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Abstract. To increase the trustworthiness of deep neural networks, it is
critical to improve the understanding of how they make decisions. This
paper introduces a novel unsupervised concept-based model for image
classification, named Learnable Concept-Based Model (LCBM) which
models concepts as random variables within a Bernoulli latent space. Un-
like traditional methods that either require extensive human supervision
or suffer from limited scalability, our approach employs a reduced num-
ber of concepts without sacrificing performance. We demonstrate that
LCBM surpasses existing unsupervised concept-based models in gener-
alization capability and nearly matches the performance of black-box
models. The proposed concept representation enhances information re-
tention and aligns more closely with human understanding. A user study
demonstrates the discovered concepts are also more intuitive for humans
to interpret. Finally, despite the use of concept embeddings, we maintain
model interpretability by means of a local linear combination of concepts.

Keywords: CBM · XAI · Interpretable AI.

1 Introduction

Understanding the reason why Deep Neural Networks (DNNs) make decisions
is critical in today’s society, as these models are increasingly deployed and af-
fect people’s lives. This concern has also led regulatory institutions to mandate
interpretability and the possibility of challenging the decisions of deep neural
networks as prerequisites for Artificial Intelligence (AI)

systems [38,27]. EXplainable AI (XAI) methods have emerged to address this
challenge [30,2,12]. However, several papers argue that feature importance ex-
planations (such as saliency maps [45,33]) have failed to achieve this goal, since
showing where a network is looking is insufficient to explain the reasons be-
hind its decisions [31,1]. To truly explain what the network has seen, many XAI
methods are shifting toward explanations in terms of human-understandable at-
tributes, or concepts [14,1,10,28]. Concepts can be either extracted post-hoc [11]
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or directly inserted within the network representation to create a so-called concept-
based model (CBMs, [16]).
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Fig. 1: Learnable Concept-Based Model (LCBM) learns a dictionary of unsuper-
vised concepts. Unlike black-box models, LCBM classifies images interpretably
using these concepts. Here, the image is correctly classified as Dark-eyed junco
by leveraging concepts C48 (eyes/beak), C47 (wings), and C71 (trunk/tree). No-
tably, C71, while present, is less relevant to bird species classification.

CBMs can be created in a supervised way [16,4,8] or through a dedicated
unsupervised learning process [3,6,40]. The latter approach enables the use of
CBMs in contexts where concept annotations are unavailable and large language
models (LLMs) [41,26] lack sufficient knowledge. Yet, a fundamental challenge
persists: standard unsupervised approaches rely on single-neuron activations to
represent each concept, thereby limiting the amount of information that can be
captured. This limitation creates a trade-off between interpretability and accu-
racy. The issue becomes even more pronounced when concise explanations are
needed to avoid cognitive overload for users [24,19,7]. As demonstrated in our ex-
periments, standard unsupervised approaches exhibit a significant performance
gap compared to end-to-end methods in such scenarios, making unsuitable their
effective deployment. In this paper, we demonstrate that by using unsupervised
concept embeddings, we can create a highly effective Learnable Concept-Based
Model (LCBM) employing a limited number of concepts. Our experiments show
that this approach: i) overcomes the limited generalization of compared models,
almost matching the performance of black-box models; ii) increases the repre-
sentation capability of standard unsupervised concept layers in terms of infor-
mation retention and alignment with human representation; iii) ensures that
the extracted concepts are more interpretable, as highlighted by a user study;
and iv) by providing the task prediction through a local linear combination of
concepts, it retains task interpretability§.

§Code to reproduce the proposed model is available at https://github.com/LCBM .

https://github.com/francescoTheSantis/Unsupervised-Concept-Attention-Model/
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2 Related Work

Concept-based XAI (C-XAI) aims to provide human-understandable explana-
tions by using concepts as intermediate representations [14,28,31]. While su-
pervised approaches [16,8] rely on predefined symbols, unsupervised models
autonomously extract concepts by modifying a network’s internal representa-
tion through unsupervised learning, prototypical representations, or hybrid tech-
niques [3,16].

Unsupervised Concept Basis. These methods learn disentangled rep-
resentations in the model’s latent space by grouping samples based on fun-
damental characteristics. They typically achieve this via input reconstruction
[3,40] or unsupervised losses [46,40]. In [46], convolutional filters act as unsu-
pervised concepts, maximizing mutual information between images and filter
activations. SENN [3] employs an autoencoder to derive clustered representa-
tions and generate class-concept relevance scores. BotCL [40] enhances SENN
with attention-based concept scoring and contrastive loss. Compared to these,
LCBM introduces concept embeddings for richer representations, improving the
generalization-interpretability trade-off.

Prototype Concepts. This approach encodes training example traits as
prototypes within the network, comparing them to input samples for prediction.
[21] explains predictions via prototype similarity, using an autoencoder for di-
mensionality reduction. ProtoPNet [6] extracts prototypes representing image
subparts, while HPNet [13] organizes prototypes hierarchically for classification
across taxonomy levels. Despite providing useful example-based explanations,
these models constrain representation capacity. Our approach enhances perfor-
mance by leveraging richer representations while retaining prototype-based in-
terpretability, as shown in concept dictionaries.

Hybrid Approaches. Recent research explores hybrid models that inte-
grate supervised and unsupervised concepts [23,32] or leverage pre-trained LLMs
[26,41,44]. The variational approach in [23] shares similarities with ours but relies
on single neurons and partial supervision, limiting scalability. Methods leverag-
ing LLMs assume sufficient knowledge for zero-shot concept annotations, yet this
depends on the underlying model [35]. For instance, CLIP [29], despite its popu-
larity, exhibits low concept accuracy even in contexts similar to its pre-training,
as confirmed by our experiments.

3 Methodology

In an unsupervised concept-based setting, the objective is to make predictions
using a set of abstract, human-interpretable concepts that are not predefined but
must be directly inferred from the data. To address this challenge, we propose a
set of desiderata that define the required properties of the learned concepts:

– Representativity [5]: Concepts should capture key features of the input data.
– Completeness [43]: Concepts should support strong task generalization.
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Fig. 2: Probabilistic Graphical Model. Solid arrows represent the data generating
process. Dotted arrows represent inference.

– Alignment [28]: Concepts should correspond to human-understandable con-
structs.

If concepts do not accurately represent the input data, they cannot be trusted
for either inference or explainability. As a result, Representativity, a common
requirement in representation learning [5], is a necessary but not sufficient con-
dition for an interpretable unsupervised concept-based model: Completeness is
also essential to ensure the concepts are useful for making task-specific predic-
tions. Ultimately, interpretability is achieved only with an Alignment with a
human-defined representation. While this property is always met in supervised
CBMs, in unsupervised contexts it is a major challenge.

3.1 Learnable Concept-Based Model

In a supervised learning context, a CBM is trained to approximate the joint dis-
tribution p(x, c, y), where x, c, and y correspond to realizations of the random
variables X (images), C (concepts), and Y (class labels), respectively. In con-
trast to the supervised setting, where these variables are fully observable during
training, the unsupervised scenario lacks knowledge about C. Therefore, it is
only through marginalizing over C that we can account for the combined effect
of all possible values of C on the relationship between X and Y :

p(x, y) =

∫
c

p(x, c, y) dc (1)

In order to address this problem, we introduce the Learnable Concept-Based
Model (LCBM), a latent variable model enabling explanations and interventions
in terms of a set of unsupervised concepts. Following [25], LCBM considers a
data generating process in which concepts C represent latent factors of variation
for both X and Y , as shown in the probabilistic graphical model in Figure 2.
Thus, the joint distribution factorizes as:

p(x, y) =

∫
c

p(x, c, y)dc =

∫
c

p(x | c)p(y | c)p(c)dc (2)

where p(y | c) is modelled as a categorical distribution parametrized by the task
predictor f ; p(x | c) as a Gaussian distribution parametrized by the concept
decoder ψ. Finally, p(c) is a prior distribution over a set of unsupervised concepts.

During training, LCBM assumes to observe realizations of the random vari-
ables X and Y which hold new evidence we can use to update the prior p(c).
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Fig. 3: LCBM schema. The concept encoder q(c | x) provides the probability for
each learnt concept ĉj and the associated embeddings cj . Both concept scores
and embeddings are used to predict the output class p(y | c) and to reconstruct
the input p(x | c).

Since the computation of the true posterior p(c | x, y) is intractable, LCBM
amortizes inference needed for training by introducing an approximate posterior
q(c | x) parametrized by a neural network. Since at test time we can only observe
X, we condition the approximate only on this variable.

Optimization problem. LCBMs are trained to optimize the log-likelihood
of tuples (x, y). Following a variational inference approach, we optimize the ev-
idence lower bound (ELBO) of the log-likelihood, which results as follows:

ELBO =

Representativity︷ ︸︸ ︷
Eq[log p(x|c)] +

Completeness︷ ︸︸ ︷
Eq[log p(y|c)]−

Alignment︷ ︸︸ ︷
KL(q(c|x) || p(c)) (3)

This likelihood has three components: a reconstruction term p(x|c), whose
maximization ensures concepts’ Representativity ; a classifier p(y | c), which
quantifies concepts’ Completeness; and a Kullback–Leibler divergence term that
encourages the approximate posterior q(c | x) to remain close to a defined prior
p(c), promoting an Alignment to human representations. To achieve all the de-
sired properties, we must define a sufficiently rich concept representation. We
describe the latter together with its prior in Section 3.2, the classifier in Sec-
tion 3.3 and the decoder in Section 3.4. For an overall visualization of LCBM,
see Figure 3.

3.2 Unsupervised Concept Representation

To model each concept in the concept representation c in an unsupervised way,
we define it as following a Bernoulli distribution. This choice reflects a discrete,
binary nature of a ‘concept’ as an atomic unit of knowledge, inducing Alignment
and facilitating its comprehension and modification through human interven-
tions. However, Bernoulli distributions may not be able to represent both the
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input and output distributions, ultimately creating a bottleneck in the represen-
tation of the model.

To solve this issue, we associate each concept with a corresponding unsu-
pervised concept embedding cj ∈ C ⊆ Rd. This embedding provides a richer
representation of the concept, capturing further nuances (e.g., ‘color‘ and ‘size‘
if the concept represents a ‘vehicle‘). The concept embedding cj is derived as
a composition of two neural modules h ◦ g. The latter is a frozen pre-trained
backbone g : X → E mapping input X into an intermediate embedding space
E ⊆ Rs, while the first module, hj : E → C, is a per-concept MLP produc-
ing the concept embedding cj = hj(g(x)). To ensure that this embedding is
representative of the intended concept and allows interventions, we assign each
concept a prototype tj ∈ Rd, which serves as a learned reference within the
embedding space of cj . To compute the concept score ĉj , we first calculate the
alignment between the concept embedding cj and its prototype tj through their
dot product cj · tj , and transform it into a probability πj = σ(cj · tj) ∈ [0, 1]
via a sigmoid function σ. Using πj as the probability parameter, we sample from
a Bernoulli distribution applying the reparametrization trick [22] to obtain the
concept score ĉj . Thus, the final concept score is sampled from the following
distribution:

ĉj ∼ q(ĉj | x) = Bern(ĉj ;πj) · p(cj | x), (4)

where p(cj | x) is the probability distribution parametrized by h(g(x)) and can
be modelled either via Gaussian distributions [15], or through a degenerate Dirac
delta distribution, without assuming any uncertainty. For the sake of simplicity,
we choose the second approach.

Batch Prior Regularization. The parameter α parameterizes the Bernoulli
prior in the KL term of Eq. 3, and determines the activation probability of each
concept for every sample. It is fundamental to optimize KL divergence over a
batch of sample rather than for each sample. Indeed, by setting α = 0.2, and
performing the optimization for each sample, we force each concept to activate
for each sample with 20% confidence. This behaviour is far from optimal as we
want LCBM to be sure about the presence or absence of a certain concept in
a specific sample, i.e., producing πj ≈ 1 for a sample which contains a specific
concept and πj ≈ 0 otherwise. To address this, we shift the KL divergence opti-
mization at the batch level by averaging the activation probabilities for a concept
j across the batch: π̄j = 1

B

∑B
z=1 πjz, where B is the batch size.

3.3 Interpretable Classifier

The classifier f(c, ĉ) leverages both concept embeddings and concept scores to
boost prediction accuracy without sacrificing interpretability. Specifically, each
class prediction ŷi is represented as a linear combination of concept scores ĉj
and associated weights ŵij ∈ R, where the weights are predicted over the con-
cept embedding, i.e., ŵij = ϕi(cj), and ϕi is a class-specific function param-
eterized by a neural network. The output prediction ŷ is then computed as
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ŷ = argmax
i

p(yi|c) = argmax
i

∑
j ŵij · ĉij . Note that ŵij depends on the con-

cept embedding cj = g(x) predicted for a specific sample. This means that while
the final prediction is provided by means of a linear classification over the concept
scores, thus preserving locally the interpretability of standard CBMs, the net-
work ϕ can predict different weights ŵmj for different samples, thus overcoming
the representation bottleneck of standard CBMs.

3.4 Concept Decoder

As previously introduced, we parametrize the decoding function with a neural
network ψ. To improve the image reconstruction capabilities, also in this case we
rely on the concept embeddings c. However, to still take into account the associ-
ated concept predictions ĉ, we multiply the embeddings cj by the corresponding
concept prediction ĉj before feeding them to the concept decoder. As a result,
the input is reconstructed as x̂ = ψ(ĉ · c).

4 Experiments

In this section, we present the experiments conducted to evaluate our proposed
methodology. The experiments are designed to address the following key research
questions:

1. Generalization: How effectively does the model generalize for classification
tasks? Is the concept representation complete?

2. Concept Representation Evaluation: How much information is captured
from c with respect to both the input image x and the label y? Are the learnt
concepts representative of the data?

3. Concept Interpretability: How interpretable are the learnt concepts pro-
duced? Are they aligned with human representations?

4. Model Interpretability: Are the final predictions interpretable in terms
of the discovered concepts? Can a user modify the concept prediction to
extract counterfactual predictions?

4.1 Experimental setting

In the following we report the dataset, metrics and baselines that we consider
for evaluating and comparing our model. We conducted experiments using two
backbones g: ResNet-18 and ViT-base-patch32. Instead, we always use a decoder
ψ composed by five transposed convolutional layers.

Dataset. This study uses seven image classification datasets of varying
complexity. We employ two MNIST [20] variants, Even/Odd (digit parity) and
Addition (paired digits summed as labels). CIFAR-10 and CIFAR-100 contain
10 and 100 natural image classes, with models extracting 15 and 20 macro-class
concepts, respectively [17]. Tiny ImageNet includes 200 classes but is tested on
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Fig. 4: Comparison of the generalization performance across the evaluated
datasets. LCBM consistently provides the highest generalization accuracy across
concept-based models, closing the gap with end-to-end black box ones.

30 concepts for added challenge [42]. Skin Lesions classifies dermatoscopic images
into 4 macro categories [37]. Finally, CUB-200 [39] covers 200 bird species with
species and attribute annotations.

Metrics. We use specific metrics to address each research question. All
results are reported with the mean and standard deviation, computed over the
test sets by repeating the experiments with three different initialization seeds.

1. Generalization: To assess the classification generalization performance, we
compute the Task Accuracy.

2. Concept Representation Evaluation: We employ the Information Plane
approach [36] to analyze the information retained in the different concept
representations. The information plane reports the evolution of the mu-
tual information between the concept representation and both the input
x (I(C,X)) and the label y (I(C, Y )) as the training epoch increases. For
models reconstructing the input from the concepts, we assess the Input Re-
construction Error by computing the Mean Squared Error (MSE) between
the inputs x and their reconstructions x̂.

3. Concept Interpretability:
For datasets with annotated concepts, we assess their alignment with the
learnt concepts using the macro Concept F1 Score (best-match approach)
and the Concept Alignment Score (CAS) [8] for concept representation align-
ment. Additionally, we conducted a user study with 72 participants, each
answering 18 questions. The study evaluated Plausibility by asking users to
(i) select an image that best represents a given concept and (ii) identify an
intruder image among those representing a single concept. It also assessed
Human Understanding by having participants assign a name to a set of im-
ages illustrating a concept. Finally, we provide qualitative insights through
Concept Dictionaries, showcasing images with the strongest activations for
each concept.

4. Model Interpretability: We perform Concept Interventions [16] to ob-
serve how model predictions change when concept predictions are modified.
As positive concept interventions are non-trivial in unsupervised concept set-
tings, we perform negative interventions [8]. Negative interventions involve
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Fig. 5: Information Plane for the different models in terms of Mutual information
between concept and input variables I(X,C), and between the concept and
output variables I(C, Y ). The size of the markers is proportional to the training
epoch.

Table 1: We report the Input Reconstruction Error in terms of MSE for those
methods that explicitly reconstruct the input.

MNIST E/O MNIST Add. CIFAR10 CIFAR100 Tiny ImageNet Skin Lesion CUB200

BotCL 1.40 ± 0.09 1.57 ± 0.03 0.87 ± 0.02 0.82 ± 0.01 1.35 ± 0.06 0.72 ± 0.02 0.07 ± 0.01
SENN 0.62 ± 0.02 0.93 ± 0.03 0.81 ± 0.04 0.74 ± 0.01 1.10 ± 0.02 0.61 ± 0.04 0.05 ±≤0.01
LCBM 0.32 ±≤0.01 0.71 ± 0.11 0.51 ±≤0.01 0.55 ±≤0.01 0.72 ±≤0.01 0.32 ±≤0.01 0.05 ±≤0.01

randomly swapping the values of the concept scores with a given probability,
expecting model accuracy to decrease as intervention probability increases.
For LCBM, to switch a concept to inactive, we set ĉj = 0, while to activate
it, we set ĉj= 1 and replace the concept embedding with the concept pro-
totype c̄j = tj. Additionally, we provide Qualitative Explanations generated
by LCBM using as concept importances the predicted weights multiplied by
the concept predictions wij · ĉj .

Baselines. To compare the performance of the proposed approach, we test
it against unsupervised approaches like SENN [3] and two variants of a SOTA
model BotCL [40]: BotCL (Recon), which employs an autoencoder-based ap-
proach to reconstruct the input image from the concept bottleneck, and BotCL
(Contr), which applies a contrastive term to the loss to encourage distinct con-
cept activations for different classes. Also, we consider a prototype based ap-
proach ProtoPNet [6] and Label-Free CBM (LF-CBM) [26] a recent hybrid ap-
proach. If the concepts were known (e.g., MNIST Addition), we used CLIP to
align the model with concept captions (e.g., this image contains the digit 4). If
the concepts were unknown, we used the LLM to generate a list of possible con-
cepts. Finally, we compare with a standard black-box model trained end-to-end
(E2E).

4.2 Generalization

LCBM is the most accurate interpretable model (Fig. 4). The proposed
methodology significantly outperforms the baselines. In the most challenging
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scenario (Tiny ImageNet with only 30 concepts), it achieves up to a 50% increase
in task accuracy compared to the worst baseline (BotCL (recon)) and up to a
17% improvement over the runner-up model, ProtoPNet. Our model consistently
delivers the best generalization accuracy across all datasets, with higher gaps in
challenging gaps with lower concept-class ratios. This result is valid even when we
compare LCBM with LF-CBM which exploit the pre-existing knowledge within a
VLM to extract concept annotations. Only in the very simple MNIST Even/Odd
dataset a few methods perform better, by a few decimals. We attribute this
improvement to the unsupervised concept embeddings, which allows learning
more complete representations for task prediction.

LCBM closes the gap with black-box models (Fig. 4). Figure 4 also
shows that LCBM achieves results comparable to the E2E black-box model. The
generalization loss is always less than 1-2%. Notably, on the MNIST addition
dataset, a setting where reasoning capabilities over concepts are required, our
approach outperforms the black-box model with a task accuracy improvement of
2%. Overall, LCBM demonstrates its capability to achieve high interpretability
without sacrificing accuracy in unsupervised concept learning settings.

4.3 Concept Representation Evaluation

LCBM concept representation retains more information regarding
both the input and the output (Fig. 5). The concept representation ob-
tained through unsupervised concept embedding is significantly richer than that
derived from simple concept scores. As training progresses, most baselines expe-
rience a reduction in mutual information with the input I(X,C) while increasing
the mutual information with the output I(Y,C). This observation supports the
conclusion that unsupervised CBM models tend to lose input-related information
while attempting to optimize task performance [34], even for those models that
explicitly require concepts to be representative of the input, such as SENN and
BotCL (Recon). On the contrary, LCBM overcome this limitation by means of
concept embeddings, which facilitate a better balance between competing objec-
tives, as evidenced by the monotonic increase in mutual information with both
the input and output during training.

LCBM allows better input reconstruction (Tab. 1). To understand
why the mutual information I(X,C) of LCBM is consistently higher compared
to other reconstruction-based unsupervised CBMs, we assess the Input Recon-
struction Error in terms of MSE. As shown in Table 1, LCBM achieves lower
MSE in image reconstruction compared to the runner-up model (usually SENN),
with values ranging from 0.18 to 0.38. We believe that concept embeddings fa-
cilitate more accurate and efficient reconstruction by allowing more information
to flow to the decoder network when a concept is active (ĉj = 1). Unlike other
unsupervised models that can only pass a single value (ĉj), LCBM passes the
entire associated concept embedding (c̄j) to the decoder.
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Table 2: Macro F1-score for candidate concepts with respect to existing human-
representations for datasets on which the latter are available.

MNIST E/O MNIST Add. CIFAR100 Skin CUB200

BotCL (recon) 0.47 ± 0.01 0.41 ± 0.01 0.38 ± 0.03 0.47 ± 0.02 0.34± 0.01
BotCL (contr) 0.47 ± 0.02 0.45 ± 0.02 0.40 ± 0.04 0.44 ± 0.03 0.37± 0.02
SENN 0.61 ± 0.02 0.58 ± 0.01 0.44 ± 0.02 0.52 ± 0.02 0.41± 0.02
ProtoPNet 0.26 ± 0.01 0.24 ± 0.01 0.31 ± 0.01 0.16 ± 0.02 0.28± 0.03
LF-CBM 0.52± 0.01 0.50 ± 0.03 0.45 ± 0.01 0.58 ± 0.01 0.45 ± 0.01

LCBM (ours) 0.88 ± 0.08 0.81 ± 0.04 0.60 ±≤0.01 0.58 ±≤0.01 0.55 ±≤0.01

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29

Fig. 6: Tiny-Imagenet dictionary produced by LCBM. Each column of images
represents the set of 7 images that mostly activate each concept. Concept num-
bers are reported on top of each column.

4.4 Concept Interpretability

LCBM concepts are more aligned to human-defined representations
(Tab. 2). For datasets with human-defined concept representations, we eval-
uate the alignment between these representations and those extracted by the
compared concept learning methods. In Table 2, we observe that LCBM learns
concepts that are significantly more aligned with human-defined representations
than existing methods. After matching the concept predictions with the concept
annotations using the Hungarian algorithm [18], LCBM achieves an F1 score that
is up to +0.36 higher than the runner-up, which is always LF-CBM. We remind,
however, that this model has a huge intrinsic advantage, as the employed VLM is
prompted to predict the concepts of each datasets. The fact that LCBM without
any concept supervision achieves higher concept F1 scores than LF-CBM is im-
pressive, but consistent with recent literature reporting poor LF-CBM concept
accuracy [35].

LCBM concepts are qualitatively distinguishable (Fig. 6). While
we quantitatively demonstrated that the LCBM concepts align with those of
datasets equipped with annotations, for datasets lacking annotations, we ex-
amine the dictionaries representing the images that most strongly activate each
concept, as proposed in [3]. Fig. 6 presents the dictionary generated by the model
for the Tiny ImageNet dataset. Each column (concept) exhibits a recurring and
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distinguishable pattern. For example, concept C0 encompasses images of flowers
and plants, whereas C2 appears to correspond to long, slender objects. Con-
cept C4 includes large mammals such as bison and bears, while C7 represents
close-up images of small animals.

LCBM concepts are more plausible and understandable to humans
(Fig.7). To quantitatively assess the quality of the representations, we con-
ducted a user study comparing the plausibility and human-understandability of
the concept extracted by our method and BotCL the SOTA baseline for un-
supervised concept learning. Figure 7 shows that LCBM concepts enable users
to find the intruder image and to complete the set of images much better than
BotCL concepts, with an accuracy up to +25% in terms of finding the right in-
truder image and up to +64% in terms of selecting the completing image. Also,
when assessing the understandability of the concepts we see a higher similarity
up to +.35 of the embeddings of the terms employed to tag the concepts pro-
vided by LCBM than those of BotCL. The embeddings are generated using the
multilingual sentence encoder “all-MiniLM-L6-v2”.

4.5 Model Interpretability

LCBM is sensitive to concept interventions (Fig. 8). Figure 8 shows that
our methodology responds to interventions similarly to other baselines, except
MNIST Even-Odd, where the precision drops only to 50%. In all other datasets,
concept interventions are effective, with LCBM generally experiencing one of
the highest accuracy losses when fully intervened, particularly on CIFAR100
and Tiny ImageNet. This is notable since embedding-based supervised CBMs
typically resist interventions and require specialized training [9], whereas LCBM
does not, suggesting its potential for more effective interventions in supervised
settings.

LCBM provides interpretable predictions (Fig. 9). Finally, we present
sample explanations generated by LCBM. As illustrated in Figure 9.a, the image
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Fig. 9: Example of interpretable prediction on different datasets. We provide
the concept importance together with the Grad-CAM for the most important
concepts.

contains a "two" and a "six," with the model correctly predicting the sum as
eight. The model identifies concepts C6 and C8 as important, which correspond
to the learned concepts "two" and "six", and further validated by the Grad-
CAM results (shown on the y-axis), highlighting the respective digits in the
image. Concept C3, which does not appear in the image, has an importance
value of 0. Figure 9.c illustrates how an image of a bird is classified as a Hooded
Merganser based on a triplet of concepts: C27 focuses on the orange wing, C1
on the crest extending from the back of the head, and C60 on the black beak.

5 Conclusion

This paper introduced a novel unsupervised concept learning model that lever-
ages unsupervised concept embeddings. This approach enables improved gener-
alization accuracy compared to traditional unsupervised Concept-Based Models
(CBMs), while also enhancing the representation of concepts. Our experiments
demonstrate that the extracted concepts better represent the input data and
align more closely with human representations, as evidenced by the F1-score
metric, CAS, and the findings from the user study.
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Limitations and Future work. The first limitation of this work lies in the
employed CNN decoder. While it helps extract meaningful unsupervised concept
representations, it struggles to effectively decode the learned concepts. While our
model reduces the human effort in understanding learned concepts, some manual
inspection is still required. Vision Language Models (VLMs) could help fully
automate concept labeling by using representative images, but this approach may
be less effective in contexts where VLMs lack knowledge, which is the primary
area of application for unsupervised CBMs. Finally, our experiments have been
limited to image classification tasks. Extending the model to generative tasks
presents a challenge and could be explored in future work.
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