where ¢ denotes the number of class names. The goal of OOD detection
is to determine whether an image x € X belongs to the ID class Y (9 or not.

We prompt LLMs to generate OOD class names set to assist the OOD de-
tection task. Additionally, extra information for both ID and OOD classes is
generated to better align text and images. The descriptions for ID classes are
denoted by DY and the OOD class names set and their descriptions are de-
noted by Y ©°Y and D©°Y respectively. Furthermore, a pre-trained model is
used to encode text including class name and description and image as feature,
and then decide whether an image belongs to the ID class names set. Specifically,
we use ¢(-) and ¢(-) to denote the image and text encoder, respectively. For an
image x and a text ¢, their features can be calculated by:

u=g(x), v=p(t), (1)

where u,v € R¢ denote the image and text features, d denotes the feature
dimension, respectively. The text input can be a class name or description.

Based on the features of the given image and text information, we can design
an evaluation function to decide whether the image belongs to the ID class or
not. For a comprehensive list of notations, refer to the appendix A.1.

3.2 Specific Semantic Text Generation Strategy

Ask for OOD names
Instruction: Please directly tell me the category
names without explanations and additional
information.

Question: Which classes and {ID_CLASS} are
similar in terms of size/pattern/environment?

Answer: Sure! Here are some examples:
{OOD_CLASS1} {OOD_CLASS2}
{OOD_CLASS3}

(a) OOD class generation.

Ask for description
Instruction: Please describe the visual
characteristics in twenty words or fewer.

Question: Please describe the visual characteristics
of {ID_CLASS}. The description should be precise.

Answer: Here are some characteristics: {ID_Description}

Question: What are the unique characteristics that
distinguish {OOD_CLASS} from {ID_CLASS}?

Answer: Here are the characteristics that distinguish
{OOD_CLASS} from {ID_CLASS}: {OOD_Description}

(b) Description generation.

Fig.2. (a) The prompt queries to obtain OOD class names similar to ID classes,
including instruction, question, and model response examples. (b) The prompt queries
to obtain descriptive words for ID and OOD classes, including instruction, question,
and model response examples.
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Fig. 3. The main framework of our model. LLMs are employed to generate OOD class
names and descriptions for ID samples, following a fixed template. Feature vectors
are then extracted using frozen encoders. Finally, the OOD detection process for a
single image is demonstrated. In the enlarged section labeled @, a detailed depiction is
provided of how the relationship between an ID class and its corresponding hard OOD
is constructed, along with their associated textual descriptions.

LLMs are adopted to generate additional textual information to support the
OOD detection task. Beyond generating OOD class names, LLMs are also used
to create nuanced textual descriptions for both ID and OOD class names.

LLMs are first utilized to generate OOD class names. To enhance the discrim-
inative ability of the model, the generated OOD classes are required to closely
resemble the ID classes. For example, if the ID class name is “cat”, an OOD class
name like “tiger” is preferred over unrelated options such as “book”. To achieve
this goal, prompts are refined to drive LLMs to generate target OOD class names
by exploring the pivotal properties including size, pattern, and environment. The
interaction process with LLMs is shown in Figl2] (a).

Formally, ¥ OOD class names are generated for each ID class name, i.e.,
Vy(id) € Y we generate OOD class names set {yl(-clmd), e ,yz(-?gd)}. y (°°d)

%

are utilized to denote the whole OOD class names set, which is defined as follows:
y (ood) _ U{y((lj()d)’ . ’y(;’?_d)}7 (2>
i=1

where K; denotes the number of generated OOD class names and its value is
dependent on the output of LLMs.

Since the strong knowledge capacity of the LLMs, it is necessary to filter out
some OOD classes [15] that are too similar to ensure the distinguishability of
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the subsequent description generation. For a detailed explanation, please refer to
appendix B.1. To achieve this, features for both ID classes and their correspond-
ing OOD class names are first extracted. Specifically, a pre-trained CLIP model
is utilized to extract the textual features for a given ID class and its associated
OOD class names:

id id
ol = (™), 3)
Vi€ {1 koY = o). (4)
Then, the similarity between ID class and OOD class names is calculated
(id)T,,(00d)
v v
[ i ] ¥ ) (5)

id ood
oV [0l

vje {17 7k}78ij -

According to similarity, for each ID class, the top-k OOD class names with the
lowest similarity scores are selected to construct pairs, where k£ < min{K;}$_;.
This process results in the filtered OOD class name set:

o (ood) ‘ d d
Y = U {y’fzo )’ T y’gz)ko )}’ (6)
i=1

where |Y(00d)| = ck.

After obtaining the ID class name Y (9 and the filtered OOD class names
~_(00d
Y(OO )7 descriptions for each class are generated. Given the high similarity be-

tween an ID class name and its corresponding OOD class names, a novel strategy
is devised to generate distinctive descriptions for each ID and OOD class.

For each ID class name and its paired similar OOD class names, we prompt
LLMs to generate the description DY = {dgid), e 7dEid)} that characterizes
the ID class name concisely and precisely. For example, for the ID class name
“sheep”, the generated descriptions might include “white wool”, “long neck and
snout”. These descriptions may overlap with features of similar OOD classes,
for example, the OOD class “deer” similar to ID class “sheep”, could also be de-
scribed as “long neck and snout”. Next, we prompt LLMs to generate concise and
precise descriptions for paired OOD class names. In appendix B.2, we analyze
the impact of common and specific features on OOD detection, demonstrating
that only specific features can enhance OOD detection. To ensure these descrip-
tions highlight unique properties and avoid overlapping with the ID class, the
LLMs are explicitly instructed to focus on distinguishing features in their gener-
ated descriptions D(©°Y) = Ule{dg(f()d), e dEZOd)}. The prompt for description
generation is given in Fig[2] (b).

3.3 Regionally Enhanced Semantic OOD Score

A novel method is proposed to compute the ID similarity score to complete the
OOD detection task.
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For any image x; and ID class name y(id), we utilize the OOD class names

~(ood) ~ (0od) (id)

{vi1 U } corresponding to y; , the ID description dl(.id) correspond-
ing to yg 9 and the OOD descriptions {d (cod) . ,dgz‘)d)} to obtain the con-

fidence score of image and ID class. Since there is a one-to-one correspondence
between the class name and their descriptions, we first combine them using the
following prompt to obtain an input text:

t = “A photo of {CLASS_NAME} with {DESCRIPTION}.”

By respectively substituting CLASS NAME and DESCRIPTION with
(id

the ID class name and its description, we obtain ¢; ). Similar operations are

used to obtain {t OOd RN OOd } Then, according to image x;, text t( Y and
{t (od) .. 7151(-20(1)}, we can calculate features by using:
u = ¢(xr), (7)
o =w(t(), ®)
Vi€ {1 kb ol = o). (9)

Then, we can calculate the similarity by:
id
Gay _ _uf v

Sil (id) ” ’ (10)

[Jwa[[[vg
T,,(00d)
u; v
Vied{l,--- k},s; (OOd % (11)
[l [flwz; ™

Based on the similarity s( 4 and {S(OOd) j=1, a similarity strategy is proposed

based on the rectification degree Q. Intultlvely, when the model is more inclined

to classify an image as belonging to an OOD class, the confidence in the ID class
should decrease. Formally, an amended similarity is defined as:

asfld) if 3(1 ) < ax{s

(ood) }
~(id ’
El = " (12)
SE; ) otherwise,
where 0 < a < 1.
For now, we obtain the amended similarity score between an image and all
ID class names. Similar to MCM [I7], normalized confidence is used to determine
whether an image belongs to an ID class. Specifically, the confidence is calculated
using the following formula:

st/
. id c e’i
sim(z;, t0Y) = max R

i=1 c /7'
1
> =€

where 7 is the temperature coefficient. Then, if the confidence score is larger than
a threshold parameter A\, x; is predicted as belonging to ID classes. Otherwise,
x; belongs to OOD classes. The detailed algorithm is provided in appendix A.2.

(13)
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Table 1. The OOD performance (%) ImageNet-1k as the ID dataset. The best results
are highlighted in bold, and the second-best results are in underlined.

Methods ‘ iNaturalist SUN Places Textures Average
‘AUROCT FPR95| AUROCT FPR95] AUROCT FPR95] AUROCT FPR95] AUROCT FPR95]
Requires training (w. fine-tuning)

MSP 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61
ODIN 94.64 30.22 87.17 54.04 85.54 55.06 87.85 57.61 88.80 47.75
Energy 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89
GradNorm 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32
NPOS 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93
7Z0C 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
CLIPN 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10

Zero-shot (w/o. fine-tuning)
Mahalanobis | 55.89 99.33 59.94 99.41 65.96 98.54 64.23 98.46 61.50 98.94

Energy 85.09 81.08 84.24 79.02 83.38 75.08 65.56 93.65 79.57 82.21
MCM 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
MMOOD 95.54 22.88 92.60 34.29 89.87 41.63 87.71 52.02 91.43 37.71
EOE 97.52 12.29 95.73 20.40 92.95 30.16 85.64 57.53 92.96 30.09
NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Ours 98.59 6.03 96.52 18.72 93.13 28.86 92.22 39.15 95.12 23.19

4 EXPERIMENTS

4.1 Datasets and Metrics

Datasets. In this paper, we evaluate the effectiveness of the proposed meth-
ods under two different settings. First, we consider ImageNet-1K [40] as the ID
dataset and use iNaturalist [41], SUN [42], Places [43], and Texture [44] as the
OOD datasets, following the MCM [I7]. Simultaneously, consistent with the set-
tings of works, we use a subset of ImageNet-1k and the Waterbirds dataset [45] as
ID datasets. Moreover, We further utilize a distinct subset of ImageNet-1K along
with the Spurious OOD dataset [46] as out-of-distribution datasets to evaluate
hard OOD detection.

Metrics. Following the setting of prior researches [T4I5IT7IT8], we utilize two
metrics: (1) the area under the ROC curve (AUROC), and (2) the false positive
rate at 95% true positive rate (FPR95) for OOD samples.

4.2 Compared Methods

We compare our approach with the current SOTA OOD detection methods, en-
compassing both zero-shot and fine-tuned models. Among fine-tuned models, we
evaluate MSP [2], ODIN [27], Energy [13], GradNorm [32], ViM [35], KNN [33],
VOS [24], NPOS [47], CLIPN [18], and ZOC [36]. For zero-shot models, we
consider MCM [I7] along with post-hoc methods applied to the CLIP architec-
ture, including Mahalanobis [I2] and Energy [I3] as additional baselines, and
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MMOOD [20], NegLabel [I5], and EOE [I4], which enhance category represen-
tations by incorporating textual descriptions. Notably, CLIPN [I8] utilizes the
large-scale CC-3M dataset [48] for additional pre-training of the text encoder.

4.3 Implementation Details

We utilize CLIP[I6] as the backbone of our framework, incorporating ViT-B/16
as the image encoder and a masked self-attention transformer as the text encoder.
Pre-trained weights for CLIP are adopted from OpenAl. Additionally, for LLMs,
we employ LLaMA-3-8B|38|, using pre-trained weights provided by Meta. In the
experiments, unless otherwise specified, we use k = 3 to generate OOD classes
corresponding to each ID class and set certification degree a to 0.8. We select
the threshold value of A when 95% of the ID samples are correctly classified
and T = 1 as the temperature, following the standard practice [I7/49]. The
configuration of the experimental environment is provided in the appendix A.3.

4.4 Performance Comparison

OOD Detection on Large-Scale Datasets. We use ImageNet-1k as the ID
dataset and iNaturalist, SUN, Places, and Texture as the OOD datasets. Table[T]
compares our approach with the latest SOTA methods, including both training-
based and zero-shot inference methods. Our method achieves SOTA performance
on the ImageNet-1k benchmark and surpasses a range of methods that em-
ploy fine-tuning for OOD detection, demonstrating the robust zero-shot OOD
detection capabilities of CLIP. Furthermore, compared with traditional zero-
shot OOD methods including Mahalanobis, Energy, and MCM, approaches like
MMOOE, EOE, and NegLabel, which further explore textual features, achieve
superior performance. Building upon these methods, our approach delves deeper
into the specific textual features of OOD classes, resulting in outstanding perfor-
mance across multiple datasets. Additionally, the OOD classes constructed for
each ID, even if they do not include the exact class names of the OOD samples
encountered, provide an expanded feature space that facilitates matching OOD
samples. It is noteworthy that our method is slightly outperformed by NegLabel
on the iNaturalist dataset. This is because NegLabel generates a large number
of OOD class names, and the iNaturalist dataset contains a substantial number
of plant species, among which these generated OOD class names are included.
The performance results obtained using various VLMs backbones are included
in the appendix C.1.

OOD Detection on Hard OOD Datasets. To further demonstrate the ef-
fectiveness of the proposed approach, we conduct additional evaluations under
two hard OOD conditions: 1) semantically hard OOD and 2) spurious OOD, as
shown in Table[2] In detail, semantically hard OOD refers to OOD samples that
are semantically similar to the ID samples; for this, we use ImageNet-10 and
ImageNet-20 as the ID and OOD datasets, respectively, and vice versa. Spurious
OOD refers to OOD samples that have false correlations with the ID samples,
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Table 2. Zero-shot OOD detection performance on hard OOD detection tasks.

ID:ImageNet-10  ID:ImageNet-20 ID:Waterbirds
OOD:ImageNet-20 OOD:ImageNet-10 OOD:Spurious OOD

Methods |AUROCT FPR95, AUROCT FPR95| AUROCT FPR95, AUROCT FPR95]
Mahalanobis| 90.71 51.46 90.41 37.50 99.55 2.21 93.56 30.39
Energy 97.94 10.30 97.37 16.40 97.16 7.76 97.49 11.49

Average

MCM 98.71 5.00 98.09 12.91 93.30 14.45 96.70 11.12
MMOOD 98.77 4.20 98.26 9.24 98.62 4.56 98.55 6.00
EOE 99.09 4.20 98.10 13.93 97.69 6.18 98.29 8.10

NegLabel 98.86 5.10 98.81 4.60 94.67 9.50 97.45 6.40
Ours 99.32 1.10 99.23 1.40 99.09 4.30 99.21 2.27

such as the spurious correlation between habitats and bird species. The results
indicate that even under more challenging conditions, the proposed method con-
sistently enhances OOD detection performance, achieving an average improve-
ment of 3.73% in FPR95 and 0.66% in AUROC compared to the current SOTA
methods. Specifically, on the task where ImageNet-10 serves as the ID dataset
and ImageNet-20 as OOD, our method improves FPR95 by 3.10% and AUROC
by 0.29%. When the roles are reversed, we observe improvements of 3.20% in
FPRO5 and 0.42% in AUROC. These results highlight the superior performance
of our method in semantically hard OOD detection.

4.5 Ablation Studies

Score Functions. To verify our method on various OOD detection score func-
tions, we have considered several zero-shot OOD methods, as shown in Ta-
ble 3] We denote the scores before applying our method as MCM, Energy, and
MaxLogit, and the scores after applying our method as MCMy,, Energy,.,., and
MaxLogit,,.. This approach allows us to validate the impact of MCM scores on
the experimental results in the ablation study of our main method. Specifically,
after adjusting the ID confidence using our method, we perform OOD detec-
tion using the MCM, Energy, and MaxLogit methods. The results across three
datasets indicate that our approach improves performance with different OOD
detection scores. Using the MCM score, AUROC and FPR95 improved by 2.46%
and 8.29%, respectively. This improvement is attributed to our scaling factor «
being set to 0.8, which, when using MCM, amplifies the difference between ID
and OOD scores, thus enhancing our method’s effectiveness.

The Choice of LLMs. To verify our method on different LLMs, we have
considered several LLMs with varying parameter sizes, as shown in Table [d] We
conduct experiments using various LLMs to comprehensively assess the effective-
ness of descriptors generated by different LLMs. Specifically, we utilize LLaMA-
3-8b, ChatGPT-4, and Claude 2 for descriptor generation. The average results
across three datasets indicate that using different LLMs achieved better perfor-
mance compared to the baseline MCM. Additionally, LLaMA-3-8b outperforms
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Table 3. Results after integrating our method with various scoring functions as base-
lines. The ID datasets are ImageNet-10, ImageNet-20, and Waterbirds, with corre-
sponding OOD datasets being ImageNet-20, ImageNet-10, and Spurious OOD, respec-
tively. “Average” represents the mean performance across these three datasets, and
“Improvement” indicates the enhancement relative to the baseline.

Methods ‘ Average Improvement
AUROCt FPR95] AUROCtT FPR95
MCM 96.70  11.12 / /
MCMours 99.16 250 4246  -8.62
Energy 9749  11.49 / /
Energy,,.. 97.83 8.92 4034  -2.57
MaxLogit 97.67  10.84 / /
MaxLogit, .| 98.01 8.82 41034  -2.02

Claude2 and GPT-4.0 in both AUROC and FPR95 metrics, demonstrating the
generalizability and robustness of our method. This can be attributed to the fact
that LLaMA-3-8b excels at generating short, task-specific text, which benefits
OOD detection by providing focused descriptions [50]. In contrast, GPT-4, while
powerful in broader tasks, may produce more verbose responses that could intro-
duce noise into similarity comparisons. Therefore, the performance differences
between the two are likely due to factors such as the relevance and specificity
of generated OOD class names, the precision of descriptive terms, and prompt
interpretation.

Table 5. Impact of number of OOD
Table 4. Impact of using different classes on results, consistent dataset set-
LLMs on results, consistent dataset set- tings as in Table k denotes the number
tings as in Table [3] “A” represents the of selected OOD classes.
AUROQC, “F” represents the FPR95.

Number ‘ Average Improve

Methods ‘ Average Improve At FL AT FL
At Fl A1 FJ MCM | 96.70 11.12 [/  /

MCM | 96.70 11.12 / / k=1 | 9899 2.92 12.29-8.20
LLaMA-3-8b| 99.16 2.50 +2.46 -8.62 k=2 1 99.00 2.53 +2.30-8.59
Claude2 | 99.03 3.21 +2.33-7.91 k=3 | 99.27 2.20 +2.57-8.92
GPT-4.0 | 99.06 3.00 +2.36-8.12 k=4 199.06 2.43 +2.36-8.69
k=5 |99.08 2.74 +2.38-8.38

Fine-grained Textual Features. To verify the effectiveness of generating spe-
cific descriptive terms for OOD classes, we created various types of descriptive
information to evaluate performance, as shown in Table 4l We conduct experi-
ment where descriptors are simplified to only use generated hard OOD classes
for inference, altering the template to “A photo of {Class_Name}” to assess the
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Fig. 4. Impact of prompt variation on LLM-generated descriptors.

efficacy of textual features. We refer to this as “Label only” in Figl] Addition-
ally, to validate the effectiveness of our descriptors in distinguishing OOD from
current ID samples, we designed different prompts for verification. Specifically,
we modify the question in Fig (b) to directly ask, “Please describe the visual
characteristics of {OOD_CLASS}”, “What are the visual features similar to
{OOD_CLASS} and {ID_CLASS}?” to obtain descriptions that include both
common and specific OOD features, as well as descriptions with only specific
OOD features. In Figld] these are represented as “Common+Specific descrip-
tion” and “Common description”, respectively. “Specific description” represents
the primary method of this paper, obtaining unique features that distinguish
OOD classes from ID classes.

The results indicate that even when only category names are used to provide
textual information (“Label only”), our method still outperforms the baseline
MCM. However, when the textual description includes a significant amount of
ID features (“Common description”), the performance of OOD detection signif-
icantly decreases, with the most notable decline observed on the ImageNet-20
dataset, where FPR95 and AUROC drop by 4.80% and 0.52%, respectively.
When the OOD descriptors include only the unique features that distinguish
OOD classes from ID classes (“Specific description”), our method achieves the
best performance across all three datasets. When descriptors include both types
of features (“Common-+Specific description”), the results on various datasets are
better than those with only the common description, but still inferior to those
with only the specific description. This validates that common features shared
between OOD and ID classes are detrimental to OOD detection.

4.6 Hyperparameter Sensitivity Analysis

Number of OOD Class Labels. Investigating the impact of the number of
generated OOD classes on performance, we set k with different values, i.e., {1, 2,
3,4, 5}. As shown in Table |5 performance improves initially and then declines
as k increases, with the best results at k& = 3. The initial gain stems from the
expanded textual space, enhancing the model’s capacity to separate ID and OOD
samples. However, larger k increases the likelihood of generating semantically
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Fig. 5. Evaluation of hyperparameter a’s effect on ID confidence correction, with
FPR95 and AUROC trends in the left and right graphs.

similar OOD descriptions, causing feature overlap with ID or existing OOD
classes. This overlap can be attributed to the inherent characteristics of LLMs,
which may generate similar descriptions for semantically related concepts. For
example, OOD descriptions for “cat” may include “kitty” and “kitten”, blurring
decision boundaries and impairing performance when k > 3.

ID Confidence Calibration. We investigate the influence of the ID confidence
calibration coefficient on the performance, adjusting the rectification degree «
across the range {0, 0.1, ..., 1}. We conduct experiments on the ImageNet-10,
ImageNet-20, and Waterbirds datasets, and the results are shown in Fig[f] We
observe that when « is set to extreme values of 0 and 1, and the performance
of OOD detection significantly decreases. When « is 0, setting the confidence
directly to 0 leads to some ID samples being incorrectly classified as OOD, re-
ducing robustness. Conversely, when « is 1, not adjusting the confidence negates
the model’s effectiveness. However, when « is between 0.7 and 0.9, the model
performs well across all three datasets, indicating that our model is not sensitive
to the a parameter.

5 CONCLUSION

In this paper, we propose a simple yet effective zero-shot OOD detection ap-
proach that leverages LLMs to enhance textual feature extraction for both ID
and OOD classes. Specifically, we design prompts to generate specific semantic
text, integrating ID class information to improve OOD distinction. We calibrate
ID confidence based on generated OOD scores and propose a regionally en-
hanced semantic OOD score for detection. Our approach guides VLMs to focus
on relevant image regions, leading to significant performance gains. Extensive
experiments show our method outperforms SOTA approaches across multiple
benchmarks and VLM architectures.

Acknowledgments. This work is supported by the National Key RD Program
of China (2022YFF0712100), NSFC (62276131), Natural Science Foundation of
Jiangsu Province of China under Grant (BK20240081).



5. CONCLUSION 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abhijit Bendale, Terrance E. Boult: Towards Open World Recognition. In: CVPR
(2015)

Dan Hendrycks, Kevin Gimpel: A Baseline for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks, In: ICLR (2017)

Jingkang Yang, Kaiyang Zhou and Yixuan Li et al.: Generalized Out-of-
Distribution Detection: A Survey, In: International Journal of Computer Vision
(2024)

Jingyang Zhang, Jingkang Yang and Pengyun Wang et al.: OpenOOD v1.5: En-
hanced Benchmark for Out-of-Distribution Detection, In: arXiv, abs/2306.09301
(2023)

Gao Huang, Zhuang Liu and Laurens van der Maaten et al., Densely Connected
Convolutional Networks, In: CVPR (2017)

Di Feng, Ali Harakeh and Steven L. Waslander et al.: A Review and Comparative
Study on Probabilistic Object Detection in Autonomous Driving, In: Trans. Intell.
Transp. Syst (2022)

Li Chen, Penghao Wu and Kashyap Chitta et al.: End-to-end Autonomous Driv-
ing: Challenges and Frontiers, In: Transactions on Pattern Analysis and Machine
Intelligence (2024)

Igor Kononenko: Machine learning for medical diagnosis: history, state of the art
and perspective, In: Artif. Intell. Medicine (2001)

Yen-Chang Hsu, Yilin Shen and Hongxia Jin et al.: Generalized ODIN: Detecting
Out-of-Distribution Image Without Learning From Out-of-Distribution Data, In:
CVPR (2020)

Haoran Wang, Weitang Liu and Alex Bocchieri et al.: Can multi-label classification
networks know what they don’t know? In: NIPS (2021)

Vikash Sehwag, Mung Chiang and Prateek Mittal et al.: SSD: A Unified Framework
for Self-Supervised Outlier Detection, In: ICLR (2021)

Kimin Lee, Kibok Lee and Honglak Lee et al.: A Simple Unified Framework for
Detecting Out-of-Distribution Samples and Adversarial Attacks. In: NIPS (2018)
Weitang Liu, Xiaoyun Wang and John D. Owens et al.: Energy-based Out-of-
distribution Detection. In: NIPS (2020)

Chentao Cao, Zhun Zhong and Zhanke Zhou et al.: Envisioning Outlier Exposure
by Large Language Models for Out-of-Distribution Detection. In: ICML (2024)
Xue Jiang, Feng Liu and Zhen Fang et al.: Negative Label Guided OOD Detection
with Pretrained Vision-Language Models. In: ICLR (2024)

Alec Radford, Jong Wook Kim and Chris Hallacy et al.: Learning Transferable
Visual Models From Natural Language Supervision. In: ICML (2021)

Yifei Ming, Ziyang Cai and Jiuxiang Gu et al.: Delving into Out-of-Distribution
Detection with Vision-Language Representations. In: NIPS (2022)

Hualiang Wang, Yi Li and Huifeng Yao et al.: CLIPN for Zero-Shot OOD Detec-
tion: Teaching CLIP to Say No. In: ICCV (2023)

Fellbaum, Christiane: WordNet: An electronic lexical database. In: MIT press
(1998)

Yi Dai, Hao Lang and Kaisheng Zeng et al.: Exploring Large Language Models for
Multi-Modal Out-of-Distribution Detection. In: EMNLP (2023)

Fabio Petroni, Tim Rockt’aschel and Sebastian Riedel et al.: Language Models as
Knowledge Bases? In: EMNLP (2019)



16

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

Dian Chao et al.

Jihoon Tack, Sangwoo Mo and Jongheon Jeong et al.: CSI: Novelty Detection via
Contrastive Learning on Distributionally Shifted Instances. In: NIPS (2020)

Rui Huang, Yixuan Li: MOS: Towards Scaling Out-of-Distribution Detection for
Large Semantic Space. In: CVPR (2021)

Xuefeng Du, Xin Wang and Gabriel Gozum et al.: Unknown-Aware Object Detec-
tion: Learning What You Don’t Know from Videos in the Wild. In: CVPR (2022)
Hongxin Wei, Renchunzi Xie and Hao Cheng et al.: Mitigating Neural Network
Overconfidence with Logit Normalization. In: ICML (2022)

Yifei Ming, Yiyou Sun and Ousmane Dia et al.: CIDER: Exploiting Hyperspherical
Embeddings for Out-of-Distribution Detection. In: arXiv, abs/2203.04450 (2022)
Xue Jiang, Feng Liu and Zhen Fang et al.: Enhancing The Reliability of Out-of-
distribution Image Detection in Neural Networks. In: ICLR (2018)

Yang Yang, Yuxuan Zhang and Xin Song et al.: Not All Out-of-Distribution Data
Are Harmful to Open-Set Active Learning. In: NIPS (2023)

Wenjuan Xi, Xin Song and Weili Guo et al.: Robust Semi-Supervised Learning for
Self-learning Open-World Classes. In: ICDM (2023)

Yang Yang, Nan Jiang and Yi Xu et al.: Robust Semi-Supervised Learning by
Wisely Leveraging Open-Set Data. In: Trans. Pattern Anal. Mach. Intell. (2024).
Yang Yang, Hongchen Wei and Zhen-Qiang Sun et al.: S20SC: A Holistic Semi-
Supervised Approach for Open Set Classification. In: ACM Trans. Knowl. Discov.
Data. (2022).

Rui Huang, Andrew Geng and Yixuan Li et al.: On the Importance of Gradients
for Detecting Distributional Shifts in the Wild. In: NIPS (2021)

Yiyou Sun, Yifei Ming and Xiaojin Zhu et al.: Out-of-Distribution Detection with
Deep Nearest Neighbors. In: ICML (2022)

LeCun, Yann and Chopra et al.: A tutorial on energy-based learning. In: Predicting
structured data (2006).

Haoqi Wang, Zhizhong Li and Litong Feng et al.: ViM: Out-Of-Distribution with
Virtual-logit Matching. In: CVPR (2022)

Sepideh Esmaeilpour, Bing Liu and Eric Robertson et al.: Zero-Shot Out-of-
Distribution Detection Based on the Pre-trained Model CLIP. In: AAAT (2022)
Tom B. Brown, Benjamin Mann and Nick Ryder et al.: Language Models are Few-
Shot Learners. In: NIPS (2020)

Hugo Touvron, Louis Martin and Kevin Stone et al.: Llama 2: Open Foundation
and Fine-Tuned Chat Models. In: arXiv, abs/2307.09288 (2023).

OpenAl: GPT-4 Technical Report. In: arXiv, abs/2303.08774 (2023).

Jia Deng, Wei Dong and Richard Socher et al.: ImageNet: A large-scale hierarchical
image database. In: CVPR (2009)

Grant Van Horn, Oisin Mac Aodha and Yang Song et al.: The INaturalist Species
Classification and Detection Dataset. In: CVPR (2018)

Jianxiong Xiao, James Hays and Krista A. Ehinger et al.: SUN database: Large-
scale scene recognition from abbey to zoo. In: CVPR (2010)

Bolei Zhou, Agata Lapedriza and Aditya Khosla et al.: Places: A 10 Million Image
Database for Scene Recognition. In: Trans. Pattern Anal. Mach. Intell. (2018).
Mircea Cimpoi, Subhransu Maji and Iasonas Kokkinos et al.: Describing Textures
in the Wild. In: CVPR (2014)

Shiori Sagawa, Pang Wei Koh and Tatsunori B. Hashimoto et al.: Distributionally
Robust Neural Networks for Group Shifts: On the Importance of Regularization
for Worst-Case Generalization. In: arXiv, abs/1911.08731 (2019)

Yifei Ming, Hang Yin and Yixuan Li et al.: On the Impact of Spurious Correlation
for Out-of-Distribution Detection. In: AAAT (2022)



47.

48.

49.

50.

51.

52.

5. CONCLUSION 17

Leitian Tao, Xuefeng Du and Jerry Zhu et al.: Non-parametric Outlier Synthesis.
In: ICLR (2023)

Piyush Sharma, Nan Ding and Sebastian Goodman et al.: Conceptual Captions: A
Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning.
In: ACL (2018)

Yichen Bai, Zongbo Han and Bing Cao et al.: ID-like Prompt Learning for Few-
Shot Out-of-Distribution Detection. In: CVPR (2024)

Zongxi Li, Xianming Li and Yuzhang Liu et al.: Label Supervised LLaMA Fine-
tuning. In: arXiv, abs/2310.01208 (2023)

Haonan Xu and Yang Yang: ITP: Instance-Aware Test Pruning for Out-of-
Distribution Detection. In: AAAT (2025)

Yang Yang and Haonan Xu: Strengthen Out-of-Distribution Detection Capability
with Progressive Self-Knowledge Distillation. In: ICML (2025)



	Enriching Category Representations with LLMs Towards Robust Zero-Shot OOD Detection

