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Abstract. The continued release of increasingly realistic image gener-
ation models creates a demand for synthetic image detectors. To build
e!ective detectors, we must first understand how factors like data source
diversity, training methodologies and image alterations a!ect their gen-
eralization capabilities. This work conducts a systematic analysis and
uses its insights to develop practical guidelines for training robust syn-
thetic image detectors. Model generalization capabilities are evaluated
across di!erent setups (e.g., scale, sources, transformations), including
real-world deployment conditions. Through extensive benchmarking of
state-of-the-art detectors across diverse and recent datasets, we show
that while current approaches excel in specific scenarios, no single detec-
tor achieves universal e!ectiveness. Critical flaws are identified in detec-
tors and workarounds are proposed to enable practical applications that
enhance accuracy, reliability and robustness beyond current limitations.

Keywords: synthetic image detection · ai-generated images · di!usion
models · model generalization · detector robustness.

1 Introduction

Synthetic image generation presents challenges regarding visual information in-
tegrity, misinformation mitigation and trust in digital environments. Due to
these concerns, correctly attributing synthetic content has become a social de-
mand and a top scientific priority. Recent legislation aligns with this context,
mandating the identification and notification of synthetic digital content [39].

To address these needs, synthetic image detection (SID) has become locked
in a race with synthetic image generation (SIG) [25]. SID aspires to win by
developing universal detectors [32, 8], but their generalization capacity remains
uncertain. Meanwhile, new SIG models join the race every month, advancing in
realism and posing new challenges. This work studies the SIG-SID relationship
by analyzing the impact of training conditions on SID generalization (§4). The
lessons learned are applied to train a baseline for evaluating generalization un-
der deployment conditions, including variations in data and model sources and
scaling factors (§5). Our final experiments (§6) benchmark recent detectors using
synthetic data from the latest generators under optimized image scaling policies.
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Finally, ethical considerations related to SID research, including when and how
detectors should be publicly released, are discussed (§7).

Our findings indicate that current methods are insu!cient for reliable SID,
as no tested model generalizes universally. Factors like rescaling play a major
role in detector performance, exposing a vector of attack for malicious actors.
While some models su"er major degradations, others benefit from resized inputs,
emphasizing the importance of appropriate preprocessing techniques. Lastly, de-
tectors perform much worse on private models, like DALLE and Midjourney,
compared to open models, highlighting the crucial role of open science in syn-
thetic attribution. This work illustrates how, as of today, generalization should
never be assumed in the field of SID. In summary, our contributions include:

– A systematic analysis of training conditions a"ecting detector generaliza-
tion, showing improved robustness when trained on newer generators and
highlighting vulnerabilities to common image alterations.

– Development and release of SuSy, a multi-class detector trained with opti-
mized augmentations, accompanied by practical deployment guidelines in-
cluding optimal patch aggregation and standardized rescaling.

– Comprehensive benchmarking of state-of-the-art detectors across diverse da-
tasets, identifying critical vulnerabilities related to image rescaling.

2 Related Work

Previous work on SID has primarily focused on GAN-generated content [48, 40,
18], due to its historical prevalence and relative speed. However, recent studies
show that GAN-focused detectors often fail to identify content from modern
di"usion models [41, 30]. While several recent works address the detection of
di"usion-based content [3, 11, 46, 28, 51, 50, 19, 32], which now produce the most
perceptually convincing synthetic images, their generalization ability under di-
verse conditions remains largely untested.

Deep learning architectures such as CNNs [9, 37] and Visual Transform-
ers (ViTs) [3, 28] have been used to learn hierarchical synthetic patterns, with
CLIP-based methods enhancing detection through semantic [32] and intermedi-
ate feature analysis [23]. Models combining textual and visual features have also
been adopted; [7] uses prompt tuning to detect deepfakes as a visual question-
answering problem, while [44] applies contrastive learning guided by text. Hy-
brid models combine multiple detection signals, such as dual-stream networks
analyzing texture and frequency artifacts [45] or CLIP features fused with low-
level image statistics [35]. Across detection methods, frequency domain-based
approaches are commonly used to reveal generation artifacts [10]. Some leverage
Fast Fourier Transform analysis to capture characteristic patterns [36, 5], while
others explore wavelet-based features specifically for di"usion outputs [14]. In
addition, local feature analysis examines texture contrast patterns [49] and in-
trinsic dimensionality properties [30] for complementary signals.

AI-generated image detectors are typically trained using data from a single
source and evaluated across multiple sources to assess generalization [11, 33, 51,
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50, 19, 32, 6, 8]. Among various bias sources examined, image format and resolu-
tion stand out as key factors. In [11], authors highlight the impact of resizing
operations, a common practice to adjust images to network input resolution. The
study in [19] demonstrates biases associated with JPEG compression and image
size, with detectors generally performing better on natural images that di"er sig-
nificantly from generated training images. This observation aligns with findings
in [12], where dataset choice significantly impacts detection performance.

Recent e"orts, such as the SIDBench framework [34], have performed SID
evaluation across diverse datasets, including an analysis of resolution e"ects.
Part of our work builds on the SIDBench framework but di"ers in scope and
contribution. Firstly, we provide an analysis of resolution e"ects by examining
a range of scaling factors, while SIDBench focuses on cropping versus resizing.
We also investigate additional generalization factors, including generator family,
model release date and dataset source, including both open and private models,
as well as multiple sources for the same generators. Furthermore, we incorpo-
rate more authentic datasets and newer synthetic image generators. Lastly, we
evaluate optimal scaling settings for individual detectors and benchmark their
performance under real-world conditions, uncovering new insights.

3 Methods

To examine detector biases arising from training methodology, we employ a fixed
architecture (see §3.1), train it using six image datasets (see §3.2) and evaluate
it with fifteen additional datasets (see §3.3). To enable full reproducibility of
our work, our codebase 1, training datasets 2 and model weights 3 for our best-
performing detector are publicly released.

3.1 Architecture

For our experimentation, we use a ResNet [22] trained as a direct classifier,
chosen for its robust performance [51, 19, 6] and lightweight design suitable for
large-scale evaluation. Specifically, we adopt the staircase design from [31], which
combines CNN-based feature extraction with MLP classification in a staircase
design shown in figure 1 (see Appendix A for a detailed explanation of the
architecture).

Detectors are commonly trained on image patches or downsampled images,
as processing entire high-resolution images is computationally intensive and the
most discriminating features are typically low-level. For each image, we select
the five 224→224 patches exhibiting the highest contrast in their grey-level co-
occurrence matrix [21]. These patches are processed individually through the

1 https://github.com/HPAI-BSC/SuSy
2 https://huggingface.co/datasets/HPAI-BSC/SuSy-Dataset
3 https://huggingface.co/HPAI-BSC/SuSy
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Fig. 1: Detector architecture used, based on a ResNet-18 from [31], including
ResNet blocks (blue), bottlenecks (red), adaptative average pooling 2D (orange),
concatenation (yellow) and an MLP (green).

network, producing per-patch predictions that are aggregated to yield image-
level decisions. The impact of di"erent aggregation strategies on detection per-
formance is analyzed in §5.2.

For performance metrics, recall is used for single-dataset evaluations (au-
thentic or synthetic), focusing solely on the model’s ability to identify the target
class. For multi-dataset classification scenarios, macro accuracy is employed to
provide an unweighted mean of per-class accuracy, ensuring fair evaluation across
all classes regardless of sample size.

3.2 Train Datasets

The training experiments detailed in §4 utilize two types of datasets: authentic
real-world images sourced from COCO [27] and synthetic AI-generated images
from DALLE3 [16], SD1.X [42], SDXL [15], MJ 1/2 [38] and MJ 5/6 [17]. These
datasets represent di"erent versions of three popular image generators: DALLE,
StableDiffusion and Midjourney. To ensure balanced class representation,
COCO and SD1.X are undersampled to a maximum of 5,435 images. Pre-existing
train, validation and test splits are respected, defaulting to a standard 60%-20%-
20% random split when such partitions are unavailable. For SDXL, the realistic-2.2
split is used for training and validation, while the realistic-1 split is reserved for
testing. Further details are provided in Appendix C.

3.3 Benchmarking Datasets

To evaluate SID models, we use fifteen datasets: eleven produced and gathered
by others, two produced by others but gathered by us and two produced by us.
Image resolution distributions and visual samples are detailed in Appendices G
and H, respectively.
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Dataset Model Year Format Type Train Val Test
COCO - 2017 JPG Auth 2,967 1,234 1,234

dalle3-images DALLE3 2023 JPG Synth 987 330 330
diffusiondb SD1.X 2022 PNG Synth 2,967 1,234 1,234

SDXL realisticSDXL 2023 PNG Synth 2,967 1,234 1,234
mj-tti MJ 1/2 2022 PNG Synth 2,718 906 906

mj-images MJ 5/6 2023 JPG Synth 1,845 617 617
Evaluation Datasets

Flickr30k - 2014 JPEG Auth - - 31,655
GLDv2 - 2020 JPEG Auth - - 5,000

In-the-wild - 2024 Mix Auth - - 121
Synthbuster Multiple 2024 PNG Synth - - 9,000

SD3 SD 3 2024 PNG Synth - - 8,192
FLUX.1 FLUX.1 2024 PNG Synth - - 8,192

In-the-wild ? 2024 PNG Synth - - 99
Table 1: Datasets with generative models, release date, image format, type and
sample counts.

The externally produced datasets include two subsets of 5,000 randomly se-
lected authentic images: scenes depicting people from Flickr30k [47] and nat-
ural and human-made landmarks from GLDv2 [43]. Additionally, nine synthetic
datasets from the Synthbuster superset [5] provide 1,000 images each, gener-
ated using common prompts across both models included in our training (e.g.,
SDXL, DALLE3) and models outside our training set (e.g., DALLE2, Firefly).

The In-the-wild dataset contains images gathered from online sources by
the authors. The authentic split includes 121 manually curated images from
sources like Reddit communities prohibiting AI content and Flickr uploads prior
to 2020. The synthetic split consists of 99 photorealistic AI-generated images
sourced from Civitai and Reddit ’s synthetic content communities. Despite careful
manual curation and community moderation, we acknowledge a residual risk of
contamination due to possible mislabeling or oversight.

Fig. 2: Examples of the In-the-wild dataset.
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Finally, we generate two synthetic datasets containing 8,192 images each: SD3,
created using Stable Di"usion 3-Medium [4], an MMDiT text-to-image model;
and FLUX.1, generated with FLUX.1-dev [24], a 12B parameter model combining
MMDiT and DiT architectures [26]. Additional details are in Appendix D.

4 Train Experiments

This section examines how di"erent training strategies a"ect model generaliza-
tion. For consistent experimental comparison, all models share identical archi-
tecture (§3.1) and hardware setup (Appendix B). Concretely, all experiments
were conducted on the MareNostrum 5 supercomputer, hosted at the Barcelona
Supercomputing Center (BSC). We utilize an Intel Xeon Platinum 8460Y pro-
cessor and one NVIDIA Hopper H100 64GB GPU. Training is capped at 20
epochs with a 2-epoch patience early stopping based on validation accuracy.
The datasets described in §3.2 are augmented using horizontal flips with 50%
probability, while additional transformations are analyzed in § 4.3.

4.1 Single-class Models

We evaluate relationships between SIG models by training binary classifiers,
using each synthetic dataset in §3.2 as a positive class and COCO as the negative
class. These single-class detectors are then tested on the remaining datasets to
assess cross-model generalization (see Table 2).

Training Dataset Year Evaluation Dataset Avg.
DALLE3 SD1.X SDXL MJ 1/2 MJ 5/6

DALLE3 2023 97.70 27.59 70.19 50.73 97.02 68.64
SD1.X 2022 49.76 98.30 68.23 39.65 40.36 59.26
SDXL 2023 51.27 33.45 97.57 59.14 67.97 61.88

MJ 1/2 2022 31.39 17.63 73.14 99.07 51.51 54.55
MJ 5/6 2023 91.76 26.13 64.75 62.69 99.25 68.92

Avg. 64.38 40.62 74.78 62.26 71.22
Table 2: Patch-level recall (%) of single-class models for synthetic datasets. In
bold, performance on the training dataset.

While single-class detectors achieve excellent recall (over 97%) on their target
class, performance drops substantially when tested on other datasets. SIG model
age emerges as the dominant factor a"ecting generalization. When evaluating
newer detectors on older generators, we observe severe performance degradation,
as shown in the last row of Table 2, where detectors trained on SD1.X and MJ 1/2

(both from 2022) show the lowest average values. This pattern likely stems from
older generators producing more pronounced artifacts, which newer detectors
struggle to identify without specific training. Conversely, detectors trained on
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recent datasets show better cross-SIG generalization, as evidenced by the higher
average values for DALLE3, SDXL and MJ 5/6 in the last column. Paradoxically,
this suggests that more realistic generators enhance the robustness and reduce
the bias of detectors. In contrast, SIG family has a weak e"ect on generalization
- the detector trained on SDXL is below average when tested on SD1.X and the
SID model trained on MJ 1/2 is not particularly accurate on MJ 5/6. The e"ect
of image format is also inconclusive.

4.2 Multi-class Models

Multi-class detectors o"er richer decision boundaries compared to single-class
detectors, which tend to collapse [13] i.e., defaulting to predicting only one
class. To explore the e"ects of this distinction on generalization, we train a binary
classifier merging all synthetic data sources from §3.2 into a single synthetic class,
including 14,323 synthetic images and an analogous amount drawn from COCO to
compose the authentic class. We also train a six-class recognition model using the
original splits defined in §3.2. To obtain binary classifications from the six-class
model, we take argmax of the output probabilities, where all samples labeled as
belonging to a synthetic class are considered equal predictions of the synthetic
class. An alternative threshold mechanism was explored, with minimal impact
on performance, and its results are reported in Appendix E.

Model Evaluation Alteration
Auth. DALLE3 SD1.X SDXL MJ 1/2 MJ 5/6

Single - 97.70 98.30 97.57 99.07 99.25
Binary 94.85 99.64 98.98 99.22 99.60 99.74
6 Class 97.39 99.76 97.89 99.30 99.91 99.97

Table 3: Patch level recall for Single: five models trained on each synthetic
dataset (i.e., Table 2 diagonal), Binary : model trained with all synthetic datasets
merged, 6 Class: multi-class model trained for the recognition task. Best in bold.

Results in Table 3 show good performance from both the binary and the six-
way classifiers on all synthetic datasets, better than single models, which means
visual features of synthetic detectors are mutually beneficial for SID. In general,
the six-way classifier outperforms all, with the only exception of one of the oldest
and most distinct datasets (i.e., SD1.X) (lowest generalization in Table 2).

4.3 Image Alteration Methods

Image transformations, while essential for storage optimization and transmission
cost reduction, can significantly alter images and may be exploited by malicious
actors to mask synthetic content. If SID models are not robust to these transfor-
mations, their utility in real-world scenarios becomes minimal. To evaluate this
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robustness, we test the six-class model from the previous section under common
transformations from the Albumentations library [1]: blur (AdvancedBlur and
GaussianBlur), brightness and gamma alterations (RandomBrightnessContrast
and RandomGamma) and JPEG compression, all using default parameters.

For a complete assessment, we train five multi-class models, each with a
di"erent transformation applied to its training set, and evaluate these alongside
our original six-class model across all transformations and unaltered images.
The results are presented in Table 4 using multi-class macro accuracy, where any
misclassification between synthetic classes is counted as an error. This metric was
selected instead of the previously used binary metrics, as binary classification
consistently achieved over 99% accuracy, limiting its ability to distinguish model
performance in a multi-class context.

Training Evaluation Alteration Avg.Alteration None Bright ω JPEG ABlur GBlur
None 90.90 86.66 90.60 90.19 81.56 54.73 82.44
Bright 91.28 89.68 91.13 90.10 84.61 63.55 85.06

ω 91.52 87.51 91.30 90.02 85.57 65.22 85.19
JPEG 87.82 83.15 87.79 86.21 78.42 55.29 79.78
ABlur 90.13 86.23 90.12 88.15 88.04 81.54 87.37
GBlur 88.94 84.02 88.65 87.37 86.78 81.88 86.27
Avg. 90.10 86.21 89.93 88.67 84.16 67.04

Table 4: Patch-level accuracy (%) of six-class recognition models when trained
on one alteration method and evaluated on all. In bold, performance on the
alteration used for training. Last column: model average across all transforma-
tions. Bottom row: average performance of all models for each transformation.

Table 4 shows blur is the transformation that most impacts detector perfor-
mance. GaussianBlur, which causes drops in accuracy of over 7 points, is also the
hardest transformation in training, showing the lowest diagonal score. However,
both blur-trained models achieve the highest cross-transformation accuracies,
demonstrating e"ective generalization and making blur a valuable addition to
the training process.

5 Deployment Experiments

To study the impact of deployment factors on generalization, we use SuSy, a
multi-class model trained with the setup described in §4. Training data from
§3.2 is augmented with all transformations from §4.3, each applied with a 20%
chance. We explore generalization to new data sources (§5.1), patch-to-image
prediction aggregation (§5.2) and resolution impacts (§5.3).
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5.1 Generalization to Source

The SuSy (Patch) column of Table 5 shows evaluation results under disjoint
sets of data (see §3.3). For authentic datasets, the model generalizes well to
Flickr30k (91.81%), moderately to GLDv2 (68.37%) and poorly to In-the-wild

images (30.91%). Robust performance across these diverse datasets suggests min-
imal impact from potential content biases introduced in the training data.

Type Data SIG Year SuSy SuSy

Source Model (Patch) (Image)
Authentic Flickr30k None 2014 91.81 94.48
Authentic GLDv2 None 2020 68.37 71.80
Authentic In-the-wild None 2024 30.91 27.27
Synthetic† Synthbuster SD 1.3 2022 88.56 91.80
Synthetic† Synthbuster SD 1.4 2022 88.50 91.80
Synthetic† Synthbuster MJ V5 2023 74.22 78.40
Synthetic† Synthbuster SD XL 2023 79.22 83.80
Synthetic† Synthbuster DALLE-3 2023 87.02 92.50
Synthetic‡ Synthbuster Glide 2021 52.78 53.20
Synthetic‡ Synthbuster SD 2 2022 68.32 70.40
Synthetic‡ Synthbuster DALLE-2 2022 24.50 19.70
Synthetic‡ Synthbuster Firefly 2023 53.04 53.50
Synthetic‡ Authors SD 3 2024 91.51 95.23
Synthetic‡ Authors FLUX.1 2024 94.37 97.05
Synthetic‡ In-the-wild Unknown 90.51 91.92

Table 5: Recall at patch level and five-patch majority voting at image level for
SuSy. Best in bold. †Generators seen during training. ‡Generators unseen during
training.

The middle section of Table 5 shows datasets from generators seen during
training but generated by di"erent users. Although possible variations in SIG
configurations, prompts and post-processing may introduce significant biases,
SuSy achieves 74-88% recall across all cases.

For datasets from models unseen during training (bottom of Table 5), perfor-
mance varies widely (24-94%). Model family inconsistently a"ects generalization:
SuSy performs excellently on SD3, adequately on SD2, but poorly on DALLE2, de-
spite training on versions of both generator families.

5.2 Image Decision Boundary

While SID models operate on image patches, real-world applications typically
require whole-image predictions. To address this gap, we analyze the top five
patches selected based on texture complexity (as described in §3.1).

We tested two aggregation strategies: majority voting of patch predictions
and averaging patch logits before classification. Both improved over single-patch
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performance, with majority voting consistently outperforming across datasets
(results in the last column of Table 5). This approach further improved recall for
high-performing datasets while providing minimal gains for poorly performing
ones, revealing both advantages and limitations of decision boundary tuning.

5.3 Scale Generalization

Image resizing is a widespread image alteration that can alter or eliminate fre-
quency artifacts that SID models rely on, potentially decreasing their perfor-
mance. To assess the extent of this factor, we evaluate SuSy using images scaled
at six di"erent sizes (224 to 1440px). First, if the image is not already square,
equal padding is added to the shorter dimension to center it. Then, the squared
image is resized to the specified dimensions using bilinear interpolation, from
which the evaluated patches are extracted. Using the evaluation datasets de-
scribed in §3.3, which follow a diverse distribution of sizes (see Appendix G), we
compute recall separately for authentic and synthetic classes at each scale. This
approach allows us to monitor both accuracy and balance in detection across dif-
ferent resolutions. This experiment is reproduced in the benchmarking analysis
of §6 for comparison with other SID models.

Fig. 3: Recall of SuSy under di"erent scaling factors.

Figure 3 shows SuSy maintains stable performance at lower resolutions (224-
512px). As resolution increases, predictions become increasingly biased toward
the synthetic class. For consistent real-world performance, where images may
have undergone prior resizing, we recommend including standardized rescaling
in preprocessing pipelines.

5.4 Human Evaluators

To benchmark against human perception, we asked 10 social media users (aged
22–30) likely to be exposed to AI-generated content, to classify the In-the-wild
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dataset. Images were presented in random order on identical IPS LCD displays
under controlled lighting conditions. Participants were not informed about the
class distribution. On average, volunteers took 15 minutes to classify all 210 im-
ages under no time constraints. Using our optimal setup from previous sections,
SuSy outperformed the average human evaluator by 1.5%.

6 Benchmarking Experiments

To complete this study, we test the performance of ten di"erent SID models (most
available through SIDBench [34]). Table 6 showcases the six best-performing
models (exceeding 140 combined recall points): LGrad [37], GramNet [29] and
DIMD [23], which use CNNs as feature extractors, along with transformer-based
models Rine [23], DeFake [11] and FatFormer [28]. Appendix F provides archi-
tectural details and results for the remaining tested detectors: CNNDetect [40],
Dire [41], FreqDetect [18] and UnivFD [32].

Fig. 4: Recall of state-of-the-art SID models under di"erent scaling factors.

6.1 Rescaling

Given the crucial role of image scaling, detector performance is first assessed
using the methodology from §5.3, providing insights on generalization under
scale changes. Although DIMD, GramNet and LGrad were originally trained
at 256→256, we standardize all evaluations at 224→224 patches across models
to ensure consistency in processed information. To confirm the fairness of this
approach, we performed a preliminary evaluation of these models at their native
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256→256 resolution. The results, presented in Figure 5, show that the change in
resolution does not fundamentally alter their performance characteristics.

The models in the top row of Figure 4 are highly sensitive to any scale modifi-
cations, with performance consistently deteriorating after rescaling (i.e., optimal
performance without resizing). This sensitivity creates a security vulnerability
that malicious actors could exploit. Additionally, these models show bias toward
the authentic class, with suboptimal synthetic image recall (63% for two models,
while the third performs below random chance).

In contrast, detectors in the bottom row demonstrate resilience to some scale
variations (i.e., optimal performance includes resizing). DeFake and LGrad per-
form optimally at lower resolutions (224-512px), similar to SuSy, while GramNet
excels at higher resolutions (768-1024px). Their optimal input resolution en-
hances resilience and enables deployment pipeline optimization. However, these
models di"er in prediction balance: DeFake excels in synthetic class detection,
LGrad in authentic class identification, while GramNet and SuSy achieve more
balanced performance across both categories.

Fig. 5: Evaluation of DIMD, GramNet, and LGrad on 256→256 pixel patches,
matching their original training resolution.

6.2 Optimal Model Generalization

The final experiment evaluates detector generalization across benchmarking datasets
at optimal input scales. Results in Table 6 reveal a critical limitation: all detec-
tors achieve less than 50% recall on at least four datasets, demonstrating that no
universal detector exists. Performance metrics consistently favor the authentic
class over synthetic, partly from optimal resolution selection and partly reflect-
ing the more diverse and challenging synthetic distribution. A clear trade-o"
emerges: DeFake is simultaneously the best synthetic detector and worst au-
thentic detector, while FatFormer shows the opposite pattern.

While DeFake leads in synthetic detection overall and DIMD excels in 8
of 17 synthetic datasets (including 6 of 7 StableDi"usion variants), both are
highly sensitive to rescaling, making them unsuitable for deployment with un-
controlled inputs. DIMD’s consistent performance across StableDi"usion models
is exceptional, as detectors generally lack consistency across model families. Even
when datasets use the same generative model, performance varies significantly
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Avg.

Resolution Nat. Nat. Nat. 224 400 400 768

Authentic Data

Flickr30k - ’14 99.92 100.0 99.54 93.62 99.82 94.76 99.94 98.23
COCO - ’17 100.0 99.60 100.0 91.33 77.63 - 87.12 92.61
GLDv2 - ’20 96.54 99.92 77.42 78.32 98.66 82.62 100.0 90.50
In-the-wild - ’24 96.69 96.77 95.87 46.28 71.90 74.38 65.29 78.17

Avg. Authentic 98.29 99.07 93.21 77.39 87.00 83.92 88.09

Synthetic Data Sources

Synthbuster Glide ’21 6.10 68.10 83.60 86.50 53.50 53.30 68.80 59.99
mj-tti MJ V1/V2 ’22 2.87 55.29 14.57 75.83 42.60 - 63.58 42.46
Synthbuster SD 1.3 ’22 100.0 88.20 99.90 86.20 81.10 87.00 90.00 90.34
Synthbuster SD 1.4 ’22 100.0 88.00 99.60 87.20 81.30 87.10 90.70 90.56
diffusiondb SD 1.X ’22 99.92 86.33 96.03 76.01 52.11 - 93.52 83.99
Synthbuster SD 2 ’22 97.10 47.20 85.80 39.80 53.80 42.30 75.50 63.07
Synthbuster DALLE-2 ’22 0.40 45.80 70.80 47.30 76.00 20.70 93.10 50.59
Synthbuster MJ V5 ’23 98.10 30.60 87.00 49.90 83.60 36.50 88.50 67.74
mj-images MJ V5/V6 ’23 90.11 5.16 31.28 75.85 8.27 - 15.56 37.71
Synthbuster SDXL ’23 94.40 79.80 97.60 53.60 86.20 45.90 97.20 79.24
real.SDXL SDXL ’23 97.65 28.64 82.17 91.82 69.77 - 75.61 74.28
Synthbuster Firefly ’23 18.10 81.40 43.30 54.00 66.40 24.50 83.00 52.96
Synthbuster DALLE-3 ’23 0.00 0.00 2.00 93.60 35.00 84.30 30.40 35.04
dalle3-imgs DALLE-3 ’23 61.82 3.92 28.79 81.21 3.03 - 1.52 30.05
→ SD3 SD 3 ’24 99.24 59.02 85.05 89.42 70.74 78.44 89.03 81.56
→ FLUX.1 Flux.1-dev ’24 62.89 23.08 54.72 81.43 63.92 85.40 92.99 66.35
In-the-wild Unknown 47.47 5.00 16.16 84.85 22.22 71.72 32.32 39.96

Avg. Synthetic 63.30 46.80 63.43 73.80 55.86 59.76 69.49
Table 6: Center-patch recall of detector models evaluated with their optimal
input resize resolution (Native denotes no alteration). Best recall in bold and
recalls below 50% underlined. Entries denoted by (-) for SuSy indicate training
datasets excluded from evaluation.
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— average recall di"erences between DALLE3 versions is 27.63% across detectors,
while SDXL variations average 24.35%. While detectors may generalize to source
changes under specific conditions (see §5.1), this is not universal. Even in con-
trolled scenarios like Synthbuster, where identical prompts are used, detection
performance exhibits substantial variability.

Private models (DALLE, Midjourney, Firefly) present particular challenges,
with detectors achieving only 45.22% average recall on closed SIG models com-
pared to 76.60% on open ones. Even the best-performing closed dataset achieves
only 7.75% better recall than the worst open one, stressing the importance of
open science in advancing the field of SID.

The In-the-wild dataset, serving as a proxy for real-world conditions, re-
veals additional limitations. No tested detector exceeds 50% recall for both au-
thentic and synthetic versions across all input resolutions. Only SuSy demon-
strates robust performance with over 70% recall in both subsets, but specifically
when operating at its optimal input resolution.

7 Conclusions

In a race equilibrium paradox, better generative models appear regularly, making
the task harder for humans, while detectors trained on these newer generators
are more reliable (see §4.1), keeping the race close.

The demand for detectors grows as society seeks to preserve social trust and
digital rights while combating disinformation. Yet, these detectors must improve
their generalization capabilities to be truly e"ective. In that regard, the main
lesson from this work is: never assume generalization in SID. Results in Table 6
indicate even within datasets produced by the same generative model, detection
performance may largely vary, as a result of software and hardware setups and
user bias. Similarly, generalization should not be assumed on synthetic images
produced by older, less realistic generators either, even if these synthetic samples
seem more obvious to the human eye. As shown in Table 2, samples from these
models are hard to generalize to (but not to train for) due to their stronger
biases and distinct artifacts. In fact, even simple post-processing methods, like
blur, can significantly reduce detector performance (see Table 4).

Image scale can dramatically a"ect the performance of most detectors, as well
as the balance of their performance (i.e., authentic vs synthetic). Some detectors
are highly sensitive to rescaling operations (see Figure 4), exposing a vulnera-
bility to malicious inputs. At the same time, other SID models work optimally
when applied to data that has been scaled to a certain size (see Figure 4). This
can be used to tune data for its detection, boosting performance on deployment
settings (see Table 6).

The final contribution of this work, beyond the released SuSy, code and
datasets, is a list of policies for the SID field as a whole, including an ethical risk
assessment. Our work emphasizes the importance of openness in generative AI.
Results from Table 6 indicate open generative models can be more easily detected
(+20% combined recall points on average). While we are far from a universal de-
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tector (all detectors perform below random in some of our benchmarks), models
trained for specific targets may be as good as humans at identifying synthetic
content (see §5.4).

7.1 Ethical Risks

Image detection systems pose significant ethical concerns, primarily due to their
inherent fallibility. These systems produce both false positives and negatives (see
Table 6), potentially misidentifying authentic images as synthetic and vice versa.
Such errors could infringe on digital rights and enable censorship. Therefore, hu-
man expert oversight is crucial when these systems are used in contexts a"ecting
individual rights and their outputs should never serve as definitive evidence.

Additionally, model bias remains a critical challenge. Training datasets often
contain inherent biases that can skew detection results (e.g., rural landscapes
could be tagged as synthetic more often than urban images). Thorough evalu-
ation across all relevant demographic and contextual factors is essential before
deployment. Furthermore, the datasets used for training may include samples
with personal data. COCO contains images of real people and synthetic datasets
used could include realistic depictions of specific individuals. However, given the
training objective and parameter size of SuSy, it is highly unlikely that any such
information could be encoded within the weights released in this work.

A final risk of releasing a SID model is dual use, as it can be used as a training
objective for generative models (e.g., adversarial training). To mitigate that, we
add a specific clause in the terms of use of the model prohibiting such practice.
Notice SuSy is not trained to be the best possible detector (not trained on all
data) and should not be used as is in practice. We recommend any SID model
produced for final use to be kept private, as long as its public release holds no
special academic or social value.

7.2 Future Work

The results of this work point towards four research directions that could im-
prove SID robustness and adaptability. The complementary strengths of di"erent
detector models indicate potential benefits from ensemble methods. Exploring
training data scaling laws could reveal further insights into data requirements
and generalization capabilities. Given the impact of input resolution, developing
multi-resolution architectures could provide inherent resilience against scaling-
based evasion attempts. Lastly, extending detection capabilities to video content
is crucial to address the increasing quality of video generation models. These ad-
vancements are critical to ensure SID keeps pace in the ongoing race with SIG.



16 P. Bernabeu-Pérez, E. Lopez-Cuena, D. Garcia-Gasulla

References

1. A. Buslaev, A. Parinov, E.K.V.I.I., Kalinin, A.A.: Albumentations: fast and flexible
image augmentations. ArXiv e-prints (2018)

2. Agency, E.E.: Greenhouse gas emission intensity of electricity generation in eu-
rope (2024), https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-
emission-intensity-of-1

3. Aghasanli, A., Kangin, D., Angelov, P.: Interpretable-through-prototypes deepfake
detection for di!usion models. In: Proceedings of IEEE/CVF international confer-
ence on computer vision. pp. 467–474 (2023)

4. AI, S.: Stable di!usion 3 medium (2024), https://huggingface.co/stabilityai/stable-
di!usion-3-medium

5. Bammey, Q.: Synthbuster: Towards detection of di!usion model generated images.
IEEE Open Journal of Signal Processing (2023)

6. Cazenavette, G., Sud, A., Leung, T., Usman, B.: Fakeinversion: Learning to detect
images from unseen text-to-image models by inverting stable di!usion. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 10759–10769 (2024)

7. Chang, Y.M., Yeh, C., Chiu, W.C., Yu, N.: Antifakeprompt: Prompt-tuned vision-
language models are fake image detectors. arXiv preprint arXiv:2310.17419 (2023)

8. Chen, B., Zeng, J., Yang, J., Yang, R.: Drct: Di!usion reconstruction contrastive
training towards universal detection of di!usion generated images. In: Forty-first
International Conference on Machine Learning (2024)

9. Coccomini, D.A., Esuli, A., Falchi, F., Gennaro, C., Amato, G.: Detecting images
generated by di!users. PeerJ Computer Science 10, e2127 (2024)

10. Corvi, R., Cozzolino, D., Poggi, G., Nagano, K., Verdoliva, L.: Intriguing proper-
ties of synthetic images: from generative adversarial networks to di!usion models.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 973–982 (2023)

11. Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On
the detection of synthetic images generated by di!usion models. In: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 1–5. IEEE (2023)

12. Cozzolino, D., Poggi, G., Corvi, R., Nießner, M., Verdoliva, L.: Raising the bar of ai-
generated image detection with clip. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 4356–4366 (2024)

13. Del Moral, P., Nowaczyk, S., Pashami, S.: Why is multiclass classification hard?
IEEE Access 10, 80448–80462 (2022)

14. Deng, Y., Deng, X., Duan, Y., Xu, M.: Di!usion-generated fake face detection
by exploring wavelet domain forgery clues. In: 2023 International Conference on
Wireless Communications and Signal Processing (WCSP). pp. 1–6. IEEE (2023)

15. DucHaiten: realisticsdxl (2023), https://huggingface.co/datasets/
DucHaiten/DucHaiten-realistic-SDXL

16. ehristoforu: dalle-3-images (2024), https://huggingface.co/datasets/
ehristoforu/dalle-3-images

17. ehristoforu: midjourney-images (2024), https://huggingface.co/datasets/
ehristoforu/midjourney-images

18. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leverag-
ing frequency analysis for deep fake image recognition. In: International conference
on machine learning. pp. 3247–3258. PMLR (2020)



Present and Future Generalization of Synthetic Image Detectors 17

19. Grommelt, P., Weiss, L., Pfreundt, F.J., Keuper, J.: Fake or jpeg? revealing com-
mon biases in generated image detection datasets. arXiv preprint arXiv:2403.17608
(2024)

20. Gustavosta: Stable-di!usion-prompts (2023), https://huggingface.co/datasets/
Gustavosta/Stable-Di!usion-Prompts

21. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classi-
fication. IEEE Transactions on systems, man, and cybernetics (6), 610–621 (1973)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

23. Koutlis, C., Papadopoulos, S.: Leveraging representations from intermediate
encoder-blocks for synthetic image detection. arXiv preprint arXiv:2402.19091
(2024)

24. Labs, B.F.: Flux.1-dev (2024), https://huggingface.co/black-forest-labs/FLUX.1-
dev

25. Laurier, L., Giulietta, A., Octavia, A., Cleti, M.: The cat and mouse game: The
ongoing arms race between di!usion models and detection methods. arXiv preprint
arXiv:2410.18866 (2024)

26. Li, J., Xu, Y., Lv, T., Cui, L., Zhang, C., Wei, F.: Dit: Self-supervised pre-training
for document image transformer. In: Proceedings of the 30th ACM International
Conference on Multimedia. pp. 3530–3539 (2022)

27. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Common objects in context
(2015)

28. Liu, H., Tan, Z., Tan, C., Wei, Y., Wang, J., Zhao, Y.: Forgery-aware adaptive
transformer for generalizable synthetic image detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10770–
10780 (2024)

29. Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in
the wild. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 8060–8069 (2020)

30. Lorenz, P., Durall, R.L., Keuper, J.: Detecting images generated by deep di!usion
models using their local intrinsic dimensionality. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 448–459 (2023)

31. López Cuena, E.: Super-resolution assessment and detection (06 2023),
http://hdl.handle.net/2117/395959

32. Ojha, U., Li, Y., Lee, Y.J.: Towards universal fake image detectors that gener-
alize across generative models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 24480–24489 (2023)

33. Ricker, J., Damm, S., Holz, T., Fischer, A.: Towards the detection of di!usion
model deepfakes. arXiv preprint arXiv:2210.14571 (2022)

34. Schinas, M., Papadopoulos, S.: Sidbench: A python framework for reliably assessing
synthetic image detection methods. arXiv preprint arXiv:2404.18552 (2024)

35. Song, J., Ye, D., Zhang, Y.: Trinity detector: text-assisted and attention mecha-
nisms based spectral fusion for di!usion generation image detection. arXiv preprint
arXiv:2404.17254 (2024)

36. Tan, C., Zhao, Y., Wei, S., Gu, G., Liu, P., Wei, Y.: Frequency-aware deep-
fake detection: Improving generalizability through frequency space learning. arXiv
preprint arXiv:2403.07240 (2024)



18 P. Bernabeu-Pérez, E. Lopez-Cuena, D. Garcia-Gasulla

37. Tan, C., Zhao, Y., Wei, S., Gu, G., Wei, Y.: Learning on gradients: Generalized
artifacts representation for gan-generated images detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12105–
12114 (2023)

38. Turc, I., Nemade, G.: Midjourney user prompts & generated im-
ages (250k) (2022). https://doi.org/10.34740/KAGGLE/DS/2349267,
https://www.kaggle.com/ds/2349267

39. Union, E.: Proposal for a regulation of the european parliament and of
the council laying down harmonised rules on artificial intelligence (artifi-
cial intelligence act) and amending certain union legislative acts (2024),
https://artificialintelligenceact.eu/

40. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images
are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 8695–8704 (2020)

41. Wang, Z., Bao, J., Zhou, W., Wang, W., Hu, H., Chen, H., Li, H.: Dire for di!usion-
generated image detection. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 22445–22455 (2023)

42. Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Di!u-
sionDB: A large-scale prompt gallery dataset for text-to-image generative models.
arXiv:2210.14896 [cs] (2022), https://arxiv.org/abs/2210.14896

43. Weyand, T., Araujo, A., Cao, B., Sim, J.: Google landmarks dataset v2-a large-
scale benchmark for instance-level recognition and retrieval. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 2575–2584
(2020)

44. Wu, H., Zhou, J., Zhang, S.: Generalizable synthetic image detection via language-
guided contrastive learning. arXiv preprint arXiv:2305.13800 (2023)

45. Xi, Z., Huang, W., Wei, K., Luo, W., Zheng, P.: Ai-generated image detection
using a cross-attention enhanced dual-stream network. In: 2023 Asia Pacific Signal
and Information Processing Association Annual Summit and Conference (APSIPA
ASC). pp. 1463–1470. IEEE (2023)

46. Xu, Q., Wang, H., Meng, L., Mi, Z., Yuan, J., Yan, H.: Exposing fake images
generated by text-to-image di!usion models. Pattern Recognition Letters 176,
76–82 (2023)

47. Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Linguistics 2, 67–78 (2014)

48. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in gan
fake images. In: 2019 IEEE international workshop on information forensics and
security (WIFS). pp. 1–6. IEEE (2019)

49. Zhong, N., Xu, Y., Li, S., Qian, Z., Zhang, X.: Patchcraft: Exploring texture patch
for e"cient ai-generated image detection. arXiv preprint arXiv:2311.12397 pp. 1–18
(2024)

50. Zhu, M., Chen, H., Huang, M., Li, W., Hu, H., Hu, J., Wang, Y.: Gendet:
Towards good generalizations for ai-generated image detection. arXiv preprint
arXiv:2312.08880 (2023)

51. Zhu, M., Chen, H., Yan, Q., Huang, X., Lin, G., Li, W., Tu, Z., Hu, H., Hu, J.,
Wang, Y.: Genimage: A million-scale benchmark for detecting ai-generated image.
Advances in Neural Information Processing Systems 36 (2024)


