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Abstract. Decision trees are fundamental components of data stream
mining frameworks and pipelines. However, their inherent instability -
where small variations in training data can lead to significant struc-
tural changes- has motivated research into methods that either (i) mit-
igate this instability or (ii) exploit it for improved performance. Option
trees provide an alternative approach to instability reduction by allow-
ing non-leaf nodes to have multiple subtrees as child nodes. This enables
instances to traverse multiple paths within a single decision tree struc-
ture, offering greater processing time and memory efficiency compared
to ensemble methods—key advantages for streaming data mining, where
data arrives continuously and potentially without bounds. This paper in-
troduces LASTO, an algorithm with adaptive mechanisms for splitting
and dynamically adding option nodes. Our primary contribution lies in
the option node addition mechanism, where change detectors monitor
branch performance and introduce option nodes when a decline in pre-
dictive quality is observed. An option node is only added if the split gain
surpasses that of the previous split, ensuring its necessity and effective-
ness. Experimental results demonstrate that LASTO achieves statisti-
cally significant differences in predictive performance while maintaining
computational efficiency comparable to state-of-the-art decision trees for
data stream classification.
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1 Introduction

Streaming data is integral to today’s evolving digital landscape, and mining
its concepts can reveal valuable insights. Researchers and practitioners in data
stream mining focus on developing machine learning algorithms capable of effi-
ciently processing high-speed, continuous, and potentially infinite data. These al-
gorithms must provide high predictive quality and ensure anytime response, fast
processing, and low memory consumption to prevent excessive instance storage.
Otherwise, memory limitations or the need to discard instances could overwhelm
the system and lead to failure [1].

Another fundamental challenge in streaming data mining is its evolving na-
ture. Unlike traditional machine learning settings, the assumption that data
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distributions remain stable over time does not hold. This phenomenon, known
as concept drift [2], refers to changes in the probability distribution of data over
time. Concept drift can severely impact predictive performance, making it essen-
tial for machine learning models to detect and adapt to these changes promptly
to maintain reliable learning outcomes. Hoeffding Trees [3] offer an efficient ap-
proach to stream classification, resembling batch decision tree algorithms such as
C4.5 [4] and CART [5]. These trees continuously learn and predict from incoming
instances, performing periodic split evaluations based on the Hoeffding Theorem
[6]. This theorem enables incremental learning by distributing the computational
cost of evaluating splits at leaf nodes across the data stream. As a result, Ho-
effding Trees are among the most widely used and efficient methods for mining
streaming data. Several studies, such as [7] and [8], have extended Hoeffding
Trees, demonstrating improved predictive performance over the standard ap-
proach. Among these, we highlight the Local Adaptive Streaming Tree (LAST)
[9], which addresses a key limitation of Hoeffding-based trees: their static split
evaluation, which does not account for the evolving state of the tree over time.
LAST introduces change detectors [2]| at leaf nodes to monitor their statistics
dynamically and determine optimal split moments. Experimental results have
shown that LAST not only achieves competitive predictive performance against
state-of-the-art decision trees but also improves processing efficiency.

Decision trees, however, suffer from limited lookahead ability, making them
inherently unstable. Since they make splitting decisions based only on local
statistics, they may not always select the best long-term splits [10]. Ensem-
ble methods mitigate this instability by combining multiple decision trees into a
single, stronger learner [11]. While ensembles are state-of-the-art in many appli-
cations, they introduce significant computational costs due to the need to train
and maintain multiple base models—making them less suitable for data stream
mining systems with strict memory and time constraints. An alternative to en-
sembles is Option Trees [12] [13]|, which reduce decision tree instability while
maintaining a single tree structure. Option Trees introduce option nodes, which
allow instances to follow multiple decision paths simultaneously. This design en-
hances predictive robustness without the overhead of training multiple trees. In
[10], the authors extended Hoeffding Trees to incorporate option nodes. In this
paper, we propose Local Adaptive Streaming Tree with Options (LASTO), a
novel approach that integrates adaptivity in both the splitting mechanism and
the addition of option nodes. Using change detection algorithms, LASTO con-
tinuously monitors node statistics to dynamically determine when to introduce
new option nodes, further enhancing model stability and predictive performance.

This paper is structured as follows: Section 2 discusses Hoeffding-based Trees
and LAST. Section 3 introduces our proposed method. Section 4 presents ex-
perimental results. Finally, Section 5 concludes the paper and outlines future
research directions.



Adaptive Options for Decision Trees 3

2 Related Works on Decision Trees for Data Streams

In this section, we bring forward existing works on decision trees focusing on
Hoeffding Trees and the Local Adaptive Streaming Tree (LAST).

2.1 Hoeflfding Trees

Hoeffding Trees [3] are incremental and online decision trees designed for classi-
fication problems. The tree structure is periodically updated with split attempts
when the number of samples observed in a leaf node achieves a user-given pa-
rameter called grace period (GP). For instance, if GP=50, a split attempt will
occur when a leaf node observes 50, 100, 150, 200, . . . samples until a split ensues.

A split occurs if it passes the Hoeffding-bound constraint. Given a level of
confidence ¢ (user-given), a split occurs if:

R? log(%)

AG(Xa) — AG(X) = 5

(1)
where AG(+) is the impurity measure applied, (such as gini index [5] or infor-
mation gain[4]), X, is the feature that maximizes AG(-), X} is the feature that
presents second best AG(-) value, R is the range of AG(-) function and n is the
number of samples in the leaf nodes before splitting.

Figure 1 illustrates the training process of Hoeffding Trees, where € is the
Hoeffding bound.

Since lim, 4o € = 0, and if in a node AG(X,) and AG(X}) have similar
values, a split will potentially take many observations to split. To relax the Ho-
effding constraint in these situations, Hoeffding trees also present a tie threshold.
Given 7 (user-given threshold), a split will ensue when 7 > e.

In [14], the authors observed that Naive Bayes could enhance predictive qual-
ity at leaf nodes. Authors in [15] noticed that selecting Naive Bayes or majority
class strategy prediction according to the method with the highest accuracy at
the leaf could further enhance Hoeffding Trees, which is commonly used.

2.2 Hoeffding Adaptive Tree

Hoeffding Adaptive Tree (HAT) [7] extend the Hoeffding Tree algorithm by
adding the ADaptive WINdowing (ADWIN) [16] change detection algorithm
to each non-terminal node. ADWIN [16] is a widely used change detector that
maintains a window W of recent observations and attests that no change is
present in the window if the mean value of subwindows of W has a similar value
according to Hoeffding’s theorem. If ADWIN flags a change in the accuracy of
the instances that traverse the tree, a new subtree is created and replaces the
node and its branch if the subtree is more accurate.
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Instance is traversed
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Fig. 1. Hoeffding Tree training process for an instance

2.3 Extremely Fast Decision Tree

In [8], the authors propose the Extremely Fast Decision Tree (EFDT). The first
difference between EFDT and Hoeffding Trees is that EFDT applies a softer split
constraint. Instead of comparing AG(X,) — AG(X,) > €, the authors propose
comparing AG(X,) with the occasion of any split occurrence, or AG(X,) —
AG(Xp) > e = AG(X,) > e, thus resulting in deeper trees.

Similar to HAT, EFDT has a split reevaluation mechanism. This process is
similar to the split attempt. A split reevaluation is performed at each GP, (user-
given) sample traversed in non-terminal nodes. Given X,, the feature used for
splitting at the non-terminal node before the reevaluation and AG(X.) the im-
purity at the non-terminal node, the sub-tree and its child nodes are substituted
for a newly evaluated split on X, if:

AG(X,) — AG(X,) > € (2)
In other words, if a new split is more beneficial than the previous one done
at the terminal node, the new split replaces the sub-tree and its child nodes.
2.4 Local Adaptive Streaming Trees

The trees described earlier perform a static and periodic evaluation of splits. A
split attempt will only occur at every GP samples observed at a leaf node, but
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a change in the purity or accuracy of the leaf node may occur earlier, and the
tree would be unable to anticipate it. Even when small changes occur in a leaf
node, the greedy evaluation of attributes and their values that compose the best
split will still be performed and might not result in significant changes in the
tree and consume more processing time.

Depicting these points, the authors in [9] propose the Local Adaptive Stream-
ing Tree (LAST) algorithm. At each leaf node, LAST maintains a change detec-
tor [2] that constantly monitors leaf node statistics to determine ideal moments
for splitting. Change detectors are often tailored to handle binomial distribu-
tions, i.e., error rates. If a change detector triggers a change, a split will ensue
it AG(X,) > 0.0, the softest split constraint possible, which means change de-
tectors control how the tree grows. Since change detectors constantly monitor
new upcoming instances, they track how the stream evolves on an instance basis
rather than in chunks.

Figure 2 illustrates the training process of LAST.

Instance is traversed
in the Tree

{DT(Z) # y}
N g

C NN
o Change Detector
Perforrlrll s)p}llt If change triggered &
o a AG (X a) >0

Fig. 2. LAST training process for an instance

2.5 Hoeffding Option Trees

Option nodes let an instance traverse more than one decision path. If an instance
reaches an option node, it traverses all the child node paths. For example, if the
instance reaches the option node in the tree in Figure 4, it will follow all paths
to the child nodes {X3 < 3.7, X5 < 9}.
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Fig. 3. An Option Tree

In the batch setting, option nodes are created in the training phase with
restrictions, for instance, the maximum number of child nodes in option nodes
[13]. For voting, since an instance can arrive in more than one leaf node, it is
possible to perform majority voting, as in [13], or weighted voting, as in [12],
such that the probabilities of each class at each leaf node are summed.

The authors in [10] proposed constraining the maximum number of child
nodes and applying weighted voting instead of a simple majority voting scheme.
The authors also propose adding child nodes for option nodes that split on
features not previously used in the option node children.

Since the tree induction is incremental, adding child nodes to option nodes
is also incremental. The authors use a similar approach to the splitting phase.
Given a feature X,,,q., the feature with a maximum value of AG() in the option
node and X 4,4 the candidate feature for splitting in a new child node, a new
child node split in X ,,q is added if pass the constraint in equation 3.

R? log(%)

AG(X, — AG(X, >
G( cand) G( maw)_ m

(3)

In this case, the authors apply a softer confidence 1—4" = 0.955 since the one
used in the splitting [3] is § = 1078 with confidence (1 — &) = 0.99.. ., avoiding
the creation of few option nodes.
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3 Local Adaptive Streaming Tree with Options (LASTO)

In this section, we introduce our proposal called Local Adaptive Streaming Tree
with Options (LASTO). Compared to traditional Hoeffding Option Trees [10],
our approach presents two distinctive characteristics: (i) the adaptive addition of
option nodes and (ii) the determination of split attempt moments via adaptive
leaf statistics monitoring following the work of [9].

As depicted in [9], the periodic split attempt cannot anticipate changes in
the accuracy of the leaf node between two split attempts, and even when little
change occurred in the leaf node, the greedy evaluation of attributes and their
values that compose the best split will still be performed and might not result
in a significant tree change and consume more processing time. The same fol-
lows for adding option nodes in non-leaf nodes in [10]. Hoeffding Option Tree
cannot anticipate decays in performance between two periodic evaluations for
adding new option nodes, and the periodic review of split nodes is costly since
multiple nodes will perform split evaluations constantly. In contrast, our algo-
rithm performs split evaluations only in moments where a decay in performance
is observable according to the change detector.

Algorithm 1 presents LASTO pseudocode. Lines 1-19 present the LAST algo-
rithm’s adaptive splitting mechanism performed at leaf nodes. Lines 19-33 show
the adaptive addition of new option nodes for non-terminal nodes of the tree. For
the addition of option nodes, since the change detector determines the moment
of node addition to the option node and applies a hard constraint for detecting
a change in accuracy, we use a softer constraint for the addition of the option
node (Algorithm 1, line 23). In this case, the gain of a new split must result in a
value superior to the maximum gain of the nodes in the option node, justifying
the addition of a new node to the option node.

Figure 4 illustrates the LASTO training process, highlighting the paper’s
main contribution. Specifically, the figure demonstrates the addition of option
nodes when a change in accuracy is detected in the subsequent nodes under
a decision node. Additionally, it incorporates the information gain constraint,
ensuring that an option node is added only if its information gain exceeds the
maximum gain among existing option nodes. In the case of Figure 4, this condi-
tion is represented as AG(X,) > AG(X5), since there is only one option node
in the decision node {X5 < 3.2}.

Unlike in [10], as the change detectors take into account the performance
of the tree, parts of the tree where the performance is decaying, and the split
decision at these parts turn out to be not the best option in the long term
(instability), the addition of option nodes can mitigate the instability of the tree
by aggregating the predictions with more options nodes and decision paths.

One of the method’s main advantages is that the user does not have to specify
the Grace Period, T, §, and ¢’ hyperparameters. These are crucial hyperparame-
ters for the algorithm’s performance, and the optimal value of these parameters
can differ in multiple scenarios. Change detectors can also have hyperparame-
ters, but some are well-established regarding change detection, and some have
no hyperparameters.



8

D. Nowak Assis et al.

Algorithm 1 LASTO

Input: S: a data stream, X: a set of attributes, AG(-): a split evaluation function,

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

maxOptions: the maximum number of options reachable by a single example, 1:
Change detector used in nodes.
: for each sample (z,y) € S do
Sort x into option nodes L using HOT
for all option nodes [ of the set L do
Update [ statistics using (x,y)
ng < n;+1
Update 1y with 1{DT(x) # y}
if 1, detected change A —(I contains samples from only one class) then
if [ has no children then
Compute AG(X;) for each X; € X, stored in [
Let X, be the attribute with highest AG
if (AG(X,) > 0.0) then
Add nodes below [ that split on X,
for each leaf node [; from splitting on X, do
Let n;, <0
lm; —
end for
end if
else
if l.optionCount < maxzOptions then
Compute AG(Xj;) for existing splits and (non-used) attributes
Let Xmaz be existing child split with highest AG
Let Xcqna be (non-used) attribute with highest AG
if AG(Xcand) > AG(Xmaz) then
Add an additional child option to [ that splits on Xcand
for each leaf node [; from splitting on X.qnqa do
Let n;, <0
liy <
end for
end if
else
Remove attribute statistics stored at [
end if
end if
end if
end for
end for
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Fig. 4. LASTO training process for an instance

As in [10], we maintain the weighted voting scheme if an instance traverses
more than one path and set the maximum number of option nodes to five.

4 Experiments and Results

This section introduces the experimental protocol adopted, followed by the re-
sults obtained and discussion.

4.1 Experimental protocol

All algorithms were implemented in the Massive Online Analysis (MOA) frame-
work [17]. All experiments were done in an Intel(R) Xeon(R) CPU E5649 Q
2.53GHz with 32 GB of RAM.

The code of the proposal is available in ! for the MOA framework.

All the Hoeffding Tree-based algorithms evaluated had default hyperparam-
eters from MOA (Grace Period = 200, level of confidence = 1077, impurity
measure is information gain). LAST and LASTO had ADWIN [16] as change
detectors with default hyperparameters.

We assess the predictive performance using accuracy computed in a prequen-
tial validation strategy, where every instance is used first for testing and then
for training. Additionally, we measured computational resource usage in terms of
CPU-Time (in seconds), RAM-Hours (GB/h), and tree size (number of nodes).
CPU-Time reports the full experiment duration, while RAM-Hours and tree size
reflect the peak values observed throughout the stream.

! https://sites.google.com /view /lasto-paper
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Experiments were held with 21 datasets reported in Table 1, with twelve
real-world and nine synthetic datasets. The synthetic datasets and parameters
used are discussed as follows.

LED [5] This generator produces 24 boolean features, while 17 are irrelevant.
Each feature has a 10% of being inverted, simulating noise. We simulated three
abrupt (LED,,) and gradual (LED) drifts.

SEA [19] This generator produces 3 numerical features (f1, fo, f3). If f1+f2 <6,
the class has value 1, otherwise 0. In this dataset, we simulated three abrupt
(SEA,) and gradual (SEA,) drifts by changing 6 values.

AGRAWAL [18] This generator has six nominal and three numerical features.
Ten distinct functions map two classes. In this dataset, we simulate three abrupt
(AGR,) and gradual(AGR,) datasets.

RBF [17] This generator produces ten features and 5 class values. Data is gen-
erated based on the radial basis function (RBF). Centroids are generated ran-
domly and mapped with a standard deviation value, a weight, and a class label.
In this dataset, incremental drifts are simulated by continuously changing the
centroids’ position. The parameters used were 50 centroids at a speed change of
10~* (moderate, RBF,,) and 1073 (fast, RBF}).

HYPER [20] A hyperplane is a flat, (n—1) dimensional subset of that space that
divides it into two disconnected parts. Drifts can be simulated incrementally by
changing the decision boundary implied. HYPER was set up with 10 features
and a magnitude of change of 1073.

The real-world datasets used were Outdoor, Rialto, Airlines, CovType, No-
mao, Poker, NOAA, and three versions of the INSECTS dataset with abrupt,
gradual, and incremental drifts, respectively. All real-world datasets were col-
lected from [21].

4.2 Discussion

Table 2 presents the prequential accuracy of the decision trees evaluated, where
bold values indicate the best result per dataset, and Figure 5 provides a critical
distance plot of a pairwise one-sided Wilcoxon signed-rank tests with o = 0.1 and
form cliques using the Holm correction for multiple testing as performed in [22,
23]. LASTO has been shown to improve the results of LAST, as it presented the
best ranking overall and statistical difference to all methods. LASTO presented
the best ranking in real-world datasets and the second-best ranking in synthetic
datasets. Hoeffding Adaptive Trees (HAT) could present the best results in syn-
thetic datasets but could not outperform EFDT in real-world datasets and show
no statistical difference to EFDT.

Figure 6 shows a comparison between LASTO and HAT across the evaluated
datasets in this work in a scatter plot, while Figure 7 presents a comparison be-
tween LASTO and LAST. LASTO had 14 wins against HAT, and the difference
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Table 1. Description of the evaluated datasets.

Dataset # examples # features # classes Majority class (%)
LED, 1,000,000 24 10 10.28

LED, 1,000,000 24 10 10.28
SEA, 1,000,000 3 2 59.91
SEA, 1,000,000 3 2 59.91
AGR, 1,000,000 9 2 52.83
AGR, 1,000,000 9 2 52.83
RBF,, 1,000,000 10 5 30.01
RBF 1,000,000 10 5 30.01
HYPER 1,000,000 10 2 50
Outdoor 4,000 21 40 4.11
Rialto 82,250 27 10 10
Airlines 539,383 7 2 55.47
CoverType 581,012 54 7 48.75
Nomao 34,465 119 2 71.44
Poker 829,201 10 10 47.78
NOAA 18,158 8 2 69.74
INSECTS,, 52,848 33 6 16.07
INSECTS; 57,018 33 6 11.56
INSECTS, 24,150 33 6 15.76
LADPU 22,950 96 10 10
Asfault 8,066 62 5 55.59

in accuracy is more noticeable than LASTO against LAST. LASTO had 17 wins
against LAST.

Figures 8-11 present the accuracy throughout time for the datasets LED,,
LED, INSECTS, and INSECTS,, respectively. In the INSECTS, dataset, HAT
showed a significant decrease in accuracy, while LAST and LASTO achieved
stabler and higher accuracy. In the third drift of the dataset, LAST had an
accuracy decrease bigger than LASTO, and LASTO ended as the most accurate
classifier. In the INSECTS, dataset, HAT presented an accuracy lower than
LAST and LASTO, but after the drift, HAT had an accuracy decrease greater
than LAST and LASTO. In the LED, dataset, all methods reacted similarly to
drifts, but HAT presented lower accuracy compared to LAST and LASTO. In
the LED, dataset, the methods presented similar behavior, and HAT presented
lower accuracy compared to LAST and LASTO until the third drift occurred,
and LAST had a big drop in accuracy, while HAT and LASTO remained stable.

Table 3 shows the tree size of decision trees. LASTO presented the worst tree
size ranking but presented a lower tree size ranking compared to HT and EFDT
in synthetic datasets. In some real-world datasets, LASTO presents smaller tree
sizes and higher accuracy than EFDT, such as in Asphalt and INSECTS;. In
synthetic data, with the exception of the RBF dataset, LASTO had a smaller
tree size while achieving higher accuracy. RBF is a dataset that incremental
changes occur, such that the detector flags changes recurrently because a change
includes multiple intermediary concepts, affecting both LAST and LASTO high
complexity in this dataset. Regularization pre-prunining techniques to avoid high
complexity [24] or simply a stricter splitting condition that guarantees the split
with maximized gain is indeed better than the other possible splits in LAST and
LASTO could come to good use.
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Figures 12 and 13 present box plots for CPU-Time (in seconds and log
scale), and the methods were ordered by the median value. LASTO presented
a higher median and upper quartile compared to other methods. In real-world
data, LASTO also presented a higher lower quartile greater than other meth-
ods, while in synthetic data, HAT was the only method that presented a greater
lower quartile compared to LASTO. No more than one clique was identified in a
pairwise Wilcoxon signed-rank test with a Holm correction. One must be careful
in analyzing log-scaled box plots, as values are small, and slight changes are still
feasible as efficient learners for mining data streams.

Figures 14 and 15 present box plots for RAM-Hours (in GB/h and log scale),
and the methods were ordered by the median value. In real-world data, LASTO
presented the highest lower quartile, median, and upper quartile. In synthetic
data, LASTO presented lower quartile, median, and upper quartiles that were
greater than HOT and HT. No more than one clique was identified in a pairwise
Wilcoxon signed-rank test with a Holm correction.

6 5 4 3 2 1
et - 1 5 1 .+ 1 5 1
HT 5.3571 1.6667 LASTO
HOT 225476 | 24286 | AST
EFDT 3.7619 3.2381 HAT

Fig. 5. Critical distance on accuracy with Wilcoxon signed-rank test and o = 0.01.

5 Conclusions

In this work, we propose the Local Adaptive Streaming Tree with Options (LASTO)
algorithm. LASTO extends the LAST algorithm to allow the creation of option
nodes throughout the stream, and the main contribution of this paper is the
adaptive creation of option nodes through change detection algorithms. LASTO
further leverages the results of LAST and outperforms state-of-the-art decision
tree algorithms. LASTO presented higher computational costs in tree size ranks
in real-world datasets and lower quartiles, medians, and upper quartiles in CPU-
Time and RAM-Hours than most methods, yet no statistical difference in com-
putational cost is observed.

In future works, we plan to propose a tree with an adaptive split reevaluation,
as in HAT, that can replace branches with decreasing accuracy in the tree with
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Table 2. Prequential Accuracy of decision trees

Data Stream HT EFDT HAT LAST HOT LASTO

15

LED, 69.03 69.87 73.73 73.93 70.50 73.94
LED, 68.65 69.72 72.60 71.49 69.59 72.55
SEA, 86.42 86.41 88.81 86.61 86.42 86.58
SEA, 86.42 86.37 88.51 86.38 86.43 86.67
AGR, 81.05 82.87 91.05 83.94 81.09 84.88
AGR, 77.37 80.09 86.53 80.58 77.50 80.97
RBF,, 45.49 51.27 61.75 64.11 56.55 72.60
RBF 32.29 31.87 39.16 36.70 33.94 42.15
HYPER 78.77 81.59 86.69 79.41 79.72 80.10
Outdoor 57.3359.58 57.27 60.40 57.33 60.35
Rialto 31.35 57.74 30.62 56.33 27.14 56.71
Airlines 65.08 65.27 63.81 65.52 64.77 69.83
CovType 80.31 84.67 81.89 87.52 84.92 89.27
Nomao 92.13 93.93 93.97 94.68 93.04 93.34
Poker 76.07 76.60 66.87 76.40 76.23 78.73
NOAA 73.43 73.23 73.53 73.92 73.64 74.09
INSECTS, 53.8362.24 61.50 63.79 55.95 64.74
INSECTS; 52.16 57.06 54.01 58.19 52.16 59.02
INSECTS, 60.61 66.42 61.70 67.61 60.61 66.68
LADPU 51.20 59.78 51.25 60.63 51.20 65.42
Asfault 71.85 83.61 71.86 85.88 71.85 87.30
Avg. Ranksynin 5.56 4.67  1.56 3.11 4.22 1.89
Avg. Rankpeq: 5.21 3.08 4.50 1.92 4.79 1.50
Avg. Rank 5.36 3.76 3.24 2.43 4.55 1.67

newer ones, and an adaptive splitting strategy, as in LAST, that can react to
changes in the leaf nodes accuracy by splitting the tree. We also plan to adapt
LAST and LASTO to regression problems.
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