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Abstract. While diffusion models effectively generate remarkable syn-
thetic images, a key limitation is the inference inefficiency, requiring
numerous sampling steps. To accelerate inference and maintain high-
quality synthesis, teacher-student distillation is applied to compress the
diffusion models in a progressive and binary manner by retraining, e.g.,
reducing the 1024-step model to a 128-step model in 3 folds. In this paper,
we propose a single-fold distillation algorithm, SFDDM, which can flexibly
compress the teacher diffusion model into a student model of any desired
step, based on reparameterization of the intermediate inputs from the
teacher model. To train the student diffusion, we minimize not only the
output distance but also the distribution of the hidden variables between
the teacher and student model. Extensive experiments on four datasets
demonstrate that our student model trained by the proposed SFDDM
is able to sample high-quality data with steps reduced to less than 1%,
thus, trading off inference time. Our remarkable performance highlights
that SFDDM effectively transfers knowledge in single-fold distillation,
achieving semantic consistency and meaningful image interpolation.

Keywords: knowledge distillation · diffusion models · inference efficiency.

1 Introduction

Diffusion models [23,8,7] have emerged as generative models for images of excep-
tionally high quality without the necessity of conducting adversarial training.A
diffusion model constitutes a Markov chain of forward steps of slowly adding
random noise to data, followed by a reverse denoising process that gradually re-
constructs the data from the noise via trained neural networks. These underlying
networks typically use the UNet architecture to better connect the forward steps
to the corresponding denoising step. However, such models require large numbers
of sampling steps, e.g., 1000 in DDPM [7], which leads to high sampling/inference5

times, limiting their applications in latency-sensitive applications.
Prior art explored diverse directions to reduce the sampling time of diffusion

models and maintain the image synthesis quality. One approach is to reduce the
5 We interchangly use sampling and inference time.
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computing complexity by compressing the UNet [11,25] and leverage the accelera-
tion technologies of modern GPUs. Another approach is to reduce the number of
sampling steps, i.e., the required UNet inferences. [21] skips intermediate steps by
generalizing the original Markovian process via a class of non-Markovian diffusion
steps. These two approaches do not change the original training procedure. Dif-
ferently, progressive distillation [19,15] introduces a teacher-student framework
to reduce a trained teacher diffusion model of T steps into a student diffusion of
T ′ steps, where T ′ ≪ T , via multiple binary foldings by retraining. For instance,
distilling a 1024-step diffusion model into a 128-step model needs first to train a
512-step intermediate model, then a 256-step, to finally arrive to the 128-step
model. The distillation objective is to minimize the output differences between
the teacher and student models. Progressive distillation better maintains the
synthesis quality than step-skipping, but it incurs high distillation time and must
comply with specific values of T and T ′ due to progressive halvings.

Our objective is to design an effective distillation method that achieves high
quality in (any) small sampling step and concurrently incurs low distillation time.
We propose SFDDM, a single-fold distillation framework able to reduce a T -step
teacher diffusion model into a T ′-step student diffusion model in a single fold.
Thanks to its single-fold nature, SFDDM offers the flexibility to distill the teacher
model into a student with any number of steps. To such an end, we first define a
new student model, which can extract knowledge of the teacher diffusion model,
by an arbitrary steps sub-sequence. Our forward process definition solves the
challenge of aligning the variables of teacher and student models, enabling flexible
single-fold distillation. Secondly, when training the reverse denoise process of the
student model, we minimize not only the difference in the model outputs but
also in the hidden variables at each step to better preserve the image synthesis
quality.

To demonstrate the effectiveness, we evaluate SFDDM against sampling-
skip [21] and progressive distillation [19] on CIFAR-10, CelebA, LSUN-Church,
LSUN- Bedroom image datasets and 2D Swiss Roll tabular dataset. We compare
their synthesis quality in terms of Fréchet Inception Distance (FID) [6] of distilling
a 1024-step diffusion model into 128-step and 16-step models. SFDDM achieves
the lowest FID as well as the best perceptual quality, also with flexibility on the
numerical relation between the teacher and the student, i.e., works for both 1024
to 128 or 100 steps. Further, the distillation effectiveness is validated on semantic
input-output consistency and image interpolation.

We summarize the contributions of this paper as follows:

– We propose a novel single-fold distillation algorithm, SFDDM, which can
agilely compress teacher diffusion into a student diffusion model of any step
in one fold.

– We define a new forward process for student diffusion, which aligns and
approximates student and teacher Markovian variables, enabling flexible
single-fold distillation.

– We design effective training for student diffusion by minimizing the difference
of output and hidden variables with respect to the teacher diffusion.
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– We experimentally demonstrate superiority of SFDDM in achieving high-
quality sampling data by less than 1% number of steps.

2 Related studies

Diffusion models [12,23,8,7,5,17] first step-wise destroy in a forward process the
training data structure and then learn how to restore the data structure from
noise in a reverse process. DDPM [7] proposed the first stable and effective im-
plementation capable of high-quality image synthesis. However, diffusion models,
including DDPM, suffer from slow inference stemming from immense intermediate
hidden variables, each the size of the synthetic output, as well as the complex
architecture. This sparked research on how to accelerate data synthesis with
related work exploring three main directions.

Fast sampling. Diffusion models mostly rely on an UNet [18] architecture
combining cross-attention and ResNet blocks for denoising. Fast sampling [11,25]
facilitates the reverse process by optimizing the computations of UNets. [11] pro-
poses an efficient UNet by identifying the redundancy of the original model and
reducing the computation, while [25] further comprehensively analyzes and sim-
plifies each component. These optimizations are orthogonal to other acceleration
techniques.

Sampling step skipping. DDIM [21] focuses on generalizing the Markovian
diffusion of DDPM via a family of non-Markovian processes. These are determin-
istic and thus faster. Accordingly, it is able to reduce the required number of
sampling steps on the trained DDPM model, without necessity of retraining. A
noticeable limitation is that DDIM trades off the quality of generated data. as
DDIM sampling approximates the procedure of the original model with skipped
intermediate steps.

Knowledge distillation. Previously explored for GANs [4,13], distilla-
tion [1,3] allows to transfer knowledge from a large trained teacher model to
a smaller student model for faster inference. To train a student model, pro-
gressive distillation [19] halves repeatedly the steps of a teacher model until
the desired number of steps has been reached. [15] further extends the folding
optimization to classifier-free guided diffusion implementation of Text-to-Image
tasks. Although progressive distillation delivers increasingly efficient inference,
each halving requires to train a new student model which multiples the training
effort and impacts the output quality due to added approximation noise at each
folding. Consistency models are proposed to improve the sample quality with few
steps [22]. A consistency model can be directly trained or obtained by distilling
a trained teacher model.

3 Single-fold distillation

We rethink knowledge distillation of diffusion models to reduce the number
of sampling steps by proposing single-fold distillation. Instead of progressive
multiple folds [19], which introduces distortion and costs extra training effort at
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each fold, SFDDM directly distills the teacher model to a student model with a
given number of steps in a single fold. One crucial challenge is the alignment from
the teacher’s to the student’s hidden variables, as the Markov chain is defined by
every two consecutive variables but the student has much fewer steps.

We first introduce the preliminaries of a DDPM model used as a teacher
model, including the definition of the forward/reverse process and the training
objective. Then we present SFDDM which defines the forward and reverse process
of the student by aligning and matching the hidden variables of the teacher.
Finally, we design the distillation algorithm for deployment, which shows the
training procedure of the student accordingly. For ease of presentation, we set
the number of steps in the student model as a divisor of the number of steps in
the teacher model, but the method is valid for an arbitrary number of student
steps, i.e. fractional teacher/student step ratios.

3.1 Preliminary

DDPM is composed of a reverse (denoising) and a forward (noising) process,
through T steps. Its objective is to learn the denoising process via a given forward
process.

Reverse process: The optimization objective of diffusion models [20] is
derived by variational inference. Given the observed data x0, the diffusion
model is a probabilistic model which specifies the joint distribution pθ(x0:T ),
where x1, ...,xT are latent variables with the same dimensions as x0, and θ are
learnable model parameters. pθ(x0:T ) is a Markov chain that samples from xT

to x0, pθ (x0:T ) := pθ (xT )
∏T

t=1 pθ (xt−1 | xt) . DDPM assumes that pθ (xT ) =
N (xT ;0, I) and

pθ (xt−1 | xt) = N
(
xt−1;µθ (xt, t) , σ

2
t I
)
,

where σt ∈ R≥0. pθ(x0:T ) is called the reverse process. It gradually denoises a
noise xT ∼ N (0, I).

Forward process: To derive a lower bound on the log likelihood of the
observed data, diffusion models introduce the approximate posterior q (x1:T | x0)

which is a Markov chain, q (x1:T | x0) :=
∏T

t=1 q (xt | xt−1), that samples from
x1 to xT . Then the log data likelihood can be decomposed as

E [log pθ (x0)] = Eq

[
log

pθ (x0:T )

q (x1:T | x0)

]
+DKL (q (x1:T | x0) ∥pθ (x1:T | x0)) .

Thus, we have the lower bound E [log pθ (x0)] ≥ Eq

[
log pθ(x0:T )

q(x1:T |x0)

]
. When training

the diffusion model, to maximize E [log pθ (x0)], the parameters θ are learned to
minimize the negative evidence lower bound:

argmin
θ

Eq [log q (x1:T | x0)− log pθ (x0:T )] . (1)
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The Markov chain q (x1:T | x0) is called the forward process. It progressively
turns the data x0 into noise. The conditional distribution in each forward step is
defined as:

q (xt | xt−1) := N
(
xt;

√
αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (2)

where αt ∈ (0, 1] and α1, ..., αT is a decreasing sequence, which ensures that the
values on the diagonal of the covariance matrix are positive. Reparameterizing
using the definition in Eq. (2), an important property of the forward process is
that:

q (xt | x0) = N (xt;
√
αtx0, (1− αt) I) . (3)

Training and sampling: According to the definition of the reverse p and
forward q processes, αt and σt for all t are not learnable parameters. Thus,
DDPM simplifies Eq. (1) as:

argmin
θ

∑
t

Eq[DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))]. (4)

DDPM further chooses the form of µθ (xt, t) to be:

µθ (xt, t) =
1√
αt

αt−1

(
xt −

1− αt

αt−1√
1− αt

ϵθ (xt, t)

)
, (5)

where ϵθ is a function with trainable parameters θ. According to the above
definitions of the forward and reverse processes and applying the parameterization
shown in Eq. (5), Eq. (4) can be simplified as argminθ L(θ), where:

L(θ) :=

T∑
t=1

Ex0,ϵt

[
γt
∥∥ϵt − ϵθ

(√
αtx0 +

√
1− αtϵt, t

)∥∥2] (6)

with γt =
(αt−1−αt)

2

2σ2
tαtαt−1(1−αt)

and ϵt ∼ N (0, I). It is important to note that when
deriving this loss, DDPM reparameterize xt as

xt =
√
αtx0 +

√
1− αtϵt, (7)

using the property in Eq. (3). DDPM further simplifies L by setting γt = 1
independent of α1:T .

The number of sampling steps T decides the generalization capability and
sampling cost of diffusion models. A big T leads to a reverse process with high
generalization capability that better captures the pattern of x0. However, it also
increases the sampling time and makes the sampling from DDPMs significantly
slower than other generative models, e.g, GANs. Such inefficiency promotes
our design of SFDDM to reduce the number of sampling steps via knowledge
distillation.
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Fig. 1: Single-Fold Distillation of Diffusion Model (SFDDM). The student accel-
erates the inference by a small number of steps T ′ instead of a large T . We use
T = 9 and T ′ = 3 in the figure for readability. To align the teacher and student
Markov chains, we propose to match the intermediate hidden variables to make,
e.g., q′(x′

2 = x6|x′
0 = x0) equal to q(x6|x0).

3.2 Single-fold Distilled Diffusion (SFDDM)

Instead of multiple folds like progressive distillation, which introduces distortion
at every fold by retraining, we want to extract knowledge from the teacher model
through a single fold. The first consideration is aligning steps from a T -step
teacher to steps of a given smaller T ′-step student. Here, our goal is to distill the
knowledge of the teacher model by mimicking its hidden variables (x1, ...,xT ) by
a compressed student model6 with hidden variables (x′

1, ...,x
′
T ′), where T ′ ≪ T .

A crucial challenge stems from the need to map a subset of multiple consecutive
steps at the teacher into one single step at the student (see Fig. 1). For example,
given an index7 c · t, where c = T/T ′ and c ∈ Z, according to Sec. 3.1, the
distributions we can explicitly obtain from the teacher are q (xc·t | xc·t−1) (see
Eq. 2). However, mapping x′

t with xc·t from the student to the teacher does
not hold for the next step, i.e., x′

t−1 does not correspond to xc·t−1, which is
supposed to map xc(t−1). Thus, when distilling the DDPM-like Markov chains,
it is not reasonable to simply and straightforwardly simulate q′(x′

t|x′
t−1) as

q(xc·t|xc·t−1) while correspondingly estimating p′Θ(x
′
t|x′

t−1) as pθ(xc·t|xc·t−1),
where the notations q′ and p′Θ are used to represent the forward process and
reverse process of the student model, respectively.

To overcome this challenge, we define a novel student model as follows. Note
that the key definition for diffusion models is the forward process, as it determines
the variational inference and dominates the training of the model. Therefore, to
better distill the knowledge from the teacher, we design the forward process of the
student q′ (x′

1:T ′ | x′
0) by extracting the teacher’s forward process q (x1:T | x0).

Specifically, to ensure correspondence between the latent variables in the two
diffusion models, given any t ∈ [1, T ′], the proposed distillation algorithm aims to
make q′(x′

t = xc·t | x′
0 = x0) equal to q(xc·t|x0), which has a close-form solution

(see Eq. 3). After fixing q′ by such an approximation in the forward process, the
6 Hereon we use ’′’ in symbols to indicate the corresponding student variables.
7 For simplicity, we assume that T is divisible by T ′ but this is not necessary (see

Sec. 3.6).
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reverse process of the student is constructed accordingly. In the following, we
show in detail how to define and train a student model.

3.3 The forward process of the student model

To distill the DDPM teacher, we also assume that the student model has a
Markovian forward process. Thus q′ (x′

1:T ′ | x′
0) is a Markov chain that can be

factorized as

q′ (x′
1:T ′ | x′

0) :=

T ′∏
t=1

q′
(
x′
t | x′

t−1

)
.

As shown in Eq. (2), the forward process of the teacher is defined by a decreasing
sequence α1, ..., αT . As for the student, different from the Gaussian distribution
shown in Eq. (2), we set the student’s forward process to the following form:

q′
(
x′
t | x′

t−1

)
:= N

(
x′
t;

√
αc·t

αc·t−c
x′
t−1,

(
1− αc·t

αc·t−c

)
I

)
, (8)

for all t ∈ [1, T ′] based on the elements of the sequence {αt}Tt=1 (the hyper-
parameters of the given teacher). Then, according to this forward process defini-
tion of the student, we have the property:

q′(x′
t | x′

0) = N (x′
t;
√
αc·tx

′
0, (1− αc·t) I) . (9)

This ensures that q′(x′
t = xc·t | x′

0 = x0) = q(xc·t|x0), where x′
t corresponds

to xc·t. Thus, the student’s Markov chain q′ (x′
1:T ′ | x′

0) can be regarded as a
simplified copy of the teacher’s forward process q (x1:T | x0).

Before introducing the reverse process, we derive some important forward pro-

cess posteriors. Using Bayes’ rule q′
(
x′
t−1 | x′

t,x
′
0

)
= q′

(
x′
t | x′

t−1,x
′
0

) q′(x′
t−1|x

′
0)

q′(x′
t|x′

0)
,

and the Markov chain property that q′
(
x′
t | x′

t−1,x
′
0

)
= q′

(
x′
t | x′

t−1

)
, we have

the posteriors:

q′
(
x′

t−1 | x′
t,x

′
0

)
= N (x′

t−1;
(1− αc·t−c)

√
αc·t

(1− αc·t)
√
αc·t−c

x′
t +

αc·t−c − αc·t

(1− αc·t)
√
αc·t−c

x′
0, σ

′
tI), (10)

where σ′
t =

(1−αc·t−c)(αc·t−c−αc·t)
(1−αc·t)αc·t−c

.

3.4 The reverse process of the student model

In the following, we define the reverse process of the student model according to its
forward process. Similarly, it is also a Markov chain represented as p′Θ(x

′
0:T ′) :=

p′Θ (x′
T )
∏T ′

t=1 p
′
Θ

(
x′
t−1 | x′

t

)
, where p′Θ (x′

T ) = N (0, I) and Θ represents the
learnable parameters of the student.

Then, we decide the form of p′Θ
(
x′
t−1 | x′

t

)
. Referring to Eq. (9), we can

reparameterize x′
t as a linear combination of x′

0 and ϵt ∼ N (0, I) that is x′
t =
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√
αc·tx

′
0 +

√
1− αc·tϵt. Let the model ϵ′Θ(x

′
t, t) predict ϵt, we have a prediction

of x′
0 given x′

t:

f
(t)
Θ (x′

t) :=
(
x′
t −

√
1− αc·t · ϵ′Θ (x′

t, t)
)
/
√
αc·t (11)

According to Eq. (4), we know that in the student diffusion model, p′Θ
(
x′
t−1 | x′

t

)
is a distribution that predicts q′(x′

t−1 | x′
t,x

′
0). Thus, we define that for all

t ∈ [1, T ′],
p′Θ
(
x′
t−1 | x′

t

)
= q′(x′

t−1 | x′
t, f

(t)
Θ (x′

t)). (12)

Then, based on Eq. (10) and Eq. (12), by replacing x′
0 as the predictor f

(t)
Θ (x′

t),
we have:

p′Θ
(
x′
t−1 | x′

t

)
= N

(
x′
t−1;µ

′
Θ (x′

t, t) , σ
′
tI
)
, (13)

where the mean is:

µ′
Θ

(
x′

t, t
)
=

(1− αct−c)
√
αct

(1− αct)
√
αct−c

x′
t +

αct−c − αct

(1− αct)
√
αct−c

f
(t)
Θ

(
x′

t

)
. (14)

3.5 Distillation procedure

Having defined the forward and reverse processes, here we design the algorithm
for training the student model. The reparameterization of µ′

Θ (x′
t, t) shown in

Eq. (14) can be applied to derive the training loss of the student. For maximizing
the log data likelihood of the observed data {x′

0} on the student8, referring to
Eq. (4), it is equivalent to minimize the Kullback-Leibler divergence between
Eq. (10) and Eq. (13). Then by using Eq. (10), (13), (14) and (11), we have the
following loss for training the student:

L(Θ) :=

T∑
t=1

Ex′
0,ϵ

′
t

[
γ′
t

∥∥ϵ′t − ϵΘ
(√

αc·tx
′
0 +

√
1− αc·tϵ

′
t, t

)∥∥2
]
, (15)

where γ′
t =

(αc·t−c−αc·t)
2

2σ′
t
2αc·tαc·t−c(1−αc·t)

. By the loss (Eq. 15), we can train the defined
student model from scratch using the observed data {x′

0}. However, in order to
extract the knowledge from the trained teacher, in the following we connect the
training of the student with the trained teacher.

In the derivation of the loss L(Θ) (Eq. 15), we use the following reparameter-
ization:

x′
t =

√
αc·tx

′
0 +

√
1− αc·tϵ

′
t. (16)

According to Eq. (7), we know that xc·t =
√
αc·tx0 +

√
1− αc·tϵc·t. In our

distillation, we want to make the hidden variable x′
t of the student equal to its

corresponding hidden variable xc·t of the teacher. As the student and the teacher
use the same observed data, x′

0 = x0, by Eq. (16), if we assume ϵ′t = ϵc·t, then
8 In distillation, student and teacher observe the same training samples. Thus, x′

0

always equals x0 and {x′
0} is equivalent to {x0}. To avoid confusion, we use {x′

0} to
represent the observed data when training the student.



Single-fold Distillation for Diffusion models 9

we can have x′
t = xc·t. By the training loss of the teacher L(θ) (Eq. 6), we know

that the output ϵθ
(√

αc·tx0 +
√
1− αc·tϵc·t, c · t

)
from the trained function ϵθ

of the teacher is a good predictor for ϵc·t (also for ϵ′t). Thus, we naturally rewrite
the student loss (Eq. 15) as

L(Θ) :=

T∑
t=1

Ex′
0,ϵ

′
t
[γ′

t∥ϵθ
(√

αc·tx
′
0 +

√
1− αc·tϵ

′
t, c · t

)
−ϵΘ

(√
αc·tx

′
0 +

√
1− αc·tϵ

′
t, t

)
∥2].

(17)

Training: For distillation, we train the student according to the loss (Eq. 17).
During the implementation in Sec. 4, we simplify the loss by setting γ′

t = 1, a
simpler approach shown beneficial for sample quality.

Sampling: We need an input noise x′
T ′ when sampling images from the trained

student. The straightforward way is to draw the noise by x′
T ′ ∼ N (0, I). Reducing

the number of sampling steps can negatively impact a model’s generalization
ability. To avoid the risk of generating poor-quality images from certain input
sample points when performing direct random sampling from N (0, I), we propose
a method to reduce the sampling space of x′

T ′ . This approach ensures that the
student model maintains strong performance even with fewer sampling steps
(e.g., 4 steps), preserving high-quality outputs while improving efficiency. For a
distilled student model, a high-quality input noise set {x̂′} can be obtained by
argminx̂′∥StudentDiffusion(x̂′)−x′

0∥. A random linear weighted combination
of elements from this set will be used for the random sampling of x′

T ′ .
Since the reverse process of the student is defined by Eq. (13), given the input

x′
T ′ , we can steadily sample all variables from x′

T ′−1 to x′
0. Note that the student

model is also a DDPM model. Any sampling algorithm compatible with DDPM
can be applied to the distilled student.

3.6 Distillation on flexible sub-sequence

In the previous derivation, the student extracts the knowledge from a special
variable subset {xc·t} of the teacher where t ∈ [1, T ′]. Indeed, our proposed
method can be extended to a more general case where we distill the knowledge
from any given subset {xϕ0 , ...,xϕT ′} of the teacher where ϕ is an increasing
sub-sequence of {0, ..., T}, ϕ0 = 0 and ϕT ′ = T . In this general case, the Gaussian
mean of p′Θ

(
x′
t−1 | x′

t

)
(see Eq. 13) is

µ′
Θ

(
x′

t, t
)
=

(1− αϕt−1)
√
αϕt

(1− αϕt)
√
αϕt−1

x′
t +

αϕt−1 − αϕt

(1− αϕt)
√
αϕt−1

F (t)
Θ

(
x′

t

)
,

where F (t)
Θ (x′

t) :=
(
x′
t −
√
1− αϕt · ϵ′Θ (x′

t, t)
)
/
√
αϕt is a prediction of x′

0 given
x′
t. Remarkably, T no longer needs to be divisible by T ′. This extension is

beneficial as it greatly expands the applicability of our distillation under various
steps of teacher diffusion models.
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Fig. 2: FID under different number of sampling steps from the teacher T = 1024,
on four datasets.

4 Evaluation

SFDDM distills the knowledge of any arbitrary DDPM-like teacher models
with efficiency and high sampling quality. We demonstrate its effectiveness by
four image benchmark datasets: CIFAR-10 [10], CelebA [14], LSUN-Church and
LSUN-Bedroom [24], as well as one tabular dataset: 2D Swiss Roll following the
diffusion model settings [16]. For each image dataset, we distill the same teacher
diffusion model of DDPM into 16, 100, or 128 student steps. Note that although
the original DDPM contains 1000 sampling steps, in this paper, we set it as 1024
steps in order to compare with progressive distillation [19], which requires a
number of steps that is a power of 2 for progressive halving. For the 2D Swiss
Roll dataset, we distill a teacher model with 500 steps into a student with 50
steps by SFDDM. The evaluation metric applied is FID together with perceptual
visualization of sampled images.

4.1 Experimental setups

Our evaluation is carried out by Alienware-Aurora-R13 with Ubuntu 20.04. The
machine is equipped with 64G memory, 4× GeForce RTX 3090 GPU and 16-core
Intel i9 CPU. Each of the 8 P-cores has two threads, hence each machine contains
24 logical CPU cores in total. We consider various image generation benchmarks
(CIFAR-10, CelebA, LSUN-Bedroom, LSUN-Church), with resolution varying
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from 32× 32 to 128× 128. All experiments for the teacher diffusion model use
the sigmoid schedule, particularly good for large images, following the settings of
[9] and all models use a UNet architecture same as DDPM [7]. Our schedule of
the student model is defined in Sec. 3.3 accordingly. Our training setup closely
matches the open source code by DDPM. For the training of the student model,
we choose Adam optimizer with learning rate fixed to 2 × 10−5 while other
hyper-parameters remain the same as the default setting of PyTorch Adam. An
interesting observation on SFDDM is that experimentally using l1 norm on LΘ

leads to faster convergence comparing to l2 norm. FID scores are computed across
10K images.

4.2 Sampling quality and efficiency

To demonstrate the quality and efficiency of SFDDM, we report the FID in Fig. 2
on all four image datasets comparing against DDIM, progressive distillation
(“Progressive”), Consistency model (CM) [22], and training directly on the smaller
model with the same dataset as the teacher model (“From scratch”).

In general, our SFDDM achieves the best FID over different datasets and
different small T ′. From the results, we observe that the sampling data quality
increases with the increase of T ′, as more sampling steps match more hidden
variables of the teacher model, better approximating the teacher distributions.
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Fig. 3: FID of the methods with different number of sampling steps on CelebA-HQ.

Comparing the baselines, DDIM achieves mostly the lowest quality in sampled
images as shown by high FID scores. This stems from the nature that DDIM does
not retrain a student model but focuses on improving the inference efficiency of
the original model. Thus, it benefits from simplicity but falls short in terms of
quality, when skipping too many intermediate steps during sampling, e.g., T ′ = 16.
On the other hand, training from scratch on a small diffusion model comes in as
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the second worst in terms of FID, due to the difficulty of capturing image features
with a small number of steps. Progressive distillation yields marginal improvement
as multiple folding and retraining increases distortion from teacher knowledge
due to noises it introduces at each folding. An interesting finding emerges in the
context of the LSUN-Church dataset with 128 sampling steps. Here, training
from scratch surpasses progressive distillation in FID performance. This can be
attributed to the fact that, with a relatively large number of steps, direct training
exhibits superior quality compared to progressive distillation, where systematic
distortion occurs fold by fold. This is consistent with the conclusion in [19]. We
also compare the student FID for progressive distillation, CM, and SFDDM with
varying sampling steps from 4 to 512 in Fig. 3. Overall, SFDDM consistently
outperforms the baselines. We also visualize the corresponding student model
output of step 4 and 16 in Fig. 4, demonstrating limited quality loss of small
sampling steps by SFDDM.

4 step

16 step

Fig. 4: Visualizied images generated by student model of SFDDM on CelebA-HQ.

4.3 Distillation with different sub-sequences

In accordance with Sec. 3.6, our algorithm can be extended to accommodate
flexible sub-sequences of the student model. Here, we compare FID values for
different choices to demonstrate their impact. Specifically, the different cases
of flexible sub-sequence are designed by various degrees of concentration of
mapped steps around the midpoint element. We define it by the percentage of
elements distributed uniformly within a 5% range near the midpoint element (i.e.,
512) while the others are uniformly distributed in the remaining range of steps.
Moreover, In our results presented in Tab. 1, we include the concentration degrees
of 40%, 20%, plus Scattered. “Scattered” refers to the student model matching a
sparse sub-sequence spread across the full teacher Markov chain. Scattered allows
to cover more knowledge of the noising/denoising procedure form the teacher.
Yet, concentrated choices, in which elements are nearby and centered in a partial
part of the teacher chain, are still able to distill high-quality diffusion models, as
shown by similarity in FID scores.
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Table 1: Distilling the same teacher with different sub-sequences on CelebA-HQ
with T ′ = 16.

sub-sequence Concentrated (40%) Concentrated (20%) Scattered

FID 4.85 4.69 4.82

Teacher

Student

Teacher

Student

Teacher

Student

Fig. 5: Consistency on CelebA-HQ, LSUN-Bedroom and LSUN-Church: inputing
the same noise.

4.4 Consistency between teacher and student

We zoom into the consistency between images sampled by the teacher and student
models when inputting identical noise. It is important to note that for a fair
comparison of the distillation results, we use the DDIM sampling method (also
applied in Sec. 4.5) for both the DDPM teacher and our SFDDM student. This
is because the output of the original DDPM sampling is not solely determined
by the input noise, owing to the introduced random factor during the stochastic
generative process. In contrast, DDIM sampling ensures pair correspondence,
i.e., same input, same output, facilitating a clear and accurate comparison. The
outcomes across three distinct datasets are illustrated in Fig. 5. It is noteworthy
that we employ different sampling steps for the student among different datasets,
thereby validating the flexibility of our approach under varying numbers of
sub-sequences, where the number of steps is not a power of 2. As evidenced by
the images, it is clearly observed that inputting identical noise leads to similar
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outputs, showing our effectiveness in transferring knowledge from the teacher to
a student having only approximately 1/10 of the steps.

4.5 Interpolation on the teacher and the student

Teacher

Student

Fig. 6: Interpolation on the distilled student and original teacher.

0 steps 10 steps 20 steps 50 steps 100 steps 150 steps 500 steps

(a) Teacher diffusion forward process of 500 steps on 2D Swiss Roll.
0 steps 1 steps 2 steps 5 steps 10 steps 15 steps 50 steps

(b) Student diffusion forward process of 50 steps on 2D Swiss Roll.

Fig. 7: Forward process of teacher and SFDDM student model on 2D Swiss Roll
dataset.

We further assess the efficacy of knowledge transfer through measuring the
similarity of semantic interpolation between the teacher and student models.
We evenly interpolate between two given noises to showcase the intermediate
sampled data in Fig. 6. The results reveal a stable visual interpolation in the
generated images since the input noise encodes distinctive high-level features of
the image. Consequently, the interpolation data implicitly captures the features
between the two noises into perceptually similar outputs. When comparing the
output of the teacher and student, we observe similarity in each interpolation,
showcasing the effectiveness of distillation as the student successfully inherits a
stable and consistent sampling capability from the teacher.
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4.6 Distillating tabular data

To assess the generality and applicability of SFDDM among different types of
data, we apply SFDDM on the tabular 2D Swiss Roll dataset, visualized in Fig. 7.
On this tabular DDPM, the forward process turns Swiss Roll-like points into
randomly distributed 2D points. Contrarily, the reverse process constructs a
Swiss Roll distribution according to randomly distributed points. Fig. 7 presents
the forward process of both teacher and student models. The results show that
our proposed algorithm SFDDM works on DDPM for distilling the generation of
tabular data by demonstrating the similar capability of generating 2D Swiss Roll
points with student sampling steps 10x fewer than the teacher diffusion.

5 Conclusion

In this paper, we propose a novel and effective single-fold distillation method
for diffusion models, SFDDM. In contrast to the prior study of progressive
distillation, SFDDM is able to compress any T -step teacher model into any
T ′-step student model in single-fold distillation. The key enabling features are (i)
new derivation of the forwarding process of the student model, which leverages the
reparameterization of the teacher model and approximation of their Markovian
states; and (ii) optimization of the denoise process of the student model by
minimizing the difference of model outputs and distribution of the hidden variables.
Our evaluation results on five datasets show that SFDDM achieves remarkable
quality on FID, allowing to strike better quality-compute tradeoffs.
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