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Abstract. Scientific Claim Verification (SCV) tools are essential for
evaluating the validity of scientific assertions, particularly within au-
tonomous science. However, they often struggle to interpret complex
scientific language and detect reasoning flaws, leading to potential mis-
classification. Adversarial attacks, particularly paraphrase attacks, reveal
these weaknesses by rewording claims while maintaining their meaning.
Paraphrase attacks are not the only way to identify weaknesses in SCV
tools, but other existing methods often fail to preserve semantic equiva-
lence, requiring extensive human filtering.
To address this, we define inconsistent reasoning attacks, a broader class
of adversarial attack strategies that expose logical weaknesses in SCV
systems. Using an evolutionary algorithm and large language models, this
approach iteratively modifies claims to trigger misclassifications while
maintaining logical inconsistencies. This method improves semantic accu-
racy and attack effectiveness, particularly for paraphrase-based attacks.
Evaluation against a leading SCV system (MultiVerS) confirms persis-
tent vulnerabilities, even though a retrieval-augmented generation (RAG)
system with an Attack-Reflection mechanism shows potential in mitigat-
ing these issues. The findings emphasize the susceptibility of SCV sys-
tems to reasoning inconsistencies with a larger attack success rate than
other attack techniques and highlight the Attack-Reflection mechanism
as a promising defense.

Keywords: Automatic Scientific Claim · Verification Tools · Adversarial
Attacks · Robustness · Large Language Models

1 Introduction

Scientific Claim Verification (SCV) tools are essential for assessing the validity
of scientific claims, particularly in the emerging field of autonomous science or
discovery [16, 2] and the fast-evolving landscape of social media [21]. However,
these tools face significant challenges due to the complexity of scientific lan-
guage, which requires access to up-to-date research and a deep understanding
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of claims for accurate verification [27, 23]. MultiVerS [26], one of the most ad-
vanced SCV models, leverages multitask loss for rationale selection and label
prediction using long-document transformers. Despite these advancements, SCV
tools remain vulnerable to reasoning errors, leading to incorrect or inconsistent
claim classifications.

Standard NLP adversarial attacks [10, 18, 6] can be used to evaluate the ro-
bustness of SCV tools by altering text while attempting to preserve its meaning.
However, in the context of SCV, these approaches often fail because the se-
mantics of scientific claims are highly sensitive to small changes. For instance,
replacing “Nonsteroidal anti-inflammatory drugs are ineffective as cancer treat-
ments” with “Nonsteroidal anti-inflammatory drugs are indispensable as cancer
treatments” drastically alters the meaning despite a minor word substitution.
While these methods may work well in general NLP tasks, they do not ade-
quately capture the strict semantic precision required for scientific claims, lead-
ing to misclassifications by SCV tools. To address these limitations, paraphrase
attacks have been proposed as a more targeted adversarial strategy [12]. These
attacks attempt to generate reworded claims that maintain semantic equiva-
lence, thereby exposing SCV systems’ weaknesses when semantically identical
claims receive different truthfulness classifications. However, despite their im-
provements over standard NLP adversarial attacks, existing paraphrase attack
methods still struggle to preserve meaning fully. Many generated paraphrases
subtly alter the scientific validity of a claim, necessitating human intervention to
filter out invalid attacks. This reliance on manual validation reduces the scalabil-
ity of paraphrase attacks and limits their application in automated adversarial
testing.

While paraphrase attacks provide a valuable means of identifying SCV vul-
nerabilities, they are not the only way to reveal inconsistencies in reasoning.
Beyond lexical or syntactic changes, SCV tools can also be challenged by logical
inconsistencies that do not rely solely on paraphrasing. To better capture these
weaknesses, we introduce a broader taxonomy of adversarial attacks, which we
term inconsistent reasoning attacks. These attacks systematically expose flaws
in SCV decision-making by manipulating claim logic rather than just altering
surface-level text. In addition to paraphrase attacks, inconsistent reasoning at-
tacks also include specific-to-general attacks, which broaden a claim’s scope by
making it more general or vague (e.g., replacing “car” with “vehicle” or “strongly
related” with “related”), and general-to-specific attacks, which instead refine
broad claims by replacing general terms with more precise ones (e.g., replac-
ing “vehicle” with “car”).

Another type of inconsistent reasoning attack is negation manipulation, where
the logical structure of a claim is altered by introducing double negatives or
modifying negation patterns, like adding “does not fail to” into an affirmative
statement. Union attacks are another form of inconsistent reasoning attacks that
merge multiple claims into a single statement, introducing logical complexity
that can mislead SCV systems and result in misclassified claims. By challenging
SCV tools through these various logical inconsistencies, rather than just surface-
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level linguistic modifications, inconsistent reasoning attacks provide a more com-
prehensive framework for evaluating system vulnerabilities. Additionally, one of
the key contributions of our approach is the ability to merge multiple types of
reasoning attacks, compounding their effects to create stronger adversarial ex-
amples. This capability allows for more effective stress-testing of SCV tools by
generating claims that simultaneously exploit multiple logical inconsistencies.

To generate these attacks, we develop a genetic algorithm leveraging large
language models that iteratively evolve claims through mutation and crossover
operations. This method ensures that inconsistencies in SCV classifications are
systematically identified while minimizing invalid transformations. Unlike para-
phrase-based approaches, our framework provides a more robust assessment of
SCV weaknesses by uncovering reasoning errors rather than focusing solely on
linguistic variation.

We evaluate these attacks against MultiVerS and a retrieval-augmented gen-
eration (RAG) system with Attack-Reflection mechanisms. Our findings indicate
that MultiVerS, despite being one of the most robust SCV models, remains highly
susceptible to inconsistent reasoning attacks. However, the RAG system with
Attack-Reflection demonstrates promising potential in mitigating these vulnera-
bilities in zero-shot learning tasks, suggesting that integrating Attack-Reflection
mechanisms could enhance SCV robustness against adversarial manipulations.

More specifically, this work presents the following key contributions:

– Beyond Paraphrase Attacks: We introduce inconsistent reasoning attacks,
exposing logical inconsistencies in SCV decision-making beyond standard
NLP adversarial techniques and paraphrase attacks.

– Evolutionary Attack Generation: We develop a genetic algorithm leveraging
LLMs to iteratively craft adversarial claims that reveal reasoning failures
in SCV tools. The main novelties include distinct attack strategies for each
type of inconsistent reasoning attack and an LLM-based crossover operation.

– Multi-Type Inconsistency Attacks: Our method improves attack success rates,
minimizes invalid transformations, and enables attack merging to create more
challenging adversarial cases.

– SCV Tool Vulnerability Analysis: We assess MultiVerS, demonstrating its
susceptibility to inconsistent reasoning attacks and exposing weaknesses.

– Mitigation via RAG with an Attack-Reflection Mechanism: We explore self-
reflective mechanisms over attacks in RAG-based SCV models to address
logical inconsistencies and enhance resilience against attacks.

2 Related Works

Scientific Claim Verification (SCV) tools aim to assess the truthfulness of claims
by retrieving relevant research abstracts and analyzing supporting or refuting
evidence. MultiVerS [26] is considered one of the most advanced and most ef-
fective SCV tools. MultiVerS retrieves relevant abstracts, selects rationale state-
ments, and classifies the claim as SUPPORT or REFUTE. MultiVerS enhances
prior methods by incorporating full abstracts using a long-document transformer
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Inconsistent Reasoning Attack
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Fig. 1: Display of categories and subcategories of inconsistent reasoning attacks.

trained on the Semantic Scholar Open Research Corpus (S2ORC) [1], employing
a multitask loss for rationale selection and label prediction.

The retrieval mechanism in SCV tools parallels Retrieval-Augmented Gener-
ation (RAG) [13], which enhances large language models (LLMs) by retrieving
relevant document excerpts to improve factual grounding [5]. This mitigates hal-
lucinations [8] and improves claim verification accuracy [11, 22, 3]. Unlike tradi-
tional SCV systems that rely on selecting static evidence, RAG-based approaches
dynamically generate responses based on retrieved information [4], making them
particularly suited for knowledge-intensive tasks such as scientific fact-checking
[25, 7]. Despite advancements in SCV, adversarial attacks on NLP models reveal
vulnerabilities in automated fact-checking. TextFooler [10] perturbs claims by
replacing important words with synonyms based on word embeddings, but this
often leads to semantic drift, particularly in scientific contexts. PWWS (Proba-
bilistic Word Replacement Strategy) [18] prioritizes impactful word substitutions
using WordNet yet struggles with specialized terminology. BAE (BERT-based
Adversarial Examples) [6] introduces token insertions, deletions, and replace-
ments using pre-trained transformers, improving fluency but still failing to pre-
serve domain-specific meaning.

As highlighted in [12], these adversarial methods are inadequate for SCV due
to their simplistic word-replacement strategies that fail to maintain the techni-
cal integrity of claims. While [12] proposed a paraphrase-based attack generation
approach to enhance semantic fidelity, it still requires manual filtering, limiting
scalability and application in real-world scenarios. While standard NLP attacks
report higher success rates than those in [12], a qualitative analysis reveals that
[12] produces a greater number of valid attacks that preserve semantics com-
pared to standard NLP attacks. However, the evolutionary attack algorithm in
[12] lacks crossover operations with only mutations, which reduces its overall
effectiveness in searching the space of possible attacks.

Our approach advances beyond existing methods by employing a full-stack
evolutionary attack model with crossover and diverse mutation techniques im-
plemented through LLMs. The inclusion of the crossover enables better attack
generation by combining different adversarial strategies, leading to more effec-
tive and automated adversarial testing for SCV tools. The semantic and logical
consistency of our proposed attacks is ensured through the use of LLMs and
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Table 1: Inconsistent Reasoning Attacks definitions and examples.
Category Definition Example
Generalization Replace specific terms in the orig-

inal claim with broader categories.
Only considered when the original
claim is refuted.

White Blood cells Blood cells are
NOT an important part of your im-
mune system, which are positively
correlated with detection and heal-
ing.

Vague Substitute precise terms with more
ambiguous language. Only consid-
ered when the original claim is sup-
ported.

White blood cells are an important
part of your immune system, which
are positively correlated with detec-
tion and healing.

General-to-
Specific

Replace general terms with more
specific ones.

White blood cells Neutrophils are
an important part of your immune
system, which are positively corre-
lated with detection and healing.

Negation Introduce double negatives or re-
verse relational terms.

White blood cells are an important
part of your immune system, which
are positively not negatively cor-
related with detection and healing.

Union Combine multiple claims into a
single statement. Only considered
when one claim is supported and
the other is refuted.

White blood cells are an important
part of your immune system and
neutrophils are not a type of
red blood cell.

Paraphrase Rephrase the original claim while
preserving its meaning.

White blood cells are an important
part of your immune system, which
are positively correlated with detec-
tion and good for healing.

a self-reflection process. Moreover, our experimental results demonstrate a sig-
nificantly higher attack success rate compared to standard NLP attacks. Conse-
quently, our approach outperforms the method proposed in [12], as our approach
achieves a higher attack success rate than standard NLP attacks, whereas [12]
does not. Additionally, in Section 5.7, we follow the same qualitative analysis
conducted in [12], and our results indicate superior performance.

3 Description of Inconsistent Reasoning Attacks

This section introduces the types of inconsistent reasoning attacks, illustrated
in Figure 1. Building on the concept of paraphrasing attacks defined in [12], we
generalize to encompass a broader category of adversarial attacks. An inconsis-
tent reasoning attack occurs when an SCV tool assigns a label to an altered
claim that is logically inconsistent with the label it assigned to the original claim.
A paraphrasing attack falls under this category since it involves a semantic re-
wording of the original claim that should not affect its label, yet the SCV tool
assigns a different label. This discrepancy reveals an inconsistency in reasoning,
as a change in label is unjustified when the meaning remains the same. In ma-
chine learning, traditional adversarial attacks introduce small perturbations in
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order to alter labels. In contrast, paraphrasing attacks implement perturbations
that can be substantial while still maintaining semantic equivalence. Some in-
consistent reasoning attacks extend beyond semantic equivalence, increasing the
level of perturbation even further. The types of inconsistent reasoning attacks
depicted in Figure 1 comprise five attack types: specific-to-general, general-to-
specific, negation, union, and paraphrase. These categories are not intended to
be exhaustive and we anticipate that this research will inspire further categories
of inconsistent reasoning attacks. Table 1 provides definitions and examples for
each attack type.

Specific-to-general attacks involve replacing specific terms in the claim with
more generic terminology. Generalization attacks, a subset of specific-to-general
attacks, replace specific terms in the original claim with broader categories. This
approach leverages the hierarchical structure inherent in many scientific claims,
where concepts are organized from broader groups into narrower categories. For
example, replacing "car" with "vehicle" since vehicle is the broader, higher-level
group encompassing "cars" in addition to other vehicle types. Similar to the
generalization example in Table 1 where "white blood cells" was replaced with
"blood cells." These attacks succeed only when the original claim is refuted, as
a refuted claim about a specific subset remains refuted at the broader level, as it
is refuted for at least one subset. However, a supported statement for a specific
subset may not be supported for all subsets encompassed by the broader level.

Another subset of specific-to-general attacks involves vague generalization,
where precise terms are substituted with more ambiguous language. For example,
removing the word "positively" from the phrase "positively correlated" in the
vague example in Table 1. Unlike generalization attacks, vague generalization is
only effective when the original claim is supported, as the broader wording still
encompasses the specific case.

In contrast, general-to-specific attacks move in the opposite direction, replac-
ing general terms with more specific ones. For instance, substituting "vehicle"
with "car" makes the claim more precise. Similar to the general-to-specific ex-
ample in Table 1 where "white blood cells" was replaced with "neutrophils",
which is a specific type of white blood cell. These attacks are effective when the
original claim is supported, as a statement supported at a general level remains
valid for its specific subcategories. However, a refuted general claim may not
necessarily apply to all its subgroups.

Negation attacks manipulate the logical structure of claims by introducing
double negatives or reversing relational terms. Scientific statements often de-
scribe relationships between concepts, using paired terms such as increase/decre-
ase, positive/negative, or rise/fall. A negation attack alters these relationships
by replacing a term with its opposite and introducing negation, such as changing
"increases" to "does not decrease". For example, when the negation attack in
Table 1 replaces "positively" with the double negative of "not negatively". Some
variants make the claim more ambiguous by removing directional indicators en-
tirely, effectively converting it into a vague attack rather than a strict negation.
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Algorithm 1 Inconsistent Reasoning Attacks
Input: SCV model m, LLM llm, Iterations R, Population size Npop, Dataset DB

1: function generateAttack(claim, label)
2: Poplist ← {(claim, label)}
3: mutationPrompts = [paraphrase, union, negation, generalToSpecific, generalization, vague]
4: crossOverPrompt = crossOver
5: Filter mutationPrompts based on the label’s value.
6: for iter = 1 to R do
7: mutatedClaims← mutatePop(mutationPrompts, Poplist)
8: crossedClaims← crossOverPop(crossOverPrompt, Poplist)
9: Add mutatedClaims and crossedClaims to Poplist

10: Poplist ← selection(Poplist)
11: end for
12: end function
13: function mutatePop(mutationPrompts, Poplist)
14: mutatedClaims← {}
15: for pop = 1 to Npop do
16: mutationPrompt← Random selection from mutationPrompts
17: (claim, label)← Random selection from Poplist
18: if prompt = union then
19: Extend claim by a neighbor claim from the DB
20: end if
21: Pre-process mutationPrompt using claim
22: invokeLLM(mutatedClaims,mutationPrompt, label)
23: end for
24: Return mutatedClaims
25: end function
26: function crossOverPop(crossOverPrompt, Poplist)
27: crossedClaims← {}
28: for pop = 1 to Npop do
29: (claim1, label1)← Random selection from Poplist
30: (claim2, label2)← Random selection from Poplist
31: Pre-process crossOverPrompt using claim1 and claim2
32: invokeLLM(crossedClaims, crossOverPrompt, label)
33: end for
34: Return crossedClaims
35: end function
36: function invokeLLM(claimList, prompt, label)
37: newClaim← llm(prompt)
38: newLabel←m.predict(newClaim)
39: if newLabel ̸= label then
40: attackSuccess ← True
41: Exit function.
42: end if
43: Add (newClaim, newLabel) to claimList
44: end function
45: function selection(Poplist)
46: Score Poplist using m.score(Poplist)
47: Sort Poplist by the scores (descending)
48: Return Poplist ← Poplist[: Npop]
49: end function
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Another common transformation involves adding phrases like "does not fail to",
which modifies the logical interpretation of the statement.

Union attacks merge a refuted original claim with a supported claim (re-
trieved from the training set) into a single statement. The resulting union claim
should still be classified as refuted. These attacks are considered successful only
if the final claim is misclassified as supported. The union of two supported claims
resulting in a refuted classification would be evidence of a hallucination (likely
resulting from linking two supported claims in an improper way), which would
be considered an unsuccessful attack. Combining two refuted statements such
that an SCV tool would classify the union as supported would be a difficult task
and was therefore not considered as it would result in minimal, if any, successful
attacks. An example of a union attack can be found in Table 1, where the sup-
ported claim "White blood cells are an important part of your immune system"
is combined with the refuted claim "Neutrophils are not a type of red blood
cell".

Paraphrase attacks rephrase a claim while preserving its meaning. For ex-
ample, in Table 1, the claim "White blood cells are an important part of your
immune system, which are positively correlated with detection and good for heal-
ing" is paraphrased by removing "...positively correlated with detection and...".
While negation and paraphrasing attacks retain semantic equivalence, double
negation can be seen as a form of paraphrasing attack. However, we classify
negation separately due to its distinct nature [12].

4 Inconsistent Reasoning Attacks Generator

Inspired by genetic algorithms, the Inconsistent Reasoning Attacks (IRA) gener-
ator iteratively challenges the Scientific Claim Verification (SCV) target model,
m, by generating adversarial claims. The attack operates over multiple global
iterations, denoted as R, during which a population of claims undergoes sys-
tematic perturbations. Each iteration consists of two primary operations: mu-
tation and crossover. These operations leverage an LLM to generate diverse
claim variations that can mislead m. To ensure meaningful perturbations, a self-
reflection mechanism refines the generated claims, evaluating their alignment
with attack objectives. The generator continues iteratively until a perturbed
claim successfully alters m’s classification or the maximum number of iterations
is reached. Algorithm 1 provides a step-by-step breakdown of this process. All
prompts used in this paper are provided in Prompts.pdf (additional material).

4.1 Mutation Operation

The mutation operation introduces localized changes to an input claim, al-
tering its structure or semantics while retaining its contextual essence. This
step leverages a predefined set of mutation strategies, including paraphrasing,
generalization, negation, and others, to generate adversarial claims. Mutation
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Examples for Generalization Attack

Prompt

Claim: Breast cancer can be treated with surgery.
Generalized Claim:  Cancer can be treated with surgery.
Claim: Sparrows migrate during winter.
Generalized Claim:  Birds migrate during winter.

Given a claim, the general version transforms specific terms into
their broader, more general equivalents. Refer to the examples
below for guidance on how to perform this conversion: 
{examples}
Now, consider the following claim: {claim}.
Transform it into its general version, ensuring the conversion is
meaningful and retains the core context of the original claim.

More Examples

Claim

Fig. 2: Prompt design for generalization attacks.

Prompts: A predefined list of mutation strategies guides the LLM in generat-
ing new claims. Simple attacks such as paraphrasing require minimal modifica-
tions, while more complex mutations integrate additional contextual information
through supplementary examples in the LLM prompt. Figure 2 illustrates an ex-
ample prompt design for generalization attacks.
Process: A mutation strategy is randomly applied to a claim from the pop-
ulation. The LLM generates a new claim, which is evaluated against m. If the
model’s prediction changes, the attack is successful. This iterative process refines
adversarial claims through self-reflection to maximize their impact.
Self-Reflection of LLM: To enhance adversarial claim generation, Inconsistent
Reasoning Attacks employs a self-reflection mechanism, inspired by its effec-
tiveness in problem-solving [19, 20] and reducing hallucinations [9]. The LLM-
Reflector evaluates each mutated claim, refining it iteratively until it reaches a
meaningful deviation or a maximum number of iterations, Rsr. Figure 3 illus-
trates this workflow, where the LLM-Generator perturbs claims and the LLM-
Reflector evaluates and refines them.

LLM
Generator

Claim

Context

Reflection

New Claim

Iteration, Rsr

YES Pass new
claim to

SCV Tool

NO

LLM
Reflector

Reflection
Prompt

Fig. 3: Self-reflection of LLM.
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4.2 Crossover Operation

The crossover operation merges two claims to create a hybrid adversarial
claim, introducing novel perturbations that increase the likelihood of altering
m’s classification. The crossover mechanism is structured as follows:
Crossover Prompt A specialized prompt directs the LLM to combine semantic
components from two distinct claims into a single hybrid claim.
Process Two claims are selected from the population, and the LLM synthesizes
a new claim by integrating relevant aspects of both. The generated claim is then
tested against m, and if its prediction is altered, the attack is deemed successful.

Like mutation, the crossover process benefits from self-reflection, refining
the hybrid claim through iterative assessment and modification. The crossover’s
impact is further strengthened by the population selection mechanism, ensuring
only the most effective claims persist across iterations.

4.3 Population Selection

The Population Selection mechanism manages the evolving set of adversarial
claims throughout the attack process. It maintains an optimal population of
claims by evaluating and ranking them based on their success in misleading m.

Each claim undergoes evaluation based on m’s classification confidence and
perturbation effectiveness. The claims are ranked in descending order of their
impact, with only the top Npop claims retained for subsequent iterations (Al-
gorithm 1, lines 46-48). An attack iteration is considered successful if at least
one perturbed claim generates a different label from m compared to the origi-
nal claim. This signifies that the adversarial modification effectively misled the
classification process. At each iteration, newly generated claims are evaluated
and ranked, ensuring that only the most potent adversarial examples persist.
The attack continues until either a successful perturbation is achieved or the
maximum global iterations, R, are reached.

Through this iterative process of mutation, crossover, self-reflection, and pop-
ulation selection, Inconsistent Reasoning Attacks systematically generates robust
adversarial claims that challenge m’s decision boundary, demonstrating the effi-
cacy of genetic-inspired attack mechanisms in adversarial NLP research.

5 Experiment

This section evaluates IRA against three state-of-the-art NLP attacks on two
datasets and three victim models. We detail the datasets, baselines, victim mod-
els, implementation, evaluation metrics, analyses, ablation studies, and hyper-
parameters.

5.1 Datasets

We use two well-known datasets for scientific claim verification, summarized in
Table 2:
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Table 2: Dataset Splits with Class Distribution

Dataset Train Val Test

Support Refute Support Refute Support Refute

SciFact 332 173 124 64 100 100
HealthVer 3782 2411 533 391 671 425

SciFact[25] is a curated dataset of scientific claims annotated with abstracts.
Claims are labeled as SUPPORT, REFUTE, or NOINFO. For SUPPORT and
REFUTE labels, rationales and key statistics, such as the number of sentences
per rationale and evidence abstracts per claim, are provided.
HealthVer[17] is a COVID-19-focused dataset for fact-checking health claims. It
contains manually annotated claim-evidence pairs extracted from web snippets
and verified against scientific literature. Each pair is categorized as SUPPORT,
REFUTE, or NEUTRAL.

5.2 NLP Attack Methods and Victim Models

We compare IRA against the following three attack methods.1:
PWWS [18] uses WordNet2 to generate synonym-based substitutions and prior-
itizes word replacements based on model probability shifts and word significance.
TextFooler [10] ranks word importance by measuring the cumulative probabil-
ity change before and after its removal.
BAE-Attack [6] is a black-box attack that generates adversarial examples by
applying contextual perturbations using a BERT-masked language model. BAE-
Attack modifies text by masking tokens and replacing or inserting alternatives
suggested by BERT-MLM.

For adversarial attacks, we evaluate the following SCV tools as victim models:
MultiVerS uses a Longformer encoder for claim verification at both abstract
and sentence levels [26]. It selects rationales via three-way classification, dis-
carding Not Enough Information (NEI) labels and retaining SUPPORT and
REFUTE. Abstract retrieval involves gathering candidates and refining predic-
tions with a neural re-ranking mechanism.
Retrieval-Augmented Generation (RAG) operates by indexing the entire
corpus of abstracts [13]. For each fact-checking instance, the search query em-
bedding is matched against the indexed corpus. The top-K documents retrieved
are then provided, along with the query, to the LLM for final classification.
Attack-Reflection-RAG extends RAG by integrating additional information
about potential attacks, thereby improving its adversarial robustness. This ap-
proach first processes the claim and queries the LLM for possible perturbations

1 As explained in Section 2, we do not include a comparison with [12], as it underper-
forms based on the metrics defined in Section 5.3 for the considered NLP attacks.

2 https://wordnet.princeton.edu/
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introduced by an attack. If the LLM detects a potential adversarial modifica-
tion, it supplies this information as additional context to the RAG model during
inference, helping it make more informed predictions. The prompts used and
further details are in Prompts.pdf in the additional material.

5.3 Metrics

To assess the effectiveness of IRA against the victim models, we use three metrics:
Clean Accuracy (Clean%) represents the classification accuracy on the clean
test dataset. This metric evaluates the performance of the victim model when
it is not exposed to any adversarial attacks. A higher Clean% indicates that the
model generalizes well to unseen data and can accurately classify clean instances.
Accuracy Under Attack (Aua%) measures the model’s accuracy in adversar-
ial settings [14, 15, 28]. A higher Aua% indicates greater resilience to adversarial
attacks, making it a crucial metric in adversarial robustness research.
Attack Success Rate (Suc%) represents the proportion of successfully altered
texts out of the total attempted examples [14, 15, 28]. A lower Suc% indicates
greater model robustness.

5.4 Implementation Settings

We generate the adversarial examples using NVIDIA GeForce RTX 4090. We
employ the LLM LLaMA-3.1, accessed via the open-source library Ollama 3,
for both retrieval-augmented generation (RAG) and adversarial generation. The
clean accuracy (Clean%) is calculated across the entire test dataset. We repro-
duce all victim models using their respective open-source implementations and
predefined hyperparameters. Our GitHub repository for reproducibility is avail-
able at 4.

5.5 Main Results

Table 3 presents the experimental results of IRA compared to state-of-the-art at-
tacks PWWS, TextFooler, and BAE-Attack on MultiVerS and RAG-based SCV
tools across two datasets, SciFact and HealthVer. Since the test set for SciFact
is private [24], we report results on its development set, while for HealthVer, we
use the test set. Across all models and datasets, IRA consistently achieves the
highest Suc%, demonstrating its superior ability to degrade model performance.
Specifically, for MultiVerS, IRA reduces Aua% to 29.26 on SciFact and 22.52 on
HealthVer, surpassing PWWS, TextFooler, and BAE-Attack while maintaining a
significantly higher Suc% (67.65 and 69.85). Similar trends hold for RAG, where
IRA lowers accuracy to 18.09 on SciFact and 15.38 on HealthVer, with an Suc%
of 77.18 and 78.63, respectively. For the Attack-Reflection-RAG model, IRA
continues to demonstrate effectiveness. On SciFact, IRA reduces Aua% to 28.19
3 https://ollama.com/
4 https://github.com/atikbappy/inconsistency-reasoning
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Table 3: Experimental results of IRA compared to three state-of-the-art textual
attacks against MultiVerS and RAG-based SCV tools on two datasets, SciFact
and HealthVer. The best performance is highlighted in bold.
Model Dataset Clean% PWWS TextFooler BAE-Attack IRA

Aua% Suc% Aua% Suc% Aua% Suc% Aua% Suc%

MultiVerS SciFact 90.43 55.85 38.24 58.51 35.29 82.45 8.82 29.26 67.65
HealthVer 74.73 32.41 56.61 35.16 52.94 67.58 9.56 22.52 69.85

RAG SciFact 79.26 30.85 61.07 33.51 57.72 69.15 12.75 18.09 77.18
HealthVer 71.98 24.18 66.41 26.37 63.36 59.89 16.69 15.38 78.63

Attack-Reflection-RAG SciFact 76.06 40.43 46.85 43.09 43.35 70.21 7.69 28.19 62.94
HealthVer 70.33 37.91 46.09 42.86 39.06 62.63 10.93 27.47 60.94

with an Suc% of 62.94. On HealthVer, it lowers Aua% to 27.47 with an Suc% of
60.94, outperforming baselines. Notably, on HealthVer, where baseline attacks
have success rates below 47%, IRA is the only method with a dominant impact.
Overall, IRA improves Suc% by +35.17 on MultiVerS, +31.58 on RAG, and
+29.61 on Attack-Reflection-RAG, confirming its superiority over prior attacks
in degrading scientific claim verification models.

Attack-Reflection-RAG is highly resilient to attacks, except for MultiVerS
outperforming it on SciFact—likely due to parameter estimation on the same
test set. This anomaly aside, attack reflection warrants further investigation as
a mitigation strategy.

5.6 Ablation Study

We perform an ablation study to assess the impact of individual attacks on IRA.
Two experiments were conducted: excluding a specific attack to evaluate overall
performance and isolating a single attack to analyze its contribution. Table 4

Table 4: Ablation study results showing both Aua% and Suc% for SciFact and
HealthVer. “Excluded” means the attack was excluded, “Used” means only that
attack was applied. The row “All” corresponds to the overall performance when
all attacks are applied (or equivalently, when no attack is excluded).

Attack Type
SciFact HealthVer

Excluded Used Excluded Used

Aua% Suc% Aua% Suc% Aua% Suc% Aua% Suc%

Paraphrase 55.32 38.82 53.72 41.17 40.11 46.33 40.11 46.32
Negation 37.77 58.23 78.19 14.11 26.37 64.71 67.58 10.29
General-to-Specific 29.79 67.06 87.23 3.52 29.67 60.29 60.44 19.11
Generalization 33.51 62.94 83.51 8.23 28.02 62.50 66.48 11.03
Vague 33.51 62.94 88.30 2.35 25.82 65.44 66.68 8.08
Union 41.49 54.12 83.51 7.64 31.32 58.09 57.69 22.79

All 29.26 67.65 29.26 67.65 22.52 69.85 22.52 69.85
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presents the excluded and isolated attacks, along with their attack success rate
(Suc%) and accuracy under attack (Aua%) for SciFact and HealthVer.

IRA is most effective when all attacks are combined, achieving the lowest
Aua% (29.26% for SciFact, 22.52% for HealthVer) and the highest Suc% (67.65%
and 69.85%, respectively), as shown in Table 4. This underscores the strength
of a diversified attack strategy.

Among individual attacks, excluding Paraphrase causes the largest Aua%
increase (around 26% for SciFact,18% for HealthVer), emphasizing its crucial
role. Its standalone effectiveness is further confirmed by achieving the highest
Aua% and Suc%.

5.7 Qualitative Analysis

For the qualitative analysis, we analyze 54 paraphrasing attacks that had been
deemed successful by the model and show an example of a single attack that
combined multiple inconsistent reasoning attacks in one.

Table 5: Results of the qualitative analysis to show the success of attacks and
evaluate quality.

Quality Metric Count (%)
Rejected Attacks 12 (22.2%)
Successful Attacks 42 (77.8%)

Quality of Successful Attacks
High 28 (66.7%)
Medium 13 (31.0%)
Low 1 (2.4%)

Among the 54 paraphrasing attacks that were reviewed, we identified any
successful attacks that were truly unsuccessful, that is, an attack where the logic
of the original claim had not been maintained, and the classification from the
SCV tool was correct in reversing its original label.

Attacks that were truly successful were evaluated, and the quality of the
attack was ranked: high/medium/low. Table 5 presents the results of the qual-
itative analysis. Most of the attacks were truly successful (77.8%), and all but
one was of high or medium quality.

Of the 54 paraphrasing attacks that were reviewed, 12 (22.2%) were rejected
and deemed unsuccessful. The attacks were rejected for one of three reasons: 1)
changed meaning, 2) hallucination, or 3) nonsensical statement.
An attack "changed meaning" if the meaning from the original claim had been
altered or reversed in the attack. A "hallucination" occurred when the attack
added new information that was contrary to the original claim. A "nonsensical
statement" was an attack that contained nonsensical grammar, facts, or science.
Of the 12 rejections, 7 were hallucinations (58.3%), 4 changed meaning (33.3%),
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ParaphraseActivation of PPM1D
suppresses p53 function.

BCL-2 activation antagonizes
the apoptotic effects of c-Myc.

1. p53 function is suppressed when
PPM1D is activated.

11. Activation of PPM1D suppresses
p53 function, which antagonizes the
apoptotic effects of c-Myc through
BCL-2 activation.

22. Activation of the PPM1D enzyme
in melanoma cells leads to the
repression of TP53 function.

72. Activation of PPM1D affects p53
activity.

Union

Union

Vague

General-to-Specific

SUPPORT

REFUTE

Label

Original Claims Attack # and Altered Claim

Fig. 4: Example of a generated combined inconsistent reasoning attacks

and 1 was a nonsensical statement (8.3%). Hallucinations were expected due to
the greedy nature of inconsistent reasoning attacks, which optimize for modifi-
cation of an original claim that reverses the classification of the SCV tool.

The single attack that combined multiple inconsistent reasoning attacks that
were reviewed went through 72 iterations, applying an inconsistent reasoning
attack at each iteration. Figure 4 displays 4 of the 72 intermediate states (the
1st, 11th, 22nd, and 72nd states).

These 4 intermediate states include paraphrasing, union, general-to-specific,
and vague inconsistent reasoning attacks. When possible, added or updated text
is colored red. This figure shows how two original claims were joined (union),
rephrased (paraphrase), made more specific (general-to-specific), and made more
vague in order to form an attack claim that reversed the classification of the SCV
tool from SUPPORT to REFUTE making this a successful attack.

5.8 Hyperparameter Analysis

Figure 5 illustrates the impact of key hyperparameters - Number of iterations
(R), Number of Population (Npop) and Number of Self-Reflection Iterations
(Rsr) - on the performance of IRA, as measured by Aua%
Number of Iterations Increasing the number of iterations reduces the Aua%
consistently, as shown in subfigure 5a. This shows that longer iterative pro-
cesses allow the algorithm to explore more potential attack strategies, resulting
in better performance. However, balancing performance improvement with the
increased computational costs is crucial when choosing R.
Number of Population Subfigure 5b demonstrates that a larger population
contributes to a steady decline in Aua%, indicating that a diverse candidate pool
during optimization improves the overall outcome of IRA. While higher Npop
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A
ua

%
(a) R (b) Npop (c) Rsr

Fig. 5: Hyperparameter Analysis for IRA. 50 random samples from SciFact
dataset were used to compute Aua% for given hyperparameters.

values lead to better results, they demand additional computational resources
and can slow down the process.
Number of Self Reflection Iterations Subfigure 5c highlights a negative cor-
relation between Rsr and Aua%. With more self-reflection iterations, LLMs can
increasingly refine its strategies, leading to more effective attacks. Nonetheless,
higher Rsr requires higher computational resources, so choosing a good trade-off
is necessary.

6 Conclusion

Scientific Claim Verification (SCV) tools play a crucial role in assessing the
validity of scientific claims; however, they remain vulnerable to logical incon-
sistencies. Adversarial attacks provide a powerful approach for identifying these
vulnerabilities and enhancing SCV systems. In this study, we introduce incon-
sistent reasoning attacks, a broader class of adversarial manipulations encom-
passing five types: specific-to-general, general-to-specific, negation, union, and
paraphrase. To detect and test these weaknesses, we develop an evolutionary
algorithm that leverages large language models to generate effective adversarial
attacks targeting logical inconsistencies.

Evaluation against MultiVerS reveals persistent vulnerabilities, while a retrieval-
augmented generation (RAG) system with an Attack-Reflection mechanism shows
promise in mitigating these issues. Strengthening SCV systems against such at-
tacks is essential for ensuring their reliability. Future research should integrate
self-reflection and adversarial robustness to improve SCV effectiveness.
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