
The Densest SWAMP problem: subhypergraphs
with arbitrary monotonic partial edge rewards

Vedangi Bengali1 (�), Nikolaj Tatti2, Iiro Kumpulainen2, Florian Adriaens2,
and Nate Veldt1

1 Texas A&M University, College Station, TX, USA
{vedangibengali, nveldt}@tamu.edu

2 University of Helsinki, HIIT, Helsinki, Finland
{nikolaj.tatti, iiro.kumpulainen, florian.adriaens}@helsinki.fi

Abstract. We consider a generalization of the densest subhypergraph
problem where nonnegative rewards are given for including partial hy-
peredges in a dense subhypergraph. Prior work addressed this problem
only in cases where reward functions are convex, in which case the prob-
lem is poly-time solvable. We consider a broader setting where rewards
are monotonic but otherwise arbitrary. We first prove hardness results
for a wide class of non-convex rewards, then design a 1/k-approximation
by projecting to the nearest set of convex rewards, where k is the maxi-
mum hyperedge size. We also design another 1/k-approximation using a
faster peeling algorithm, which (somewhat surprisingly) differs from the
standard greedy peeling algorithm used to approximate other variants of
the densest subgraph problem. Our results include an empirical analysis
of our algorithm across several real-world hypergraphs.

Keywords: Densest subhypergraphs · Approximation algorithms

1 Introduction

Dense subgraph discovery is a widely studied primitive in graph mining, with
applications including team formation [12, 22], motif discovery [11], and fraud
detection [9]. One of the most common problems in dense subgraph discovery is
the densest subgraph problem (dsg). For a graph G = (V,E), dsg seeks a node
set S ⊆ V that maximizes the ratio between (induced) edges and nodes, i.e.,

maximize
S⊆V

|E(S)|
|S|

, (1)

where E(S) = {(u, v) ∈ E : u, v ∈ S}. There are known polynomial-time algo-
rithms for exactly solving dsg using flow-based methods [13] and linear pro-
gramming [6]. There is also a simple greedy 1/2-approximation based on peeling
(iteratively removing a minimum degree node) [4, 6]. Many results for variants
of dsg focus on extending one or more of these basic techniques (flow, linear
programming, and peeling) to more general settings [18, 8, 25, 19, 24, 15, 16, 26].

2 V. Bengali et al.

This paper focuses on generalizations of dsg to hypergraphs, which group
nodes into (hyper)edges involving an arbitrary number of nodes (rather than
just two). As a motivating application that we will consider throughout the
manuscript, finding dense regions of a hypergraph provides a particularly nat-
ural approach for team formation. There are already a number of methods for
team formation based on dense subgraph discovery [12, 22, 21]. These operate
under the assumption that a dense region of a social network represents a good
team for a future task, since it encodes a group of people who have already
collaborated extensively in the past. Using a hypergraph rather than a graph
for this application is arguably more natural, since it directly captures entire
previous team interactions as hyperedges, rather than only previous pairwise
relationships.

The simplest generalization of dsg to hypergraphs is to find a node set S
that maximizes the ratio between the number of edges completely contained
in S and |S|. This was first considered 30 years ago in the context of circuit
decomposition [15] and has been considered by many others since [14, 5]. While
this is a natural extension of the standard dsg problem in graphs, there are many
applications in which partially including a hyperedge also intuitively contributes
to notions of density. Consider again the example of team formation. When
forming a new team, adding even a subset of people from a previous collaboration
intuitively matches the belief that previous collaborations help contribute to
good future team interactions. However, the standard densest subhypergraph
objective only gives a reward for including an entire hyperedge (i.e., all members
of some previous team) to the new team.

In this paper, we focus on new algorithms for a generalized densest subhy-
pergraph objective introduced by Zhou et al. [26], which incorporates positive
rewards for partially included edges. In more detail, each edge has a nonnegative
monotonic reward function r, and the overall objective is to maximize a sum of
partial rewards divided by the size of the output set (Section 2 includes a formal
definition). Zhou et al. [26] proved that there exist reward functions for which
this general problem becomes NP-hard. However, they then focused on convex
reward functions, in which case the problem is a special case of the poly-time
solvable densest supermodular subset problem [7]. They designed an exact al-
gorithm for this convex case based on solving maximum s-t flow problems, and
showed that a standard greedy peeling algorithm yields a 1/k-approximation
where k is the maximum hyperedge size.

Our contributions. We focus on the problem of finding a densest Subhy-
pergraph With Arbitrary Partial edge rewards (swamp). By arbitrary, we mean
that rewards are not required to be convex, as was the focus for Zhou et al. [26].
Our contributions include the following:

– We completely settle the complexity of swamp for all reward functions,
significantly strengthening prior hardness results. Concretely, when applying
the same reward function r to every edge, swamp is either poly-time solvable
because r is convex, trivially optimized by a single node if r is non-convex
but satisfies a certain extremal condition, or is otherwise NP-hard.

The Densest SWAMP Problem 3

– We design peeling algorithms for the non-convex case that come with a 1/k-
approximation. Somewhat surprisingly, this approximation is not obtained
by the standard greedy peeling method (which gives a 1/k approximation
for the convex case), but rather with a peeling method that makes locally
suboptimal choices about which node to remove in each step.

– We design approximation algorithms based on projecting non-convex re-
wards to convex rewards and then solving the latter problem. In the worst
case, these come with a 1/k-approximation.

– We introduce a new integer linear programming formulation for finding op-
timal solutions to swamp, that works even for (small-scale) NP-hard cases.

– We implement these algorithms and demonstrate their performance on real-
world datasets, showing they exceed their theoretical guarantees in practice.

– We show that as a consequence of having approximation guarantees for
swamp, we obtain approximations for constrained variants of our objective.

Other related work. We refer to Lanciano et al. [19] for an extensive recent
survey on variants of the densest subgraph problem. We briefly cover several
results that are particularly relevant to our paper. Several variants of dsg include
constraints on the number of nodes in the output set S, including two variants
introduced by Andersen and Chellapilla [2] called the densest at-most-k (|S| ≤
k), and the densest at-least-k (|S| ≥ k) problems. In other problem variants, the
goal is to find a dense subgraph that ensures nodes with different node labels are
included in the output. In some cases, node labels represent “skills” and the goal
is to form a (dense) team of individuals to cover certain skill sets [12, 22]. In other
cases, node labels represent disjoint protected classes and the goal is to form a
dense subgraph that is “diverse” or “fair” [1, 21, 17]. Approximation algorithms
for several of these variants build upon earlier approximation algorithms for the
densest at-least-k variant [12, 21].

Recently, Chekuri et al. [8] introduced the densest supermodular subset prob-
lem (dss) where the goal is to maximize F (S)/|S| where F : 2V → R+ is a non-
negative monotone supermodular function defined over a ground set V . Their re-
sults for this objective include a fast flow-based approximation algorithm, faster
greedy peeling methods, and extensions to cardinality-constrained variants (e.g.,
the constraint |S| ≥ k). The greedy peeling method starts with the entire node
set V , finds a node v = argminF (V) − F (V − v), and then removes it. At the
next step, the same strategy is applied to the remaining node set. At the end, the
method chooses the subset of nodes considered along the way with the best ob-
jective. This strategy is greedy in the sense that it removes the node that leads
to the smallest decrease in the numerator of the objective at each step. This
peeling method directly generalizes existing peeling methods for several special
cases [6, 25, 26], including the 1/k-approximation for the generalized densest
subhypergraph objective of Zhou et al. [26].

4 V. Bengali et al.

2 The Densest SWAMP Problem

We consider a generalized maximum density problem with a hypergraph input
H = (V,E,w, {re : e ∈ E}). Each e ∈ E comes with a non-negative scalar weight
w(e) ≥ 0 and an edge-reward function re : {0, 1, . . . , |e|} → R≥0. The latter
assigns a non-negative reward based on the number of nodes in the hyperedge
included in a node set S, even if e is not entirely contained in S. We assume the
reward function is monotonic and gives no reward for including no nodes from
the edge:

0 = re(0) ≤ re(1) ≤ re(2) ≤ · · · ≤ re(|e|).
This encodes the belief that including more of a hyperedge within a set should
contribute more to the measure of density.
Problem 1. For input H = (V,E,w, {re : e ∈ E}, the Densest Subhypergraph
With Arbitrary Monotonic Partial edge rewards problem (swamp) seeks to solve

max
S⊆V

Γ (S) =
f(S)

|S|
, where f(S) =

∑
e∈E

w(e) · re(|e ∩ S|). (2)

If the rewards satisfy re(i) = 0 for i < |e| and re(|e|) = 1, then this corresponds
to the standard densest subhypergraph objective. Zhou et al. [26] were the first
to study Problem 1, though focused almost exclusively on the convex case. A
discrete monotonic edge-reward function re : {0, 1, . . . , |e|} → R≥0 is said to be
convex if:

re(i+ 1)− re(i) ≥ re(i)− re(i− 1) for i ∈ {1, 2, . . . , |e| − 1}. (3)

We instead focus on the case where rewards are monotonic but otherwise arbi-
trary, i.e., not restricted to be convex.

In our study of hardness results, we consider a special case of swamp where
the input is a hypergraph with maximum edge size k and we use the same reward
function r for every edge. We refer to this as swamp(r). In this case, r represents
a parameter defining the problem rather than a reward function that is inherently
part of the input. Our goal is to characterize the complexity of swamp(r) under
different choices for r.

We also consider two-sized constrained variants. The first is to maximize
Γ (S) subject to a cardinality constraint |S| ≥ ℓ (where ℓ is an input to the
problem), which we refer to as card-swamp. We also consider a fair variant.
Problem 2. Assume nodes of H = (V,E,w, {re}) are partitioned into node
classes {C1, C2, . . . , Cm}, and let a parameter ℓi be given for Ci for i = 1, 2, . . . ,m.
The Densest Fair SWAMP problem (fair-swamp) is defined by

maximize
S⊆V

Γ (S) subject to |S ∩ Ci| ≥ ℓi, for i = 1, 2, . . . ,m. (4)

If we think of nodes as individuals, the classes in Problem 2 can represent skills
that must be present when forming a team of individuals based on their past
collaborations. As another example, classes could represent categories that must
be fairly represented in the output set (e.g., selecting faculty members from all
faculty ranks to represent an academic department on some internal committee).

The Densest SWAMP Problem 5

3 Computational complexity of swamp(r)

The complexity of swamp(r) is known in the convex case.

Theorem 1 ([26]). If r is convex, swamp(r) is polynomial-time solvable.

In addition, Zhou et al. [26] showed that for some choice of reward functions
(where some rewards are convex but others are not), Problem 1 is NP-hard.
We strengthen this result by showing that for every non-convex r (minus a
corner case, described below), swamp(r) is NP-hard. This provides us with a
full picture of the computational complexity of swamp(r).

Let us first describe a corner case when the optimal solution is a single node.
This generalizes a result of Zhou et al. [26] which says that if r is concave, a
single node defines the optimal solution.

Theorem 2. Assume r such that for every i ∈ {1, 2, . . . , k}, it holds that r(1) ≥
r(i)/i. Then there is an optimal solution for swamp(r) consisting of a single
node.

Proof. For instance H = (V,E,w), let O be the solution for swamp(r). Let
o ∈ O be the node maximizing f({o}). Then

Γ (O) =
f(O)

|O|
=

1

|O|
∑
e∈E

w(e) · r(|e ∩O|)

≤ 1

|O|
∑
e∈E

w(e) · r(1) · |e ∩O| = 1

|O|
∑
x∈O

f({x}) ≤ f({o}) = Γ ({o}),

proving the claim. ⊓⊔

The main result of this section now states that if the conditions in Theo-
rems 1–2 are not satisfied, then swamp(r) is NP-hard, see Appendix for proof.

Theorem 3. Assume r such that for some positive integers i and j we have
r(i)/i > r(1) and 2r(j) > r(j − 1) + r(j + 1). Then swamp(r) is NP-hard.

4 Solving swamp with an integer linear program

We introduce a new ILP formulation for solving the decision version of the
problem, which asks whether there exists some set S with density greater than
α for some pre-specified α. More formally, finding S with Γ (S) > α is equivalent
to finding S for which f(S)−α|S| > 0. We will solve the latter using an ILP, and
once we have the solution, we can solve swamp by performing a binary search
on α. This construction is similar to the approach by Goldberg [13] for finding
the densest subgraph.

6 V. Bengali et al.

We consider the following integer linear program.

maximize

∑
e∈E

w(e)

|e|∑
i=1

δe,i · ye,i

− α
∑
v∈V

xv

s.t. ye,i ≤
1

i

∑
v∈e

xv for e ∈ E, i = 1, 2, . . . , |e|,

ye,i ∈ {0, 1} for e ∈ E, i = 1, 2, . . . , |e|,
xv ∈ {0, 1} for v ∈ V.

(5)

In the above, we have defined

δe,i = re(i)− re(i− 1) ≥ 0

so that if we include k nodes from edge e in the set S, we know that this gives
a reward of

re(k) =

k∑
i=1

δe,i.

This ILP includes a variable xv ∈ {0, 1} that indicates whether node v is con-
tained in the optimal density set S (xv = 1) or not (xv = 0). The variable ye,i
is designed to satisfy

ye,i =

{
1 if |e ∩ S| ≥ i

0 otherwise.
(6)

Observe that if this is the case, then the first part of the objective function of
the ILP is exactly the edge reward

∑
e∈E

w(e)

|e|∑
i=1

δe,i · ye,i =
∑
e∈E

w(e)

|e∩S|∑
i=1

δe,i =
∑
e∈E

w(e) · re(|e ∩ S|).

We just need to confirm that for the optimal solution, the ye,i variables will
indeed satisfy Eq. (6). Observe first of all that maximizing the objective, plus
the fact that the δe,i are all positive, will ensure that the ye,i variables will be
set to 1 whenever possible. Now, note that the constraint

ye,i ≤
1

i

∑
v∈e

xv

is equivalent to a bound ye,i < 1 if |e ∩ S| < i, and otherwise it amounts to a
bound ye,i ≤ c for some c ≥ 1 if |e ∩ S| ≥ i.

5 Approximating swamp

Our most significant algorithmic contributions are peeling-based approximation
algorithms for the NP-hard regime of swamp. Our findings are surprising for

The Densest SWAMP Problem 7

Algorithm 1 Approximates the densest subgraph problem, swamp

Require: Hypergraph H = (V,E, re), and a bound function se(·).
1: X ← V and Y ← V
2: while X ̸= ∅ do
3: v ← argminu∈X

∑
e:u∈e re(|e ∩X|)− se(|e ∩X| − 1).

4: X ← X \ {v}.
5: if Γ (X) ≥ Γ (Y), then Y ← X.

Ensure: Y .

two reasons. First of all, our peeling approach for the NP-hard non-convex case
has a 1/k-approximation, which is just as good as the peeling approximation
guarantee for the (poly-time solvable) convex case. The second surprise is that
our approximation guarantees do not come from using the standard existing
greedy peeling algorithm, which peels away a node in a way that leads to the
best objective in the subsequent step. Rather, our guarantees work only for
certain peeling strategies that may make locally suboptimal choices for which
node to remove at each step. In addition to our peeling algorithms, we design
another 1/k-approximation based on projecting non-convex reward functions to
convex rewards and then exactly solving the resulting convex problem.

5.1 Peeling algorithm

Here we describe a peeling algorithm, which will result in a 1/k approximation
for swamp. For notational simplicity, we will assume that w(e) = 1. Note that we
can make this assumption without the loss of generality since we can incorporate
the weights directly to the rewards re.

The greedy peeling algorithm by Zhou et al. [26] operates by iteratively
deleting a vertex v with the smallest decrease in f , that is,

f(S)− f(S \ {v}) =
∑
e:v∈e

re(|e ∩ S|)− re(|e ∩ S| − 1), (7)

and then returning the best tested subgraph.
Unfortunately, this approach yields a guarantee only when re is convex and

can fail for non-convex rewards. We extend the approach by replacing the second
re in Eq. 7 with a different function se, which needs to be specified separately.
The pseudo-code for the algorithm is given in Algorithm 1. We will show that
certain choices for se lead to a guarantee.

The following result shows the conditions required for se so that Algorithm 1
yields an approximation guarantee.

Theorem 4. Assume a hypergraph H = (V,E, {re}) and a function se for each
e ∈ E satisfying 0 ≤ se(i) ≤ re(i) and re(i)− se(i− 1) ≤ re(i+ 1)− se(i) Then
Algorithm 1 yields a 1/k approximation for swamp.

To prove the claim, we need the following standard lemma.

8 V. Bengali et al.

Lemma 1. Let O ⊆ V be an optimal solution. Then for any o ∈ O,

Γ (O) ≤
∑
e:o∈e

re(|e ∩O|)− re(|e ∩O| − 1).

Proof. By optimality of O, it holds

Γ (O) ≥ f(O \ {o})
|O| − 1

=
f(O)− (f(O)− f(O \ {o})

|O| − 1
.

Rewriting this inequality and using Γ (O) = f(O)
|O| shows that Γ (O) ≤ f(O) −

f(O \ {o}). See also [26, Theorem 4]. Thus,

Γ (O) ≤ f(O)− f(O \ {o})

=
∑
e∈E

(re(|e ∩O|)− re(|e ∩ (O \ {o})|)

=
∑
e:o∈e

(re(|e ∩O|)− re(|e ∩ (O \ {o})|),

proving the lemma. ⊓⊔

Proof (Proof of Theorem 4). Let O ⊆ V be an optimal solution. Let X ′ be the
subgraph X defined by the while loop in Algorithm 1 when the first vertex from
O is deleted. Call that vertex x. Note that since each edge e contains at most k
vertices, it holds that

kΓ (X ′) ≥ 1

|X ′|
∑
u∈X′

∑
e:u∈e

re(|e ∩X ′|)

≥
∑
e:x∈e

re(|e ∩X ′|)

≥
∑
e:x∈e

re(|e ∩X ′|)− se(|e ∩X ′| − 1),

where the second inequality follows from our choice of x in Algorithm 1. Fur-
thermore, as O ⊆ X ′ by the imposed conditions on se it holds that∑

e:x∈e

re(|e ∩X ′|)− se(|e ∩X ′| − 1) ≥
∑
e:x∈e

re(|e ∩O|)− se(|e ∩O| − 1)

≥
∑
e:x∈e

re(|e ∩O|)− re(|e ∩O| − 1).

Since x ∈ O, we can use Lemma 1, and the theorem follows. ⊓⊔

Next, we show two options for s, both satisfying the conditions in Theorem 4.

Theorem 5. Assume a hypergraph H = (V,E, {re}). Let be(i) = 0 and ue(i) =
re(i + 1) − max0≤j≤i (re(j + 1)− re(j)). Then be and ue satisfy the conditions
for se in Theorem 4. Moreover, any se that satisfies the conditions in Theorem 4
will have be(i) ≤ se(i) ≤ ue(i). If re is convex, then ue = re.

The Densest SWAMP Problem 9

Proof. The function be satisfies the constraints since re is monotonic.
Let us write Me(i) = max0≤j≤i (re(j + 1)− re(j)). Then

ue(i) = re(i+ 1)−Me(i) ≤ re(i+ 1)− (re(i+ 1)− re(i)) = re(i)

and

ue(i)− ue(i− 1) = re(i+ 1)− re(i)− (Me(i)−Me(i− 1)) ≤ re(i+ 1)− re(i),

showing that ue satisfies the constraints.
To prove the second claim, assume that se satisfies the constraints and assume

inductively that se(i − 1) ≤ ue(i − 1). If Me(i − 1) < Me(i), then Me(i) =
re(i + 1) − re(i), and immediately se(i) ≤ re(i) = ue(i), proving the claim.
Otherwise, assume Me(i− 1) = Me(i). Then

se(i) ≤ se(i− 1) + re(i+ 1)− re(i)

≤ ue(i− 1) + re(i+ 1)− re(i)

= re(i+ 1)−Me(i− 1) = re(i+ 1)−Me(i) = ue(i),

proving the claim.
If re is convex, then Me(i) = re(i+ 1)− re(i) and ue(i) = re(i), proving the

last claim. ⊓⊔

Runtime analysis. Finding the node v in Algorithm 1 can be done with a
priority queue. Maintaining such structure requires O(k · deg(v)) updates when
removing a single vertex v, each taking O(log n) time for a total running time
of O(pk log n), where p =

∑
e∈E |e| =

∑
v∈V deg(v).

5.2 Approximations based on projecting to convexity

Given a set of reward functions {re : e ∈ E} and a corresponding objective
maxS⊆V Γ (S), another approach to approximating swamp is to replace each re
with a nearby convex function r̂e, and maximize a related objective Γ̂ (S) =
1
|S|

∑
e∈E w(e)r̂e(|S ∩ e|). As an initial observation, these objectives differ by at

most the maximum ratio between original (re) and projected (r̂e) rewards.

Proposition 1. If re(i) ≥ r̂e(i) for every e ∈ E and every i ∈ [|e|] = {1, . . . , |e|},
then for every S ⊆ V we have Γ̂ (S) ≤ Γ (S) ≤ ρ · Γ̂ (S), where

ρ = max
e∈E

max
i∈[|e|]

re(i)

r̂e(i)
.

Proof. The first inequality follows from the assumption that re(i) ≥ r̂e(i). The
definition of ρ implies that for every e ∈ E and i ∈ [|e|], we have re(i) ≤ ρ · r̂e(i),
which yields the second inequality Γ (S) ≤ ρ · Γ̂ (S).

10 V. Bengali et al.

This approximation is tight in the sense that we can always construct a hyper-
graph H with a node set S for which Γ (S) = ρ · Γ̂ (S). In more detail, consider
a pair of rewards functions r and r̂ and let t = argmaxi

r(i)
r̂(i) . Then construct a

k-uniform hypergraph H = (V,E) with a node set S satisfying |e ∩ S| ∈ {0, t}
for every e ∈ E. Use the same reward function r for every edge when defining
Γ , and the reward function r̂ for every edge when defining r. Then

Γ (S) =

∑
e∈E r(|e ∩ S|)

|S|
=

∑
e∈E ρ · r̂(t)

|S|
= ρ · Γ̂ (S).

Given a non-convex nonnegative monotonic reward function r : [0, k] → R+,
our goal is then to find a convex nonnegative monotonic function r̂ ≤ r such
that maxi r(i)/r̂(i) is small. This can be cast as a small linear program.

maximize
r̂

κ

such that r(i)κ ≤ r̂(i) ≤ r(i) i = 0, 1, 2, . . . , k

2r̂(i) ≤ r̂(i− 1) + r̂(i+ 1) i = 2, 3, . . . , k − 1

r̂(i+ 1) ≥ r̂(i) i = 1, 2, . . . , k − 1

The resulting approximation factor is given by ρ = 1/κ. We have dropped the e
from the subscript of re and r̂e above since we must solve this generic optimiza-
tion problem for each edge reward function individually. This problem is equiva-
lent to finding the lower convex hull of the points {(0, 0), (1, r(1)), . . . , (k, r(k))},
which can be done in O(k) time [3]. Using the monotonicity of r, we can bound
the worst-case approximation factor. See Appendix for a proof.

Proposition 2. Let r : [0, k] → R+ be a monotonic reward function satisfying
r(0) = 0. There exists a nonnegative monotonic convex function r̂ satisfying
r̂(i) ≤ r(i) ≤ k · r̂(i) for every i ∈ {1, 2, . . . , k}.

Observe that this approximation is tight. If r is defined by r(0) = 0 and r(x) = 1
for x ∈ (0, k], then r̂(x) = x/k and r(1)/r̂(1) = k. Propositions 1 and 2 tell us
that after performing optimal projections, Γ and Γ̂ differ by at most a factor
1/k, which leads to the following result.

Theorem 6. A β-approximate solution to maxS⊆V Γ̂ (S) yields a β
k -approximate

solution for maxS⊆V Γ (S).

Since Γ̂ includes only convex edge rewards, we can optimally solve it using flow-
based methods, yielding a 1/k-approximation for the original objective Γ . To
provide a runtime analysis, we assume all original rewards re(i) are integers.
After projecting, the new rewards r̂e are not necessarily integers. However, new
rewards can be expressed as rational numbers with denominators that range
between 1 and k. For a simple runtime analysis, we can scale all new rewards
by k! to obtain new convex integer reward functions r′e = k! · r̂e ≤ kk · re.
The flow-based approach of Zhou et al. [26] for this integer convex rewards
case relies on performing a binary search over the interval [0,W] where W =

The Densest SWAMP Problem 11

Algorithm 2 Approximates the card-swamp problem
Require: Hypergraph H, the cardinality constraint ℓ.
1: S ← ∅, H1 ← H, i← 1
2: while |S| < ℓ do
3: Si ← (approximate) densest swamp in Hi

4: Hi+1 ← contract(Hi, Si)
5: S ← S ∪ Si

6: i← i+ 1

7: S′ ← S1 ∪ · · · ∪ Si−2 padded with arbitrary nodes so that S′ has ℓ nodes
Ensure: either S or S′, whichever has the higher density.

∑
e∈E r′e(|e|) ≤ kk

∑
e∈E re(|e|). This has a runtime of O(mincut(p, p · k) logW)

time where p =
∑

e∈E |e| is the size of the hypergraph and mincut(N,M) is
the complexity of solving a minimum s-t cut problem in a graph with N nodes
and M edges. To put this expression into a form that only involves the original
rewards {re : e ∈ E}, observe that logW ≤ k log k + log(

∑
e∈E re(|e|)).

Note finally that if we project the non-convex rewards and apply the existing
1/k-approximation greedy peeling algorithm for Γ̂ [26], this is only guaranteed
to produce a 1/k2-approximate solution using this analysis. This again highlights
utility of our peeling algorithms that work directly on the non-convex objective
and yield a 1/k-approximate solution.

6 Approximation algorithms for constrained variants

The approximability of swamp has immediate implications for the approxima-
bility of card-swamp and fair-swamp. We will now explore these results.

Let us first consider the card-swamp problem, where the solution must have
at least ℓ nodes. Here we will adopt the algorithm by Khuller and Saha [18] which
was used to solve the constrained variant in regular graphs, and further extended
to work with supermodular rewards by Chekuri et al. [8].

The algorithm, given in Algorithm 2, iteratively finds an approximate densest
swamp, say Si from the current hypergraph, say Hi, removes Si from Hi (while
keeping the edges), and adds Si to the solution S, until S is large enough. Then
the returned value is either S, or S′, a set corresponding to S during the previous
round, plus padded arbitrary nodes to satisfy the constraint.

Algorithm 2 requires a subroutine for contracting the discovered set from the
current hypergraph. Given a hypergraph H = (V,E,w, {re}) and a set of nodes
U we define a contracted hypergraph H ′ = (V ′, E′, w′, {r′e}) = contract(H,U)
as follows. The nodes are V ′ = V \U , the hyperedges E′ consist of the hyperedges
in E with nodes in U removed, and the weights w′ correspond to the weights w.
To define the rewards, let e ∈ E be a hyperedge and a = e \U be the contracted
hyperedge. Let j = |e ∩ U |. We define the contracted reward as r′a(i) = re(i +
j)− re(j).

We have the following approximation result, which we prove in Appendix.

12 V. Bengali et al.

Theorem 7. Assume that we can α-approximate swamp, then Algorithm 2
yields α

α+1 approximation for card-swamp. Consequently, using Algorithm 1
together with Algorithm 2 yields 1

k+1 approximation.

We can now use Theorem 7 and the algorithm proposed by Miyauchi et al.
[21] to obtain an approximation result for fair-swamp.

Theorem 8. Assume an instance fair-swamp with {ℓi} constraints. Let S be
the α-approximation for card-swamp with ℓ =

∑
i ℓi. Let ci be the number of

nodes with color i in S. Let S′ be S padded with any ℓi − ci nodes of color i, for
every color i. Then S′ yields α/2-approximation for fair-swamp. Consequently,
using Algorithms 1 and 2 yields 1/(2k + 2) approximation.

Note that originally this algorithm was designed for standard graphs (i.e., hy-
pergraphs with k = 2). However, the proof for Theorem 8 is identical to the
proof by Miyauchi et al. [21], and therefore omitted. We conjecture that a better
approximation is possible using an approach for normal graphs by Gajewar and
Das Sarma [12]. We leave exploring this direction as a future work.

7 Experiments and Analysis

We now analyze the performance of algorithms over a variety of hypergraphs
using several different convex and non-convex reward functions. We implement
all the algorithms in Julia and use publicly available hypergraph datasets. All
experiments were conducted on a research server with 1TB of RAM.3
Datasets. The contact-high-school (CHS) [10, 20] and contact-primary-school
(CPS) [10, 23] datasets represent student interactions at a high school and pri-
mary school, respectively, with students as nodes and group interactions as hy-
peredges. Senate-committees (SC) and House-committees (HC) contain labeled
nodes representing US Senate and House members with political party affilia-
tions [10]. Here hyperedges denote the committee memberships. In the Trivago
hypergraph (Triv), nodes are vacation rentals and hyperedges are rentals clicked
during the same user browsing session on Trivago.com. We specifically use a
subset of a larger hypergraph [10], defined by considering only vacation rentals
in Fukuoka, Japan. We preprocess each hypergraph by eliminating self-loops
and dangling nodes, and extracting their largest connected component while
preserving multi-edges. Hypergraph statistics are shown in Table 2. We choose
hypergraphs that are small enough so that we can find optimal solutions using
the ILP, as a point of comparison for our approximation algorithms.
Reward functions. We use a range of edge-reward functions from non-convex
to convex. For simplicity, we assume that in a given hypergraph, all edges use
the same function to compute re and that each edge has weight 1. The function
definitions are presented in Table 1. To avoid trivial solutions (as noted in Theo-
rem 2), we set re(1) = 0 for functions 1, 2, 3, and 6. This is especially important
for 2-node hyperedges while using reward functions 1, 2, and 3.
3 The code and Appendix are available at repository: The Densest SWAMP Problem.

https://github.com/Vedangi/Densest-SWAMP

The Densest SWAMP Problem 13

Table 1: Edge-reward functions and their definitions
Function re

1. atleast-two re(i) = 1[i ≥ 2]
2. atleast-half re(i) = 1

[
i ≥ ⌈|e|/2⌉

]
3. all-but-one re(i) = 1[i ≥ |e| − 1]

Function re

4. standard re(i) = 1[i = |e|]
5. quadratic re(i) = i2/|e|
6. square-root re(i) =

√
i

Algorithms. For finding the optimal solution, we implement the Exact method
that iteratively solves the ILP (using Gurobi optimization software) as described
in Section 4. Instead of using a binary search, we begin with the entire hyper-
graph and iteratively search for a denser and denser subset until no more im-
provement is possible, as this tends to converge in 4-5 iterations. We compare
Exact against several approximation algorithms. Algorithm 1 is referred to as
as PeelMax when we set se = ue as specified in Theorem 5, as Greedy when
se(i) = re(i), and as PeelZero when se(i) = 0. DegPeel is the greedy peeling al-
gorithm for the standard densest subhypergraph objective: peeling based solely
on the degree (number of incident hyperedges) in the induced hypergraph. For
the projection-based approximations, we first project each non-convex re onto
its nearest convex r̂e. We then run a flow-based method and Greedy methods
using projected rewards. The projection-plus-flow approach solves the projected
problem exactly using a maxflow solver, as described in [26]. It comes with a
1/k-approximation guarantee, while the latter is a 1/k2 approximation.
Performance analysis. Table 2 shows runtimes and objective values for our
methods. As a first observation, we see that our projection-based flow method
is exceptionally fast. Even the peeling methods, although not optimized for run-
time, are still orders of magnitude faster than exactly solving the objective using
the ILP solver. For instance, in the CPS hypergraph with the objective using
atleast-two reward function for every edge, the ILP approach requires approx-
imately 29 minutes, whereas Greedy and ProjFlow find the densest solution in
under a second. Furthermore, our approximation algorithms all produce approx-
imation ratios in practice that are close to 1, showing that these methods far
exceed their theoretical guarantees and produce nearly optimal solutions. This
illustrates that even for cases where swamp is NP-hard, peeling methods can
provide a fast and accurate approach in practice, comparable to the success of
peeling methods for poly-time solvable variants. We note also that for these hy-
pergraphs and reward functions, applying direct peeling methods tends to give
a slightly better approximation than projecting to nearby convex rewards. As
another interesting observation, the standard greedy peeling method (setting
se = re) usually produces the best approximation results among peeling meth-
ods, despite the fact that our approximation guarantees do not apply to this
approach.
Qualitative comparison. As a final point of comparison, Table 3 reports qual-
itative aspects of the dense subsets produced by exactly solving swamp (using
Exact) with different reward functions on two hypergraphs (CFS and CPS). The

14 V. Bengali et al.

Table 2: Objective and runtime values of ILP, peeling and projection based
strategies. Dashes indicate that Exact did not complete within the allotted time.

CHS CPS SC HC Triv
|V |, |E|, k 327, 7818, 5 242, 12704, 5 282, 315, 31 1290, 340, 81 262, 910, 16

Obj. Run Obj. Run Obj. Run Obj. Run Obj. Run
atleast-two

Exact 27.078 416 60.549 1760 – – – – 11.53 2.4
PeelMax 26.871 0.15 60.02 0.42 21.0 0.89 14.0 24.01 11.09 0.06
Greedy 27.065 0.2 60.549 0.59 15.90 1.14 11.88 32.77 11.41 0.02
PeelZero 26.871 0.16 60.022 0.45 21.0 1.11 14.0 23.98 11.09 0.02
DegPeel 26.725 0.06 58.714 0.06 11.5 0.01 7.625 3.20 10.5 0.008
ProjFlow 26.451 0.16 58.34 0.21 12.22 0.07 7.7 0.43 10.76 0.02
ProjGreedy 26.451 0.2 58.34 0.58 12.22 0.86 7.625 25.57 10.76 0.02

atleast-half
Exact 27.078 515 60.549 1711 – – – – 9.625 2.33
PeelMax 26.871 0.16 60.02 0.43 3.0 0.89 1.571 23.81 9.179 0.02
Greedy 27.065 0.2 60.549 0.6 2.775 1.02 2.0 29.07 9.56 0.02
PeelZero 26.871 0.16 60.022 0.43 3.0 1.10 2.38 23.76 9.51 0.02
DegPeel 26.725 0.05 58.714 0.07 2.66 0.01 1.321 3.2 9.02 0.008
ProjFlow 26.451 0.18 58.34 0.21 2.32 0.07 2.28 0.39 9.378 0.03
ProjGreedy 26.451 0.19 58.344 0.59 2.32 0.86 2.23 25.36 9.378 0.02

all-but-one
Exact 26.926 249.9 60.16 1716 1.83 6794 1.22 100.97 7.769 1.39
PeelMax 26.784 0.16 59.66 0.44 1.66 0.91 1.07 24.32 7.725 0.02
Greedy 26.867 0.2 60.16 0.6 1.8 0.95 1.105 25.62 7.763 0.02
PeelZero 26.784 0.16 59.66 0.44 1.66 1.12 1.07 24.29 7.725 0.02
DegPeel 26.593 0.05 58.47 0.08 1.66 0.01 0.936 3.23 7.375 0.008
ProjFlow 26.424 0.28 58.26 0.32 1.233 0.05 0.976 0.32 7.34 0.02
ProjGreedy 26.424 0.19 55.266 0.6 1.233 0.88 1.0 24.31 7.36 0.02

standard
ExactFlow 25.597 0.24 54.475 0.33 1.176 0.13 0.823 0.5 5.52 0.10
Greedy 25.575 0.15 54.475 0.4 1.176 0.88 0.77 24.87 5.52 0.02
PeelZero 25.575 0.15 54.475 0.43 1.176 1.13 0.77 24.82 5.52 0.02
DegPeel 25.581 0.15 54.475 0.14 1.176 0.04 0.794 3.22 5.52 0.04

quadratic
ExactFlow 71.45 0.44 145.47 0.68 26.91 0.25 12.52 1.33 31.10 0.08
Greedy 71.34 0.15 145.377 0.42 26.91 0.84 12.52 23.50 31.10 0.02
PeelZero 70.874 0.16 145.06 0.41 26.78 1.09 12.25 23.14 31.10 0.02
DegPeel 69.85 0.06 143.70 0.07 25.24 0.01 11.59 3.20 29.50 0.008

square-root
Exact 41.34 495 91.7 4469 – – – – 17.15 17.22
PeelMax 41.06 0.16 91.21 0.42 29.69 0.89 20.48 24.02 16.86 0.02
Greedy 41.14 0.2 91.72 0.58 29.26 0.87 18.38 24.99 17.14 0.02
PeelZero 41.05 0.15 90.83 0.42 29.69 1.58 17.67 23.23 16.27 0.02
DegPeel 41.06 0.06 89.92 0.06 19.64 0.01 11.94 3.28 16.16 0.008
ProjFlow 40.86 0.29 89.76 0.35 21.88 0.2 13.6 0.97 16.35 0.11
ProjGreedy 40.61 0.2 89.76 0.58 21.88 0.86 12.80 24.76 16.35 0.02

The Densest SWAMP Problem 15

Table 3: Evaluating edge composition of optimal densest swamp solutions using
five reward functions on two hypergraphs: CHS and CPS.

atleast-two atleast-half all-but-one |E(S)| |S|

CHS CPS CHS CPS CHS CPS CHS CPS CHS CPS
atleast-two 3791 7932 3791 7932 3762 7956 3053 6052 140 131
atleast-half 3791 7932 3791 7932 3762 7956 3053 6052 140 131
all-but-one 4055 8349 4055 8349 4039 8303 3404 6574 150 138
standard 6182 11341 6182 11341 6175 11337 6041 10895 236 200
quadratic 757 4206 757 4206 755 4152 651 3040 29 75

columns atleast-two, atleast-half, and all-but-one list the number of hy-
peredges (fully or partially contained in S) that intersect S in at least two nodes,
at least ⌈|e|/2⌉ nodes, or at least |e| − 1 nodes, respectively. We also report the
number of edges completely contained (|E(S)|) and the subset size (|S|). Each
reward function leads to a dense subset with distinct characteristics: for instance,
the standard objective tends to produce larger subgraphs whereas the quadratic
objective tends to produce smaller subgraphs. This provides a simple check that
finding the densest swamp using different reward functions does indeed allow us
to capture meaningfully different types of density patterns in practice.

8 Conclusions and Discussion

We have presented comprehensive hardness results and new approximation al-
gorithms for a dense subhypergraph objective where rewards are given for par-
tially included edges. Our most significant finding is that peeling algorithms can
achieve the same approximation guarantee for NP-hard variants of the problem
as they do for poly-time variants that are special cases of the densest supermod-
ular subset problem. This is somewhat surprising given that previous approxi-
mations for peeling seem to inherently rely on the supermodularity property. As
one interesting observation, our theory does not apply to the standard greedy
peeling strategy (se = re), but this strategy still seems to work well in practice.
One open direction is to explore whether there are cases where the standard
greedy strategy performs poorly, or whether we can prove an approximation for
this approach using a different technique. Another direction for future work is
to explore hardness of approximation results for NP-hard variants of swamp.

Acknowledgments. This research is supported by the Academy of Finland project
MALSOME (343045) and by the Helsinki Institute for Information Technology (HIIT).
The research is also supported by the Army Research Office (ARO) under Award
Number W911NF-24-1-0156. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or the U.S. Government.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

16 V. Bengali et al.

References

[1] Anagnostopoulos, A., Becchetti, L., Fazzone, A., Menghini, C.,
Schwiegelshohn, C.: Spectral relaxations and fair densest subgraphs.
In: CIKM, pp. 35–44 (2020)

[2] Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds.
In: WAW, pp. 25–37 (2009)

[3] Andrew, A.M.: Another efficient algorithm for convex hulls in two dimen-
sions. Information Processing Letters 9(5), 216–219 (1979)

[4] Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense
subgraph. Journal of Algorithms 34(2), 203–221 (2000)

[5] Bera, S.K., Bhattacharya, S., Choudhari, J., Ghosh, P.: A new dynamic al-
gorithm for densest subhypergraphs. In: TheWebConf, pp. 1093–1103 (2022)

[6] Charikar, M.: Greedy approximation algorithms for finding dense compo-
nents in a graph. In: International Workshop on Approximation Algorithms
for Combinatorial Optimization, pp. 84–95, Springer (2000)

[7] Chekuri, C., Quanrud, K.: (1− ϵ)-approximate fully dynamic densest sub-
graph: linear space and faster update time. arXiv:2210.02611 (2022)

[8] Chekuri, C., Quanrud, K., Torres, M.R.: Densest subgraph: Supermodular-
ity, iterative peeling, and flow. In: SODA, pp. 1531–1555 (2022)

[9] Chen, T., Tsourakakis, C.: Antibenford subgraphs: Unsupervised anomaly
detection in financial networks. In: KDD, pp. 2762–2770 (2022)

[10] Chodrow, P.S., Veldt, N., Benson, A.R.: Hypergraph clustering: from block-
models to modularity. Science Advances (2021)

[11] Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: reg-
ulatory motifs finding with maximum density subgraphs. Bioinformatics
22(14), e150–e157 (2006)

[12] Gajewar, A., Das Sarma, A.: Multi-skill collaborative teams based on dens-
est subgraphs. In: SDM, pp. 165–176 (2012)

[13] Goldberg, A.V.: Finding a maximum density subgraph. Tech Report, UC
Berkeley (1984)

[14] Hu, S., Wu, X., Chan, T.H.: Maintaining densest subsets efficiently in evolv-
ing hypergraphs. In: CIKM, pp. 929–938 (2017)

[15] Huang, D.H., Kahng, A.B.: When clusters meet partitions: new density-
based methods for circuit decomposition. In: ED&TC, pp. 60–64 (1995)

[16] Huang, Y., Gleich, D.F., Veldt, N.: Densest subhypergraph: Negative su-
permodular functions and strongly localized methods. In: TheWebConf, pp.
881–892 (2024)

[17] Kariotakis, E., Sidiropoulos, N.D., Konar, A.: Fairness-aware dense sub-
graph discovery. TMLR (2025), ISSN 2835-8856

[18] Khuller, S., Saha, B.: On finding dense subgraphs. In: ICALP, pp. 597–608
(2009)

[19] Lanciano, T., Miyauchi, A., Fazzone, A., Bonchi, F.: A survey on the densest
subgraph problem and its variants. ACM Computing Surveys 56(8), 1–40
(2024)

The Densest SWAMP Problem 17

[20] Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school:
A comparison between data collected using wearable sensors, contact diaries
and friendship surveys. PLOS ONE 10(9), e0136497 (2015)

[21] Miyauchi, A., Chen, T., Sotiropoulos, K., Tsourakakis, C.E.: Densest diverse
subgraphs: How to plan a successful cocktail party with diversity. In: KDD,
pp. 1710–1721 (2023)

[22] Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation
in social networks based on densest subgraphs. In: WWW, pp. 1077–1088
(2013)

[23] Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F.,
Quaggiotto, M., den Broeck, W.V., Régis, C., Lina, B., Vanhems, P.:
High-resolution measurements of face-to-face contact patterns in a primary
school. PLoS ONE 6(8), e23176 (2011)

[24] Tsourakakis, C.: The k-clique densest subgraph problem. In: Proceedings of
the 24th international conference on world wide web, pp. 1122–1132 (2015)

[25] Veldt, N., Benson, A.R., Kleinberg, J.: The generalized mean densest sub-
graph problem. In: KDD, pp. 1604–1614 (2021)

[26] Zhou, Y., Hu, S., Sheng, Z.: Extracting densest sub-hypergraph with convex
edge-weight functions. In: International Conference on Theory and Appli-
cations of Models of Computation, pp. 305–321, Springer (2022)

	The Densest SWAMP problem: subhypergraphs with arbitrary monotonic partial edge rewards

