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Abstract. Diffusion models have revolutionized image synthesis, but
their potential for image compression remains underexplored. We intro-
duce PLIC (Pseudo-Lossy Image Compression), a compression frame-
work leveraging diffusion models and conditioning inputs to achieve high
compression ratios while maintaining strong perceptual similarity and
superior image quality. Unlike traditional neural compressors using ab-
stract latent representations, our approach uses interpretable condition-
ing inputs (text prompts, canny edges, color palettes) to guide diffusion-
based image reconstruction. Grounded in rate-distortion-perception the-
ory, PLIC prioritizes minimizing bitrate and distortions over pixel-perfect
reconstruction, allowing diffusion models to fill in plausible details during
decompression which still results in high perceptual similarity. Evaluat-
ing on 490 real-world images, we demonstrate superior compression ratios
(0.004 bits per pixel and 0.197 bits per pixel on average) while maintain-
ing excellent image quality (mean BRISQUE=23.36, mean CPBD=0.60)
and high perceptual similarity. Our approach scales effectively with in-
creasing image resolution, with compression advantages growing at the
most common image resolutions. We analyze practical implications in-
cluding benefits for internet affordability, archival storage, and deploy-
ment considerations. Our project code can be found at: https://github.
com/PseudoLossy/PLIC.

Keywords: Image Compression · Diffusion Models · Conditioning In-
puts.

1 Introduction

Image compression is widely used for reducing the data footprint of images
while maintaining acceptable visual quality. Without image compression, many
digital applications such as web browsing, video streaming, and cloud storage
would not be possible at scale. Traditional lossless image compression algorithms,
such as those used by PNG, can achieve compression ratios of up to 3:1 (66%
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Fig. 1. Overview of how using conditioning inputs in tandem with diffusion models
to compress images (our methodology) differs from traditional codecs and neural im-
age compressors. Blue regions indicate compression steps, while red regions indicate
decompression steps, while the width of each region provides an estimate of the com-
putational demands. Notice the symmetrical and asymmetrical computational demand
of neural compressors and our method respectively.

compression), while lossy formats like JPEG and WebP can reach up to 20:1
(95% compression) [11]. However, at such high compression levels, image quality
often degrades significantly due to severe compression artifacts and distortions.

With the rise in popularity of deep learning models during the last decade,
neural network architectures have been extensively applied to image compres-
sion tasks, achieving state-of-the-art performance. Generally, neural image com-
pressors involve extracting high-level features from an image using a network
and transforming them into a latent space representation. This representation
achieves compression by exploiting spatial and semantic redundancies to distill
only the most important information. The latent space representation is then
provided as input to another network in order to obtain a reconstruction of the
original image. Leveraging image features in this manner to reconstruct images
has been shown to produce images with fewer visual distortions and greater
perceptual fidelity compared to algorithmic codecs [26].

More recently, denoising probabilistic diffusion models such as Stable Dif-
fusion have shown remarkable performance in generating high-quality, realistic
images [9,15]. Architectures such as ControlNet [43] use “conditioning inputs”
to control diffusion model outputs by conditioning them to adhere to struc-
tural guides. These inputs inherently encode perceptually important informa-
tion about an image, and unlike abstract latent space representations, condi-
tioning inputs explicitly extract interpretable spatial information such as color,
structure, and depth, suggesting their potential utility beyond mere generation
control.

We propose to re-imagine these conditioning inputs as components of a novel
compression paradigm. We term our framework as PLIC (Pseudo-Lossy Image
Compression). PLIC is grounded in rate-distortion-perception theory, strategi-
cally selecting ControlNet conditioning inputs that minimize bitrate and min-
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imize distortions (maximizing quality), deliberately deprioritizing pixel-perfect
reconstruction. This allows diffusion models to leverage their learned priors to
“fill in” perceptually plausible details during reconstruction, effectively outsourc-
ing part of the reconstruction process to the model’s understanding of visual re-
ality. This can result in exceptional compression ratios and higher image quality
while still maintaining high perceptual similarity, a significant departure from
the predominant focus on latent space representations in current compression
literature. The differences between PLIC and traditional image compression for-
mats and neural image compressors are illustrated in Fig. 1.

Through extensive experimentation on a carefully curated dataset of 490 real-
world images from the top 1,000 globally visited domains, we demonstrate that
using just three interpretable conditioning inputs (text prompts, canny edges,
and color palettes) is sufficient to outperform neural compression baselines. Our
evaluation includes three key experiments: (1) assessing the perceptual benefits
of increasing the number of conditioning inputs, (2) analyzing image quality,
perceptual similarity, and compression ratios against existing approaches, and (3)
evaluating the feasibility of our framework with current technology. We evaluate
our method across diverse image types and various resolutions (333 × 687 to
4032 × 2030), revealing that compression advantages scale better at common
image sizes, despite computational overhead during decoding.

Taken together, we make three key contributions in this work:

– We introduce a novel compression framework grounded in rate-distortion-
perception theory, which uses conditioning inputs to deliberately prioritize
image quality and compression efficiency over pixel-perfect reconstruction.

– We demonstrate that our conditioning-inputs-based compression method, us-
ing three conditioning inputs (text prompts, canny edges, and color palettes)
achieves exceptional compression ratios of 0.004 bits per pixel at minimum
and 0.197 bits per pixel on average while having the best average image qual-
ity (mean BRISQUE=23.36, mean CPBD=0.60). While PLIC currently in-
curs higher computation times, it produces reconstructions with high percep-
tual similarity. Through extensive experiments against a neural framework
that maximizes perceptual similarity and a neural framework that maximizes
compression, we show our approach outperforms most previous baselines de-
spite its significantly smaller data footprint.

– We provide a detailed analysis of the method’s practical implications, includ-
ing its scalability benefits across common image resolutions, its potential to
increase internet affordability without degrading user experience, advantages
for long-term archival storage, and considerations regarding computational
requirements and ease of deployment.

2 Related Work

2.1 Neural Image Compression

Most traditional image compression techniques based on neural networks employ
some form of either a variational autoencoder (VAE) [19] or generative adver-



4 S.A. Hassan et al.

sarial network (GAN) [12]. VAEs use a predefined network known as an encoder
to transform the input, in this case an image, into a probabilistic latent space.
This distribution of the image within the latent space is the compressed form,
and a predefined decoder is used to transform the latent space distribution back
into the input space. GANs utilize a generator and discriminator network to
generate new data indistinguishable from the original input data’s distribution.
Since both architectures try to reconstruct an image from a smaller latent rep-
resentation, there is some loss in information during the encoding and decoding
steps, thus both suffer from the rate-distortion-perception tradeoff [8,5]. The
rate-distortion-perception tradeoff states that in low bitrate contexts, such as
compression, minimizing the distortions in images will lead to less perceptually
pleasing images due to noise and other factors, and vice-versa. VAEs are known
to induce blurriness in images for this reason [45].

There have been many proposed improvements and modifications to such
neural networks in order to tailor them for image compression with higher real-
ism, such as using less computationally expensive decoding activations in VAEs
[40,37], semantically decoupling an image into multiple independent regions be-
fore encoding them [10], using Conditional-GANs trained on labelled data in-
stead [25], and using a text encoder to inform the image encoder which details
are perceptually the most important [21].

2.2 Diffusion Models for Image Compression

Diffusion models, also referred to as diffusion denoising probabilistic models
(DDPMs) [15], have gained prominence as a powerful class of generative models,
known for their high-quality image synthesis. Such models rely on the denoising
autoencoder, which is repeatedly sampled while supervised by input features
(such as text features in the case of text-to-image diffusion models) in order to
incorporate random noise into an image, allowing for iterative generation of a
high quality image. Latent diffusion models which shift the diffusion process to
a lower-dimensional latent space have helped to substantially reduce computa-
tional demands [34]. Furthermore, ControlNet [43]; a neural network architecture
designed to add spatial conditioning controls to large, pre-trained text-to-image
diffusion models allows for even greater fidelity and controllability in genera-
tions. Using image conditioning inputs that are easily understood by humans
such as edge maps, depth maps, segmentation masks, among others, users are
able to modify the image structure and style as needed.

Unsurprisingly, using diffusion models to compress images is emerging as an
area of research interest due to their learned knowledge about both high-level and
low-level visual concepts, allowing them to reconstruct image details at higher
fidelity and perceptual quality for a given bitrate [46]. However, these models
are known for their generative diversity [1,16] therefore in the context of image
compression where the generated image must obey a ground truth, recent work
has focused on controlling the output of these models while optimizing them for
compression. This includes introducing additional latent variables to guide the
denoising process [39], removing redundant processes in the denoising steps to
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increase performance [33] and using short text embedding generated from the
original image itself instead of a prompt to generate the image [30]. While all
of these methods score well on perceptual metrics, their use of latent vectors as
the condition for the diffusion model prevents them from outperforming existing
methods in terms of compression. Furthermore, the easily interpretable condi-
tioning inputs typically employed in ControlNet are not explored as a means of
compression. While [22] investigates the use of sketches as a conditioning input
to preserve structural information for compression, and [7] uses simple image
descriptions in conjunction with latent image representations, the similarity of
the reconstructed images is lacking with respect to the originals, especially for
perceptually important details.

To the best of our knowledge, this is the first work that thoroughly investi-
gates the potential of using simple, non-vector conditioning inputs as a means
of compressing images.

3 Methodology

Supported by the rate-distortion-perception theory, we propose to choose condi-
tioning inputs that aim to minimize bitrate and maximize perceptual similarity
with the original image, thus forgoing minimization of pixel-level differences
and spatial distortions [4]. While this would render reference-based pixel-wise
metrics unsuitable for evaluation, this is preferable as most conditioning inputs
supported by ControlNet versions of diffusion models capture a facet of the most
perceptually meaningful information only, tending to ignore finer details at the
pixel-level. Furthermore, diffusion models will be able to judiciously “fill in” the
gaps at the pixel-level, such as texture, due to their learned knowledge about the
world, allowing for the reconstructed images to still be of higher quality even if
there are pixel-level differences. With the prioritized optimizations in mind, we
extract the semantic, structural and color information from the original image
via the following conditioning inputs:

1. Text prompt: The prompt serves as a description of the image and is
sufficient to provide semantic information. We opt to use the GPT-4-vision API
to generate the prompt from the original images, as this allows us to tweak
human-friendly zero-shot instructions which can help prevent misuse as well
as leverage a Large Language Model (LLM) to only describe perceptually and
contextually important information.

2. Canny Edges: Canny edges can provide the structural information [6],
ensuring that reconstructions have the same composition as the original image.
This approach strikes a balance between minimal bitrate and improved accuracy,
as the canny edgemaps are compact due to being monochrome.

3. Color Palettes: A color palette further contextualizes the information
provided to the diffusion model by providing general information of how the
colors were distributed in the image, ensuring accurate color replications. It can
be obtained by downsizing an image to a small resolution such as 32 × 32.
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Fig. 2. Using JBIG2 on canny edges provides significant lossless compression.

3.1 Additional Optimizations

In order to increase perceptual similarity in a compression maximizing man-
ner, we propose three further optimizations to the aforementioned conditioning
inputs:

Due to edge detection, most pixels in a Canny edge bitmap have the same
value, representing negative space between thin, edge outlines, allowing further
optimization. We exploit this by using lossless JBIG2, the industry standard
compression algorithm for bi-level images, typically used in fax machines and
black-and-white PDFs. JBIG2 outperforms other algorithms by reducing bi-level
images by a factor of 2-5 [17]. Testing on 490 images scraped from the Web (Sec.
4), we see that JBIG2 provides significant lossless compression, allowing the
canny edges to be up to 99.95% and on average 90% smaller than the original
image. The results are presented in Fig. 2.

The color map is encoded via WebP, which provides significantly reduced
compression artifacting compared to JPEG [11], ensuring that the colors ex-
tracted from the original image are provided to the diffusion model accurately.

Lastly, we propose using segmentation masks to preserve finer perceptual
details across compression and reconstruction. Stable Diffusion Inpainting allows
using a black and white mask to indicate which sections of an image should
be recreated, and which sections should be left untouched, thus allowing for
the preservation of critical, salient features, such as faces, small text and small
logos [42]. The cropped salient features are stored unmodified as part of the
compressed form, hence the total compression becomes indirectly proportional
to the area of salient features in the original image. However, since only small,
important details are at risk of being distorted and thus marked as salient [33,22],
compression is expected to still be significant. Salient features can be masked
very quickly and automatically by leveraging Meta’s Segment Anything Model
[20] to identify various segments in an image and using Grounding DINO [23] to
identify segments with small, salient features.

Our approach extracts only the most high-level and perceptually important
features as conditioning inputs to serve as the compressed state of an image. This
method guarantees the preservation of information in these conditioning inputs
during reconstruction while allowing a diffusion model to ‘fill in’ missing de-
tails autonomously–a technique we term as ‘Pseudo-Lossy’ Image Compression.
Therefore, for the sake of brevity we shall refer to our proposed methodology
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of compressing images via conditioned diffusion models as PLIC. Fig. 1 pro-
vides an overview of the conditioning inputs in PLIC and how it differs from
traditional methods.

4 Experiments & Results

To evaluate the efficacy of PLIC in real-world scenarios, we scraped images
from the top 1000 globally visited domains using the Google Chrome UX Re-
port (CRUX) lists [36] and manually removed pages with inappropriate content,
resulting in a final set of 600 pages. Given the imbalance in image quantity
across websites, each website was categorized into one of seven main categories
derived from Cloudflare’s domain categorizations [35]: E-Commerce, Informa-
tional, Business / Company, News, Social Media, Video Streaming, and other.

From each category, we randomly sampled 70 images, resulting in a dataset
of 490 images. 1 A minimum resolution of 512×256 in either orientation was set
because (i) lower-resolution images lack the necessary detail and structure needed
by current text-to-image models to generate high-quality, coherent outputs [32]
and (ii) such images do not provide much compression due to their already
small size. Thus, in our dataset, the resolution of collected images ranged from
333× 687 to 4032× 2030.

We conduct 3 different types of experiments:

– Evaluating the perceptual benefits of increasing conditioning inputs.
– Detailed analysis of image quality, perceptual similarity and compression

ratios against existing approaches.
– Exploring how the generation costs scale up in two different use cases.

4.1 Ablation Study of Conditioning Inputs

We validate the choice of conditioning inputs by compressing all images in the
dataset to their conditioning inputs, reconstructing them and evaluating the
perceptual similarity of the reconstructions with respect to the original images.
We repeat this experiment 4 times, each time adding another conditioning input
to evaluate the contribution of each to the perceptual similarity, (prompts only,
prompts + canny edges, prompts + canny edges + color maps, prompts + canny
edges + color maps + salient feature preservation enabled). We used Stable
Diffusion 1.5 (SD1.5) as the diffusion model in conjunction with two ControlNet
pipelines to condition the input, where one conditioned the image generation
based on structure and color and the other used inpainting to generate all parts
of the image other than the selected region.

1 Images with transparent pixels were excluded to prevent processing inconsistencies.
Many image models are optimized for RGB channels and may mishandle the al-
pha channel for transparency. This ensures consistent data processing and avoids
potential artifacts during model training and inference.
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Fig. 3. Tradeoff between bpp and perceptual similarity as conditioning inputs increase.

EXP DINOv2 Compression (%) Compression (bpp)

Median Min Max Median Min Max Median Min Max

Prompt 0.16 0.00 0.90 99.78 84.00 99.998 0.0004 0.0001 0.02
+ Canny 0.24 0.00 0.95 91.14 54.00 99.95 0.17 0.0001 0.93
+ Color 0.85 0.10 0.99 90.47 52.91 99.94 0.18 0.01 0.94
+ Salient 0.89 0.58 0.98 77.85 0.00 96.82 0.33 0.05 1.45

Table 1. Summary statistics of the ablation study.

The extent of compression is measured in two ways; (i) via comparing the
size of the original image against the compressed state (i.e. the sum of prompt
size, canny edges size after JBIG2 compression, color palette size, segmentation
mask size and salient features size) and (ii) bits per pixel (bpp). For the per-
ceptual similarity evaluation metric, we use DINOv2, a self-supervised Vision
Transformer that achieves state-of-the-art performance on many computer vi-
sion tasks [29]. DINOv2 creates visual feature embeddings which are well-suited
to capture important semantic information about images. Furthermore, since DI-
NOv2 is self-supervised, it has learned visual features that can generalize across
various image distributions, even outside of its training set. The cosine similarity
between the embeddings of the original and the reconstructed image can be used
as an accurate measure of perceptual similarity [44]. The results are presented
in Fig. 3 and the summary statistics are provided in Tab. 1.

As we add more conditioning inputs, we see weaker compression ratios as the
median bpp increases from 0.0004 to 0.33. However, looking at compression as
the percentage reduction in size instead we see that the images are still being
heavily compressed in all cases. Furthermore, adding more conditioning inputs
results in a consistent increase in perceptual similarity score, increasing from 0.16
as a baseline to 0.89, referencing the rate-perception tradeoff. Due to salient
preservation targeting small regions from an image, the perceptual similarity
score does not improve much between the salient feature preservation test and
the previous test. Fig. 4 visually shows the effects of our salient feature step on
critical details, as well as the effects of increasing conditioning inputs generally.
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Fig. 4. Perceptual gains of increasing the number of conditioning inputs.

4.2 Detailed Image Analysis

Next, we evaluate PLIC against two neural image compression frameworks:

– HiFiC [25]: HiFiC is a popular conditional-GAN-based image compressor
that achieves state-of-the-art results in many image compression on various
metrics such as PSNR (Peak signal-to-noise ratio), MS-SSIM (Multiscale -
structural similarity index measure) and FID (Fréchet inception distance)
[14] at very low bitrates. In order to ensure a fair comparison, we aim to
keep the compression ratios between PLIC and HiFiC as close as possible
hence we specifically use HiFiC-Low as it achieves the highest compression
ratios as compared to HiFiC-Medium or HiFiC-High, at the cost of some
loss in similarity.

– TACO [21]: TACO is an image compression framework which utilizes a
text encoding to guide a diffusion encoder for creating a latent representa-
tion of an image, instead of directly using a text prompt to guide the encoder
instead. It also achieves state-of-the-art results in LPIPS (Learned Percep-
tual Image Patch Similarity) [44], a widely used perceptual similarity metric.
Similarly to HiFiC, we use TACO with the hyper-parameter λ = 0.015 which
results in the most aggressive compression.

To ensure a more robust evaluation, we use PLIC with not just SD1.5 but
also Flux.1, a recent transformer based text-to-image diffusion model that has
gained considerable popularity, in order to draw any insights between consistent
behavior in diffusion models (we did not provide color palettes as a conditioning
input to Flux as it was recently released at the time of experimentation and a
well-trained canny + color conditioned version of the model did not exist yet).
Furthermore, instead of just using DINOv2 as the perceptual similarity metric,
we also evaluate all images using the LPIPS metric, due to its high alignment
with human ratings [44].
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Fig. 5. Comparison of perceptual similarity, compression strength, computational time
and image quality between PLIC (SD1.5, Flux.1), HiFiC-Low and TACO.

As mentioned previously in Sec. 3, while our methodology produces largely
perceptually similar reconstructions, they are different at the pixel-level since
fine, noisy details are not captured at any point. Since PLIC is not constraint to
exactly reconstruct pixel-level textures, the reconstructed images do not suffer
from compression artifacts / blockiness / blurriness as the diffusion model makes
no attempt to reconstruct exact details from compressed data and is free to gen-
erate the output from it’s own learned distributions. To measure this increase
in image quality, a no-reference (NR) image quality assessment (IQA) model is
required since providing the original image as a reference would lead to poor
scores due to the pixel-wise differences being interpreted as reconstruction loss.
To measure reconstruction quality, we use BRISQUE (blind / referenceless im-
age spatial quality evaluator) [27], which uses luminance coefficients to quantify
possible losses of ‘naturalness’ in the image due to the presence of compression
distortions, and CPBD (cumulative probability of blur detection) [28], which
uses a probabilistic model to measure levels of blur at each edge in an image.

We evaluate all methodologies against each other across 6 dimensions: per-
ceptual similarity with DINOv2 and LPIPS, compression, encoding–decoding /
synthesis times, and image quality with BRISQUE and CPBD, on a 150 image
subset of our dataset for each sub-experiment. The results are provided in Fig.
5. While HiFiC-Low and TACO achieve better perceptual similarity scores, the
scores for PLIC with SD1.5 are still reasonably good, with an average of 0.90
DINOv2 score and 0.21 LPIPS score (perceptual similarity for PLIC with Flux
is slightly lower as expected due to the lack of color palettes). However, the com-
pression ratios achieved by PLIC are noticeably better, with an average bpp of
0.20 for SD1.5, which is lower than the 25th percentile bpp for both HiFiC and
TACO. As for image quality, the BRISQUE score distributions show average
scores of 23.36, 23.91 and 29.90 for SD1.5, HiFiC and TACO respectively, indi-
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Original Zoomed PLIC (SD1.5) HiFiC-Low TACO JPEG WebP

Fig. 6. Visual comparison showing the superiority of PLIC and conditioning inputs
+ diffusion model compression in general to reconstruct higher quality and fidelity of
images that are still perceptually similar in the extremely low bitrate regime. JPEG &
WebP images were compressed with maximum strength in order to bring the compres-
sion extents as close as possible to PLIC. HiFiC and TACO were also used at maximum
compression strength as previously mentioned.

cating TACO has more spatial distortions than the other two. Meanwhile, the
CPBD score distributions show average scores of 0.60, 0.51 and 0.58 for SD1.5,
HiFiC and TACO respectively, indicating HiFiC images to be more blurry com-
pared to the other two. While HiFiC images suffer from blurriness and TACO
images suffer from distortions and noise, PLIC with SD1.5 minimizes both dis-
tortions and bluriness, performing the best when evaluated by the BRISQUE
and CPBD metrics. Hence, PLIC demonstrates the best image quality and vi-
sually pleasing reconstructions (given that the viewer is fine with a non-exact
pixel-level yet still perceptually similar overall reconstruction). This becomes
evident in Fig. 6 too, as the PLIC reconstructions look much sharper and de-
fined, free of compression artifacts. In the computational time analysis, a clear
weakness of PLIC is shown as HiFiC and TACO are much faster at encoding
and decoding images, while the diffusion models are slower due to their highly
iterative nature.

Lastly for the detailed image analysis, we investigate how the average bpp
changes as image dimensions / resolution changes. High-resolution images (at
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Fig. 7. Comparison of average bpp after compression across image resolutions.

least 3000 pixels along any dimension) were sampled from our dataset, down-
sized versions of various resolutions were created for each and each version was
compressed and decompressed using PLIC with SD1.5, HiFiC and TACO. The
results are shown in Fig. 7. We find that the PLIC average bpp is not dependent
upon the original / reconstructed image size. This makes sense as prompts are
negligible in size and generated according to what the image is depicting thus
they are similar irrespective of resolution. Color palettes are always obtained by
reducing the image to a constant 32 × 32 resolution, thus they have negligent
impact on the bpp. Canny edges meanwhile are the same size as the original di-
mensions and are thus the amount of bits needed to encode the information for
one pixel remains proportionately the same, especially after JBIG2 compression.
Only varying level of salient features cause small deviations for PLIC. Overall,
for image dimensions of about 500 to 1500 pixels especially, PLIC scales better at
compressing images when compared to a GAN or diffusion-encoder based com-
pressors such as HiFiC or TACO, which proportionately require a larger latent
vectors to represent an image at lower resolutions.

4.3 Cost Analysis Across File Sizes and Storage Duration

In this section, we evaluate the overall cost implications of our framework by
examining two distinct scenarios: (i) on-demand image delivery, where both net-
work egress and GPU decoding costs matter, and (ii) long-term archival storage,
where storage fees and time before access dominate.

On-Demand Transfer & Decoding: Fig. 8a shows the ratio of original
transfer cost to our method’s total cost (i.e., PLIC transfer plus decoding). A
ratio above 1 indicates that using PLIC is cheaper. We bin images by their
original file size, and apply a common egress fee ($0.09/GB on AWS [2]), as
well as a GPU rental rate ($1/hour for an A100 on Vast.ai [38]). Notably, our
GPU VRAM was heavily underutilized and rental prices include a significant
premium, so the per-image decoding cost could be even lower when amortized
over larger batches or shared GPU usage. Across bins, we observe higher cost
savings (ratio up to ×4–5) as image size increases. This stems from the fact that
our compressed conditioning data does not grow significantly with resolution, as
seen in Fig. 7. Furthermore, larger image files in our dataset were likely to be
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Fig. 8. (a) Immediate cost ratio of storing/transferring original images vs. using PLIC,
binned by file size. Ratios above 1.0 indicate that PLIC is cheaper. (b) Cumulative
cost over time for long-term storage, comparing original images to PLIC’s reduced
representations.

less optimized beforehand, granting our framework more competitive savings,
whereas smaller image files were already heavily compressed and showed a ratio
lower than 1, but at the cost of much lower fidelity.

Long-Term Storage & Decoding: In many real-world scenarios, images
remain stored for extended periods, making the storage footprint at least as
important as immediate transfer and decoding cost. Fig. 8b compares the cu-
mulative cost of retaining and eventually transferring the original images versus
storing PLIC’s smaller conditioning inputs and decoding them on-demand. We
apply a common storage rental rate ($0.023/GB/month for Amazon S3 [3]), and
assume the same egress fees and GPU rental as before. Over time, the modest
decode overhead is overshadowed by significant storage savings, especially as the
image set grows or is retained for periods longer than 6 to 12 months. There-
fore, PLIC provides substantial operational benefits for archival or on-demand
use cases (high-write, low-read scenarios), even under conservative GPU cost as-
sumptions, due to it’s assymetrical computational demands and the compression
step being quite inexpensive as the diffusion model remains un-involved.

5 Discussion

In this section, we would like to discuss other aspects, contributions and limita-
tions of our method that were not explored in the previous sections:

Bandwidth Savings & Internet Affordability: Webpage sizes have in-
creased by roughly 13 times over the last decade, in large part due to the use of
more and higher quality images [13]. Simultaneously, 94 developing countries fail
to meet the target for affordable broadband services due to Internet plan costs
exceeding 2% of the monthly Gross National Income (GNI) per capita [18]. Given
the extreme levels of compression, PLIC-based image compression can be a vi-
able pathway towards increasing bandwidth savings for end users, thus making
the internet much more affordable. PLIC can also enhance the user experience
during web browsing given that in most cases, image quality is enhanced com-
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pared to traditional image codecs and neural compression frameworks, while still
preserving high perceptual similarity with respect to the original images. Due
to the combination of high image quality and perceptual similarity, but lower
pixel-level similarity, we expect such compression to excel in ‘semantic imagery
contexts’, where images serve primarily to evoke or illustrate broad concepts,
rather than to provide detailed visual information. Examples of such contexts
include news articles, educational materials, and stock photos.

High-Write, Low-Read Scenarios: PLIC is attractive for workloads where
images are written or uploaded frequently but accessed only sporadically. Back-
ups, archives, long-tail media libraries, and even “cold” portions of personal photo
galleries fall into this category. In such settings, traditional storage tiers often
force a painful trade-off: either keep full-fidelity images and incur recurring ca-
pacity fees, or delete them outright to reclaim space. PLIC offers a third option.
Because encoding is lightweight while decoding is heavyweight, write time re-
mains minimal yet stored footprint is reduced significantly compared to other
compression methods. Reads remain possible albeit with a compute penalty. This
“compress instead of delete” path allows users to retain access to rarely viewed
or lower-value images that would otherwise be purged, deferring costly storage
upgrades for cloud providers and individual users alike.

Client-Side Reconstruction: Currently, due to the computational de-
mands of diffusion models, we assume the image to be transmitted over a network
in it’s compressed state and being reconstructed at the edge, such as through
a content delivery network (CDN) server, where adequate compute is available.
While this can help to reduce costs for CDN providers and generally decrease
ingress bandwidth over the internet, end-users can not currently receive the
affordability benefits. However, recent trends indicate running deep neural net-
works on client devices such as smartphones and laptops may soon become feasi-
ble. Apple has recently made improvements to iPhone hardware allowing them to
run language models such as OpenELM [24]. Additionally, one-step image gen-
erators such as DMD2 [41], based on knowledge distillation, allow high-quality
images to be synthesized at extremely low inference times.

Ease of Deployment: As long as the image model supports text, canny,
color inputs and inpainting, similar extents of compression and image quality
can be achieved regardless of the image model at the core. Thus PLIC offers
flexibility for a wide range of tasks where one model may be better than an-
other. Furthermore, unlike existing neural compression frameworks, PLIC re-
quires no additional model training to use whatsoever. We were able to experi-
ment with the proposed methodology immediately because versions of popular
image models that accept conditioning inputs will already be trained by commu-
nity contributors for artistic purposes and use in a variety of image generation
tasks. This ‘out-of-the-box’ approach can allow developers to immediately deploy
PLIC, unlike GAN and encoder-based methodologies such as HiFiC and TACO
which must be extensively trained first, are only limited to the specific task of
image compression, and must be re-trained again to incorporate improvements
in neural network understanding.
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Ethical Considerations: PLIC based compression, if used properly, is also
able to account for any societal biases in diffusion models, as evident by the
example in Fig. 4. As more conditioning inputs are provided, the model gains
context and a better understanding of the features such as in this case, the per-
son’s skin tone, refining the output to match the original. Conversely, this also
means a malicious actor could falsify canny edges / color palettes or add mislead-
ing words to prompts to intentionally produce inaccurate or negatively biased
reconstructions. Past instances show that people are understandably sensitive
to offensive content generated by image models, such as when Google’s Gemini
model in an attempt to curb societal biases ended up generating images with
obvious historical inaccuracies, causing controversy [31].

6 Conclusion

In this paper, we investigated a novel image compression approach using con-
ditioning inputs for diffusion models, providing a compelling alternative to tra-
ditional neural compression methods. By leveraging text prompts, canny edges,
color palettes, and salient feature preservation, our method achieves extreme
compression while maintaining high perceptual similarity, effectively navigat-
ing the rate-distortion-perception tradeoff. Experiments on real-world images
demonstrate superior compression ratios and image quality, with scalability ben-
efits at common resolutions. While decoding remains computationally intensive,
the flexibility and ease of deployment make this approach promising for future
compression solutions, with potential applications in bandwidth optimization,
energy / storage efficiency, and real-time image reconstruction.
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