
DRNCS: Dual-Level Route Generation Model
Based on Node Contraction and Shortcuts

Zhuoran Li1, Yucen Gao1, Yu Yin2, Xinle Li2, Hui Gao2, Xiaofeng Gao1�,
and Guihai Chen1

1 Shanghai Key Laboratory of Scalable Computing and Systems,
School of Computer Science, Shanghai Jiao Tong University, China

{airplane, guo_ke}@sjtu.edu.cn, {gao-xf, gchen}@cs.sjtu.edu.cn
2 Didi Global Inc., China

{yinyu, lixinle, deangaohui}@didiglobal.com

Abstract. Route prediction is a fundamental task in mapping services,
with critical applications in trajectory reconstruction and route recom-
mendation. However, existing algorithms face efficiency challenges, par-
ticularly for long routes. The primary challenge is to enhance compu-
tational efficiency while maintaining prediction accuracy, especially in
large-scale, real-time scenarios. To address this challenge, we propose
an accelerated route generation model DRNCS based on node contrac-
tion and shortcut acceleration, utilizing a dual-level model specifically
designed for path prediction. By effectively employing Shortcut-Edge
Differential Contraction, we manage to contract nodes in a way that
avoids the common problem of out-degree explosion, which is typically
encountered in conventional node contraction methods. This approach
allows us to transform the original graph into a much sparser repre-
sentation, preserving the structural integrity while significantly reducing
the complexity of the graph. We then compute and store the most likely
shortcuts using two methods: merging historical routes and applying a
probability-based bidirectional Dijkstra’s algorithm on historical paths.
Ultimately, the final prediction results are generated by predicting on
the sparse graph and invoking the stored shortcut data, which is pro-
duced by the model trained on the original graph. Through in-depth
experiments on real-world datasets, we establish that our model imparts
significant improvement in generation speed while maintaining query ac-
curacy over state-of-the-art approaches and demonstrates advantages in
reachability. This provides robust support for the practical application
of our algorithm in real-world route generation scenarios.

Keywords: Route Recommendation · Path Optimization.

This work was supported by the National Key R&D Program of China
[2024YFF0617700], the National Natural Science Foundation of China [U23A20309,
62272302, 62372296], the CCF-DiDi GAIA Collaborative Research Funds for Young
Scholars [202404]. Xiaofeng Gao is the corresponding author

2 Z. Li et al.

1 Introduction

Autonomous Driving

Route Planning
Route Recommendation

Trajectory Reconstruction

#40eae0

#40eae0

#40eae0

(a) Multiple applications (b) Trajectory Data Lost

Fig. 1: Application Scenarios of route Recommendation

Route generation technology has significant potential in optimizing urban
mobility [5], aiding applications such as helping taxi drivers select faster routes
for quicker pickups and improving customer satisfaction [9]. It also enables au-
tonomous vehicles to choose less congested paths, reducing travel time during
peak hours and alleviating overall traffic congestion. Additionally, as shown in
Figure 1b [14], real-world trajectory data is often incomplete or discontinuous. In
such cases, route generation can reconstruct trajectories and forecast potential
routes of moving objects, providing valuable insights into future traffic conditions
and helping urban planners optimize infrastructure and traffic management [?].

In real-world scenarios, as illustrated in Figure 2, the straightforward ap-
plication of shortest path algorithm to infer the most likely route, intuitively
assuming that the shortest path is always the best option, can lead to significant
errors, particularly as trajectory length increases and the scale of the road net-
work expands. In this context, considerable scholarly attention has been devoted
to the optimization of route generation technologies in recent years. Notably, the
NEUROMLR [6] framework has reported marked enhancements in both preci-
sion and recall rates. Despite these advancements, prevailing algorithms con-
tinue to grapple with substantial challenges pertaining to the time required for
route generation, especially in the context of longer path problems, where pro-
nounced search delays are frequently observed. This challenge is particularly
evident within the NEUROMLR-D variant, wherein the average prediction time
for a single path exceeds three seconds when processing extensive road networks
and extended routes. Such performance is insufficient to satisfy the requirements
of practical applications.

In light of the current state of research, the following pivotal question emerges:
How can we significantly enhance the efficiency of the search process
while preserving the accuracy of route predictions to fulfill practical
application requirements?

DRNCS 3

(Chengdu)
(Porto)

(Harbin)
(Beijing)

A
v
er

a
g
e

D
ev

ia
ti

o
n

Fig. 2: Loss of Shortest Path

To address this critical issue, we recognize that the extended time required for
predicting long paths primarily stems from the massive number of nodes needing
processing. Inspired by the CH algorithm [3] that accelerates shortest path com-
putation through node contraction and shortcut addition, we propose DRNCS
– a Dual-Level Route Generation framework based on Node Contraction and
Shortcuts. Our dual-level acceleration mechanism operates through two comple-
mentary tiers: Architectural-Level Acceleration: We design a hierarchical
learning system where (1) a contracted-graph model predicts key nodes on a sim-
plified topology to establish sparse routing skeletons, while (2) an original-graph
model generates probabilistic shortcuts between these nodes using transition
probabilities learned from historical trajectories. Inference-Level Enhance-
ment: During path generation, we implement: (1) dynamic shortcut injection
from precomputed high-probability connections to bypass redundant node com-
putations, and (2) accuracy preservation through hybrid verification combining
model predictions with bidirectional Dijkstra search on transition-probability-
weighted graphs. This hierarchical design achieves acceleration through graph
contraction while preserving precision via shortcut verification, effectively bal-
ancing efficiency and accuracy.

We have carried out the following work in this paper: We propose a node
contraction method, Shortcut-Edge Differential Contraction, which uses a top-
down edge difference as the criterion to transform the original graph into a sparse
representation, while concurrently processing the original trajectory data to con-
struct sparse graph trajectory datasets. Utilizing the original graph, we conduct
model training to generate the necessary data for shortcut creation which in-
volves merging historical trajectory information (i.e., selecting a representative
historical route from numerous historical trajectories) and calculating the most
likely shortcuts using bidirectional Dijkstra’s algorithm on the graph weighted by
transition probabilities. Based on the sparse graph trajectory datasets mentioned

4 Z. Li et al.

above, we first trained the model on the sparse graph, then made predictions
on it, and finally obtained the final prediction result by combining the predicted
paths with the shortcut dataset. Finally, we conduct extensive experiments using
real-world city dataset to validate our approach. our contributions within this
paper are as follows:

– Maintained Prediction Accuracy: We employed appropriate embedding
techniques and probabilistic prediction models, enabling us to sustain high
levels of prediction accuracy and reachability.

– Accelerated the Prediction Process: We proposed Shortcut-Edge Dif-
ferential Contraction to generate a sparse graph, then applied historical path
merging and bidirectional Dijkstra’s algorithm on graph weighted by transi-
tion probabilities based on model training results to obtain shortcut dataset,
accelerating subsequent query processes.

– Refined Dual-Level Model Design: Our model is trained on both the
original and sparse graphs, allowing for more effective acquisition of shortcut
and final prediction data.

– Experimental Validation: Extensive experiments conducted on real-world
city dataset validate the effectiveness of our model and a substantial enhance-
ment in prediction efficiency.

2 Related Work

2.1 Path Prediction Algorithm

Shortest Path-Based Route Prediction The shortest path is the simplest
approach for route prediction, widely used in existing studies [10, 16, 11]. [10]
proposes the spMM model, leveraging geometric and topological road network
features, while [16] incorporates traffic signal delays and left turns into a heuris-
tic cost function. Building on this, [11] constructs a candidate graph favoring
straighter paths. However, these methodologies do not adequately account for
driver preferences in route selection. In reality, drivers consider various factors
beyond the length and straightness of the route. Consequently, the most likely
route frequently diverges from the shortest path, as shown in the Figure 2. This
suggests that a singular focus on distance is insufficient for accurately predicting
the most likely route.

Route Prediction based on RNN To address the challenges associated with
route prediction using the shortest path, several existing methods have been
proposed that utilize RNNs based on historical trajectories: In the realm of
route prediction, several notable models have emerged, each with distinct prin-
ciples and limitations. DEEPST [8] uses variational autoencoders to capture
trajectory and traffic relationships but struggles with poor reachability for un-
seen points. CSSRNN [15] leverages RNNs and road network constraints but
suffers from long query times, low reachability, and data dependency. NEU-
ROMLR [6] combines Lipschitz embeddings with GCNs for accuracy, with two

DRNCS 5

variants: NEUROMLR-D (Dijkstra’s Algorithm) and NEUROMLR-G (Greedy
Algorithm). NEUROMLR-D enhances shortest-path calculations but has high
query latency, while NEUROMLR-G improves speed and reachability but re-
mains inefficient for long routes, requiring further optimization.

Route Prediction based on Transformer While autoregressive models like
RNNs have been the cornerstone of route prediction, recent research has in-
creasingly adopted Transformer architectures for their ability to model com-
plex dependencies. [1] employs a Transformer-based framework to capture spa-
tiotemporal correlations in road networks, while [7] introduces BERT-Trip, a
BERT-inspired model which is a self-supervised contrastive learning framework
for route recommendation that addresses the challenges of learning effective trip
representations without labeled data and eliminating the need for manually de-
signed negative samples. Despite their effectiveness, the substantial parameter
size of Transformer-based models presents challenges, particularly in inference
speed, which constrains their applicability in real-time scenarios.

Table 1: Limitations of Existing Route Prediction Models
Model Limitations

DEEPST Inability to predict points not in original data; subop-
timal reachability.

CSSRNN Poor reachability; extended query time; reliance on
high-quality training data.

NEUROMLR-D Prolonged query time; less suitable for real-time appli-
cations.

NEUROMLR-G Significant delays for longer routes; need for further
optimization.

BERT-Trip High training costs; Prolonged query time.

In summary, while each method presents unique advantages in predictive
capabilities and model design, it is evident that current path prediction methods
face significant challenges related to slow query speeds. To mitigate this issue, we
investigate various potential approaches aimed at effectively accelerating queries
while preserving an acceptable level of accuracy. One particularly promising
avenue is inspired by the Contraction Hierarchies (CH) algorithm, which
enhances the efficiency of shortest path queries through the contraction of nodes
and the incorporation of shortcuts.

2.2 Node Contraction Method

Contraction Hierarchies (CH) Contraction Hierarchies (CH) [3] enhance the
efficiency of shortest path queries through a preprocessing phase that simplifies
the graph structure. This is achieved by contracting less significant nodes while
preserving essential connectivity through the introduction of shortcut edges,

6 Z. Li et al.

which maintain the correctness of shortest path distances. Once the preprocess-
ing is complete, shortest path queries are executed using a bidirectional variant
of Dijkstra’s algorithm [2], which simultaneously explores the search space from
both the source and target nodes. This approach effectively reduces the number
of processed nodes, thereby significantly improving query performance.

The classical CH algorithm cannot be directly applied to our context of
predicting the most likely route. We need to address the following issues:

1. What criteria should be used for node contraction? In our application
scenario, it is crucial to minimize the increase in out-degree as much as
possible, as this will affect the speed at which our model predicts potential
nodes. Therefore, We propose Shortcut-Edge Differential Contraction, a top-
down approach that uses edge difference as the criterion for node contraction.
This approach ensures that we can contract more nodes without causing an
explosion in out-degree.

2. How can we generate shortcuts that are more aligned with the
most likely route prediction scenario? Directly using the shortcuts
derived from classical algorithms is not feasible. Consequently, we employ
bidirectional Dijkstra’s algorithm on a probabilistic graph generated from
historical data to create shortcuts that are more representative of the most
likely route. This enables acceleration in our predictions.

3 Problem Formulation and Transformation

We begin with the definitions of Road Network, Route and Query. Subse-
quently, we formally present the research problem and provide its transformation.
For the sake of clarity and ease of reference, the notation employed in this paper
is presented in Table 2.

Definition 1 (Road Network) A road network is represented as a directed
graph G(V,E), in which V and E represent the vertices (crossroads) and edges
(road segments) respectively.
Definition 2 (Route) A route r = [ei]

n
i=1 is a sequence of adjacent road seg-

ments, where ei ∈ E. In practical applications, a route, R(s, d) = {v1, . . . , vk}
represents a simple path from the source node s = v1 to the destination d = vk in
the road network G, with no cycles. Similarly, it can be expressed as a sequence
of edges R(s, d) = {e1, . . . , ek−1}, where ei = (vi, vi+1).
Definition 3 (Query) A query is represented by a tuple q = (s, d, t), where s
and d are the source and destination nodes within the set of nodes V , respec-
tively. The variable t indicates the time when the trajectory takes place.
Problem Statement Given a road network G(V,E) and a historical trajectory
dataset D = (T (m))Mm=1, alongside a query q = (s, d, t), the objective is to in-
fer the most likely route R∗(s, d) based on the traffic patterns contained in D.
Formally, the most likely route is defined as:

R∗(s, d) = arg max
R(s,d)∈G

Pr(R(s, d) | q) (1)

DRNCS 7

Table 2: Notation and Description Table
Notation Description
G(V,E) A directed graph consisting of vertices V and edges E.
|V |, |E| Number of nodes and edges.

Gneg_log
The graph G weighted by the negative logarithm of
probabilities.

R,R∗ True routes and Predicted routes.

SC(1), SC(2) Shortcuts filtered through historical trajectories and
Shortcuts generated based on probabilistic graphs.

|R|, |R∗| Number of edges in the true route and in the
predicted route, respectively.

|R∗
d=d∗ |

Count of predicted paths matching the original path’s
endpoint.

q = (s, d, t)
A query is represented by a tuple ,involving start
node s, destination node d, and time t.

Pr(R|q) The probability of selecting route R given a specific
query q.

PS
The set of historical paths within the historical
trajectory that share the same start-end pair.

P (e) Probability of selecting edge. e.
UnConf The unnormalized confidence score for predictions.

Q((curr, nbr)|curr, d;Θ)
Transition probability from the current node to a
neighboring node, given the destination and
parameterized by Θ.

N2V(node) The embedding of a node using the node2vec
algorithm.

W Weight matrix for a layer in the neural network.
Ttotal Total time taken to generate all predicted routes.

Problem Transformation The problem of predicting the most likely route
can be framed as a path search problem on the graph. Mathematically, the
probability of a route R can be formulated as the product of the probabilities of
its individual edges. Formally, we have:

Pr(R|q) =
|R|∏
i=1

Pr(R.ei|R.e0 → R.ei−1, s, d, t) (2)

where Pr(R.ei|R.e0 → R.ei−1, s, d, t) denotes the probability that route R tra-
verses edge R.ei given the path taken thus far and the query parameters q =
(s, d, t). Past studies have shown that human mobility patterns conform to the
Markovian assumption [13], which states that the future state depends only on
the present state and not on the sequence of events that preceded it. Conse-
quently, the above equation reduces to:

8 Z. Li et al.

Node2Vec

Model

for origin graph

Model

for sparse graph

Start-end pair of the shortcut

S
h

o
rt

es
t

P
a
th

G
en

er
a
ti

o
n

Emergence in historical trajectory?

YES NO

Merge Generate

model

Shortcut Database

Test Set of Trajectory Data

prediction results on the sparse graph

prediction results on the origin graph

shortcut shortcut

in
se

rt
 s

h
o

rt
cu

t

Generation of Predicted Path

3

1

4

2

E
d

g
e D

ifferen
ce

Contracted Node

Remained Node

Shortcut

Contracted Edge

Shortcut Pair

Generation of Sparse Graph and Dual-Level Prediction Models

N
o

d
e

E
m

b
ed

d
in

g

1

24

3
1

MLP

MLP

Fig. 3: Framework of DRNCS: DRNCS first generates node embeddings using
node2vec, then contracts nodes based on edge difference to create a sparse graph and
shortcut pairs. The model is trained separately on both the original and sparse graphs,
producing a dual-level model. During the shortcut database generation, two approaches
are used: merging historical paths and generating shortcuts based on model results from
the original graph. Finally, in the inference phase, predictions are made on the sparse
graph, conbining the stored shortcut data to derive the final results.

Pr(R|q) =
|R|∏
i=1

Pr(R.ei|vi, d, t) (3)

With these simplifications, Eq (2) reduces to:

R∗(s, d) = arg max
∀R∈G

|R|∏
i=1

Pr(R.ei|vi, d, t) = arg min
∀R∈G

|R|∑
i=1

− log(Pr(R.ei|vi, d, t))

(4)
This transformation indicates that the problem of selecting the most probable

route has been converted into a problem of searching for the shortest path on a
weighted graph, where the weights correspond to the negative logarithm of the
probabilities. We denote this weighted graph as Gneg_log.

4 Modeling

Our model incorporates several key components: generating node embeddings,
creating sparse graph, training models with original path information on the

DRNCS 9

original graph, and training models using sparsified trajectory data on the sparse
graph, generating shortcuts with two distinct approaches, executing the inference
phase. The framework of our model is illustrated in Figure 3.

4.1 Node Embedding Generation

The node2vec algorithm [4] effectively captures the structural features of nodes
in a graph using a flexible random walk strategy. For our study, which aims
to predict the most likely route, we require node embeddings that account for
complex factors beyond simple metrics like distance and geographic coordinates.
Thus, we selected node2vec as our embedding method.

4.2 Sparse Graph Modeling

To address the query speed issue of route generation, we aim to minimize the
increase in the maximum out-degree of nodes during the graph contraction pro-
cess. So we propose Shortcut-Edge Differential Contraction, where we se-
lect edge difference—defined as the difference between the number of short-
cuts added during node contraction and the sum of the node’s original in-degree
and out-degree—as our criterion for node contraction. Furthermore, we employ
a top-down approach to control the scale of out-degree increase as much as
possible. The node contraction process is presented in Algorithm 1.

Algorithm 1: Shortcut-Edge Differential Contraction
Input: Graph G = (V,E), Contraction ratio r
Output: Shortcut pairs shortcut_pair , Sparse Gragh G∗

1 copy G to G∗

2 while (number of contracted nodes < total nodes ×r) do
3 Select the node with the minimum edge difference in G∗;
4 Contract the selected node;
5 for each predecessor p of the contracted node do
6 for each successor s of the contracted node do
7 if not edge (p, s) exists in G∗ then
8 Add edge (p, s) in G∗;
9 Store (p, s) in shortcut_pair;

10 return shortcut_pair,G∗ ;

The algorithm in Algorithm 1 initializes a new graph G∗ as a copy of G (line
2) and iteratively contracts nodes until r × |V | nodes are removed (line 3). In
each iteration, the node with the smallest edge difference is selected to minimize
connectivity disruption (lines 4-6). Once contracted (lines 7-9), shortcut edges
are added between its predecessor p and successor s if no direct edge (p, s) exists,
storing them in shortcut_pair. The algorithm terminates when the contraction
ratio is met, returning G∗ and the shortcut pairs for model training (line 10).

10 Z. Li et al.

4.3 Model Training

After completing the node embedding, we train on the original trajectories from
the original graph and the processed sparse trajectories from the sparse graph,
obtaining the trained models at two levels. The trained model from the sparse
graph will be used to infer phase, while the trained model from the original
graph will be utilized for shortcut generation. The specific details of the model
training are as follows: We obtained our embedding results by concatenating the
embeddings generated by node2vec, where the ‘neighbors’ (nbr) include both
the true neighboring nodes of each node and the virtual neighboring nodes,
represented by -1, which are added through padding to ensure that each node
has the same number of neighbors. After obtaining the final embeddings, we
pass these embeddings through a multi-layer perceptron (MLP) to convert the
vector into a scalar unnormalized confidence value, defined as follows:

embedding = cat(N2V (curr), N2V (nbr)N2V (dest)) (5)

UnConf = f(nbr, curr, dest) = MLP(embedding), nbr ∈ N(curr) (6)

The transition probability Q((curr, v)|curr, d;Θ) can be computed as follows:

Q((curr, nbr)|curr, dest;Θ) =
exp(f(nbr, curr, dest))∑

nbr′∈N(curr) exp(f(nbr
′, curr, dest))

(7)

This equation normalizes the unnormalized confidence by the sum of the
exponential values of the confidence for all neighbors nbr′ ∈ N(curr).

Next, we generate a mask based on the actual neighbors of the nodes to filter
the unnormalized confidence. We apply the mask to set the confidence values to
zero for neighbors represented by -1 (indicating the absence of such neighbors):

UnConf∗ = UnConf ⊙ mask (8)

We then select the candidate with the highest confidence, simplified as:

chosen = argmax
i

(UnConf∗i) , for i ∈ {1, 2, . . . ,max_nbrs} (9)

Finally, the model parameters Θ are optimized through cross-entropy loss
over trajectories in D, defined as:

Loss(Θ) = − 1

|D|
∑
R∈D

|R|∑
j=1

logQ(R.ej |R.nbrj , R.dest;Θ) (10)

4.4 Shortcut Generation

To generate shortcut data within a short timeframe, we developed our shortcut
database based on whether the required start-end shortcut pairs have appeared
in historical trajectory data. We employed two approaches for this purpose:

DRNCS 11

SC(1) generation For the start-end pairs that have been observed in the histor-
ical data, we utilized a merging approach. Within the historical trajectories, for
paths sharing the same start and end points, we computed the precision of each
path relative to the others and calculated the average precision as our selection
criterion. The path with the highest average precision was selected as the final
shortcut data SC(1) for that specific start-end pair.

SC(1) = arg max
Ri∈PS

1

N

N∑
j=1

Precision(Ri, Rj), where Ri, Rj ∈ PS (11)

SC(2) generation For those start-end pairs of shortcuts that do not appear
in the historical trajectory, firstly, for a given shortcut’s starting point S and
endpoint D, we consider all nodes in the graph as potential source nodes, with D
designated as the destination. We then utilize the model trained on the original
graph to generate the transition probabilities P (e) for each edge e:

P (e) = f(nbr, curr, dest), curr ∈ G (12)

where f represents the function derived from our trained model.
Next, we transform these transition probabilities into negative logarithmic

weights for incorporation into the graph:

W (e) = − log(P (e)) (13)

Following this, we apply a bidirectional Dijkstra’s algorithm to identify the
most likely route between S and D:

SC(2) = BidirectionalDijkstra(S,D,W) (14)

This route SC(2) is then stored in the shortcut dataset. The time complexity
of Dijkstra’s [12] is O((|E|+|V |) log |V |), where |E| and |V | represent the number
of edges and vertices, respectively.

While this time complexity may be impractical for real-time route recom-
mendation systems, it is exceptionally well-suited for our scenario for the fol-
lowing reasons: First, Dijkstra’s algorithm is only used during the preprocessing
phase to compute the shortcuts, which is a low-frequency operation. Second, the
shortcuts we generate are relatively short compared to the routes that need to
be predicted in real-world applications, which reduces the number of nodes and
edges that need to be explored during the search process.

4.5 Inference Phase

For a given query q = (S,D), we employ a greedy search algorithm, which relies
exclusively on transition probabilities. The prediction of a transition probabil-
ity P (e = (curr, nbr)|curr, dest) is achieved through a forward pass within the
architectural framework of the model. This search is performed on the sparse

12 Z. Li et al.

graph, where we predict the most probable transitions between nodes based on
the learned probabilities. To further refine the predictions, we incorporate previ-
ously obtained shortcut datasets—those generated in Section 4.4. These short-
cuts provide additional context or connections, which are then inserted into the
predicted results to enhance the accuracy and robustness of the final prediction.

5 Experiments

5.1 Dataset

The data used in our experiments, presented in Table 3 1 2, includes road network
and trajectory data from five cities: Chengdu (CD), Porto (PT), Harbin (HRB),
Beijing (BJ), and Shenzhen with its surrounding areas (SZ). These datasets, rig-
orously cleaned and preprocessed, cover diverse road network scales and config-
urations, closely reflecting real-world urban scenarios. This ensures our model’s
applicability to large-scale practical settings.

Table 3: Details of datasets
City CD PT HRB BJ SZ

Number of nodes 3,973 5,330 6,598 31,199 79,348
Number of edges 9,255 11,491 16,292 72,156 171,313

Number of trajectories 3,600,503 1,426,312 1,133,548 1,382,948 1,007,209
Average number of edges/trip 22.93 51.07 56.81 36.08 37.02

5.2 Metric

Since the actual length of an edge is not considered as a criterion during the
route generation process, and in order to comprehensively test the efficiency and
accuracy of our model’s predictions, the metrics evaluated in this experiment
can be simplified as follows:

Precision =
|R∗ ∩R|
|R∗|

,Recall =
|R∗ ∩R|

|R|
,Reachability =

|R∗
d=d∗ |
|R∗|

Query Time =
Ttotal

|R∗|
,Generated Paths Rate =

|R∗|
Ttotal

1 https://drive.google.com/file/d/1bICE26ndR2C29jkfG2qQqVkmpirK25Eu/view
2 https://github.com/lehaifeng/T-GCN/tree/master/data

DRNCS 13

Fig. 4: Model Prediction Accuracy Comparison

5.3 Baseline Methods

We compare the performance of our model with the following baseline models:

– DEEPST (Deep Spatio-Temporal Model) [8]
– CSSRNN (Convolutional Spatiotemporal Sequence Prediction with RNN) [15]
– NEUROMLR-D (NEUROMLR using Dijkstra’s Algorithm) [6]
– NEUROMLR-G (NEUROMLR using Greedy Algorithm) [6]
– SP (Shortest Path) [2]
– BERT-Trip [7]

5.4 Implementation Details

The models in this paper are trained with Python 3.6 and PyTorch 2.4.1 on
a machine with a 1.70 GHz Intel(R) Core(TM) i5-1240P processor and 16 GB
RAM. For the comparative experiments, we use 200 epochs and a batch size of
512. The code is available at https://github.com/iairplane/DRNCS.git.

5.5 Comparison with Baseline Methods

Precision and Recall As shown in Figure 4, the results indicate that, under the
same number of training iterations, our model outperforms the NEUROMLR-G,
DEEPST, CSSRNN and BERT-Trip methods in terms of accuracy, while main-
taining a level of accuracy comparable to NEUROMLR-D. This suggests that
our model construction and shortcut generation have achieved desired effect.

Query Time and Generated Paths Rate Delving deeper into the query
time metrics, our model demonstrates exceptional enhancements across different
datasets, as shown in Table 4. In the Chengdu dataset, the query speed improved
by over 45.5%, by over 40.0% in the Porto dataset, by over 57.1% in Harbin, and
by over 47.8% in Shenzhen. Notably, a 57.5% improvement was observed in the
Beijing dataset. These results collectively illustrate the substantial optimization
of query time realized by our model, aligning perfectly with our initial objective
of leveraging shortcuts to expedite the computation of the most likely route.

14 Z. Li et al.

Table 4: Model Performance Metrics

Model Query Time (ms/trip) Generated Paths Rate (trips/s)
HRB CD PT BJ SZ HRB CD PT BJ SZ

DRNCS 0.3 0.6 0.3 0.7 0.8 3356 1678 3345 1432 1249
NEUROMLR-D 243 201 221 314 378 4.11 4.98 4.52 3.18 2.64
NEUROMLR-G 0.7 1.1 0.6 1.1 1.3 1428 902 1667 909 845

CSSRNN 0.9 1.2 1.1 1.4 1.5 1112 773 972 714 678
BERT-Trip 217 236 219 421 489 4.61 4.23 4.56 2.42 2.04

5.6 Analysis of Ablation Study Results

The core component of our model is the shortcut database, primarily consisting
of SC(1) and SC(2). Therefore, in the ablation study, we validate the effective-
ness of the overall and partial shortcuts in enhancing efficiency while preserving
accuracy. Additionally, as selecting appropriate criteria and ratios for node con-
traction is crucial in model construction, we conduct multiple ablation studies to
determine the optimal parameters for our model. The experiment validating the
effectiveness of the shortcut in improving query efficiency was conducted on road
network datasets of varying scales, while the other experiments were conducted
using the Chengdu dataset.

(a) efficiency improvement (b) vary shortcut ratios (c) vary SC(2) ratios

(d) vary node contraction criteria (e) vary node contraction ratios

Fig. 5: Results of the Ablation Study

DRNCS 15

Effect of Shortcut As discussed in the previous section, incorporating short-
cuts allows us to maintain accuracy while significantly speeding up inference. To
further validate our model, we conducted two ablation experiments. First, we
tested road networks of varying sizes, comparing the inference speed of DRNCS
with and without shortcut insertion, using the Relative Improvement of Gener-
ated Paths Rate to show how speed differences increase with network size. The
results in Figure 5a confirm the effectiveness of shortcut insertion. Second, we
replaced some shortcuts in our database with Dijkstra-generated shortest paths
and compared model prediction accuracy at different proportions. The results,
presented in Figure 5b, validate the effectiveness of the shortcuts.

Effect of SC(2) Component of Shortcut To further validate the effect of
shortcuts generated by bidirectional Dijkstra’s algorithm on a graph weighted
by transition probabilities, we systematically replaced a subset of these short-
cuts with Dijkstra-generated shortest paths at varying proportions, and com-
pared the resulting differences in precision. The results, presented in Figure 5c,
demonstrate the effectiveness of the shortcuts in enhancing model performance.

Criteria for Node Contraction We employed three criteria for potential node
contraction: node occurrence frequency in historical paths (NF), bottom-up
edge difference (BUD), and top-down edge difference (TDD). Each criterion
was applied to reduce 30% of the nodes across the entire graph, with the compar-
ison results shown in Figure 5d. The results indicate that selecting the top-down
edge difference as the criterion for node contraction effectively maximizes control
over the increase in node out-degree, thereby enhancing prediction accuracy and
improving search speed. Additionally, the top-down node contraction method
demonstrates a notably faster contraction speed.

Ratios for Node Contraction In order to achieve a balance between accuracy
and query speed, we tested the precision and query rate of our model under
different contraction ratios. The comparison results are presented in Figure 5e.
Thus, to simultaneously maintain a high prediction accuracy and a faster query
rate, we ultimately selected a contraction ratio of 0.5.

6 Conclusion

Route generation plays a critical role in numerous downstream applications. In
practical scenarios, when addressing the problem of recommending the most
likely route, it is not only imperative to ensure high prediction accuracy, but
also to significantly improve the inference speed. This latter aspect remains a
key limitation of existing route generation models. To mitigate this issue, we
propose DRNCS, an accelerated dual-level route generation model based on
node contraction and shortcuts. Specifically, we transformed the original graph
into a sparse graph through Shortcut-Edge Differential Contraction. By train-
ing the model on both the original trajectories from the original graph and

16 Z. Li et al.

the sparse trajectories from the sparse graph, we successfully generated a dual-
level trained model. Furthermore, we employed a shortcut generation approach
that consists of two distinct methods: first, merging historical paths, and sec-
ond, generating shortcuts based on the trained model from the original graph.
This comprehensive methodology enabled us to create a more accurate shortcut
database in a significantly reduced timeframe. Ultimately, the final prediction
results are derived by performing predictions on the sparse graph while invok-
ing the stored shortcut data. Additionally, testing on road network datasets of
varying scales demonstrated that our approach achieved over 40% improvement
in query speed, while effectively maintaining satisfactory accuracy and reacha-
bility. Notably, this optimization in query speed becomes even more pronounced
as the scale of the road network increases, thereby highlighting the practical
applicability and advantages of our model in real-world scenarios.

References

1. Bhumika, Das, D.: Marrs: A framework for multi-objective risk-
aware route recommendation using multitask-transformer. Proceed-
ings of the 16th ACM Conference on Recommender Systems (2022),
https://api.semanticscholar.org/CorpusID:252216597

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

3. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.)
Experimental Algorithms. pp. 319–333. Springer Berlin Heidelberg (2008)

4. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2016)

5. Hsieh, H.P., Lin, F.: Recommending taxi routes with an advance reservation – a
multi-criteria route planner. International Journal of Urban Sciences 26, 162 – 183
(2021), https://api.semanticscholar.org/CorpusID:233810149

6. Jain, J.L., Bagadia, V., Manchanda, S., Ranu, S.: Neuromlr: Robust & reliable
route recommendation on road networks. In: Neural Information Processing Sys-
tems (2021)

7. Kuo, A.T., Chen, H., Ku, W.S.: Bert-trip: Effective and scalable trip
representation using attentive contrast learning. 2023 IEEE 39th Inter-
national Conference on Data Engineering (ICDE) pp. 612–623 (2023),
https://api.semanticscholar.org/CorpusID:260171278

8. Li, X., Cong, G., Cheng, Y.: Spatial transition learning on road networks with deep
probabilistic models. IEEE 36th International Conference on Data Engineering
(ICDE) pp. 349–360 (2020)

9. Li, X., Cong, G., Sun, A., Cheng, Y.: Learning travel time distributions with deep
generative model. The World Wide Web Conference (2019)

10. Rahmani, M., Koutsopoulos, H.N.: Path inference of low-frequency gps probes
for urban networks. International IEEE Conference on Intelligent Transportation
Systems pp. 1698–1701 (2012)

11. Rahmani, M., Koutsopoulos, H.N.: Path inference from sparse floating car data for
urban networks. Transportation Research Part C-emerging Technologies 30, 41–54
(2013)

DRNCS 17

12. Tarjan, R.E.: Data structures and network algorithms. In: CBMS-NSF Regional
Conference Series in Applied Mathematics (1983)

13. Wang, J., Wu, N., Zhao, W.X., Peng, F., Lin, X.: Empowering a* search algorithms
with neural networks for personalized route recommendation. Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2019)

14. Wang, Y., Wei, L., Chen, P.: Trajectory reconstruction for freeway traffic mixed
with human-driven vehicles and connected and automated vehicles. Transportation
Research Part C: Emerging Technologies 111, 135–155 (2020)

15. qing Wu, H., Chen, Z., Sun, W., Zheng, B., Wang, W.: Modeling trajectories
with recurrent neural networks. In: International Joint Conference on Artificial
Intelligence (2017)

16. Zheng, Y., Quddus, M.A.: Weight-based shortest-path aided map-matching algo-
rithm for low-frequency positioning data (2011)

