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Abstract. The logic-as-loss framework has enabled transformer mod-
els to incorporate domain knowledge by encoding logical constraints as
differentiable objectives, allowing neural networks to learn from explicit
rules. Despite its effectiveness across diverse tasks, the relationship be-
tween neural architecture and rule internalization remains poorly under-
stood. This study systematically investigates how transformer encoder
configurations influence the ingestion of logical rules, beyond simply scal-
ing up model capacity. We aim to identify the architectural factors that
enable successful rule internalization and the inherent limitations of this
process. Empirical analysis on controlled reasoning tasks reveals a ca-
pacity threshold: transformers perform poorly at rule adherence below
a critical parameter count, while performance plateaus above it. A key
finding is that embedding dimensionality drives rule ingestion efficacy,
while increased network depth mitigates spurious solutions that satisfy
rules without improving task performance. Our work highlights the role
of architectural design choices for effective neuro-symbolic learning.

Keywords: Neuro-symbolic models - Logic-as-loss - Knowledge-driven
learning.

1 Introduction

Integrating domain knowledge into deep learning models using logic rules is
an effective strategy to address data inefficiencies [9]. One successful approach
calls for encoding data and task-specific rules declaratively in predicate logic,
which is then compiled to define loss functions [I3ITOB0IT7I22]. The models
trained with these losses not only fit observed data but also tend to adhere to
domain constraints. We will call this the logic-as-loss framework, which includes
two broad technical strategies: using model-counting based approaches (e.g., the
semantic loss [30]), or using t-norm logic relaxations [I3]. Both transform logical
formulas into sub-differentiable loss functions, and have shown success across a
diverse set of tasks [I7/4]. In this work, we focus on the t-norm logic relaxations.
Despite empirical successes across multiple tasks, especially those involv-
ing the transformer architecture, the factors that lead to this effectiveness are
relatively underexplored. In particular, while previous work compares different
t-norm relaxations [I0J24)[7], the interplay between the neural network architec-
tural choices and the success of the logic-as-loss agenda remains unexamined.
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By training neural networks to produce only logically consistent outputs, we
expect model parameters to encode the rules. How do the architectural choices,
and consequently the expressive capacity, of a model influence its ability to ingest
and enforce logical constraints? Although transformer models [26] are ubiqui-
tous across many domains [20J6], there is no systematic analysis of how their
configurations — layer depth, embedding dimensionality, or number of attention
heads — affect the ability to ingest rules for multi-hop logical reasoning.

In this paper, we investigate the impact of transformer architectural choices
on the logic-as-loss approach. We ask: (1) How large must a model be (i.e., how
many parameters are needed) to learn complex logical constraints? (2) How do
architectural factors (beyond sheer parameter count) influence this process? We
employ controlled reasoning tasks to study these questions: collinearity in the
plane and two Latin square based puzzles, Futoshiki and Sudoku. For each task,
we examine the impact of transformer architectural parameters —embedding
dimensionality, number of encoder layers, attention heads, and feedforward di-
mensionality —on the ability to ingest rules via losses.

Across these experiments, we find a capacity threshold below which the model
struggles to learn logical constraints; once the threshold is crossed, performance
stabilizes. Embedding dimensionality emerges as an especially critical design
choice, while increased depth helps mitigate vacuous rule satisfaction. In certain
settings, smaller models even outperform larger ones, suggesting that scaling
alone does not guarantee better logic ingestion. Together, these observations
underscore the importance of tailoring architectural choices — particularly em-
bedding size and depth—to reap the benefits of the logic-as-loss approach.

Our contributions are threefold. First, we design a focused set of controlled
tasks to help study the ability of neural models to learn from rules. Second, we
systematically explore the influence of transformer architecture in the logic-as-
loss framework, revealing how model capacity, depth, and embedding size shape
performance. Finally, we discuss key insights on balancing depth versus width
and present guidelines for designing models that effectively integrate domain
knowledge through logical ConstraintSEI

2 Logic-as-Loss Approach: Background

The logic-as-loss approach views machine learning tasks as declarative contracts
for a neural network to satisfy. Models are required not only to produce correct
labels for supervised examples, but also to satisfy logical constraints drawn from
domain knowledge. This section gives a brief overview of the framework.

2.1 Declarative Specification with Predicate Logic

Predicate logic is the specification language in the logic-as-loss framework. Let
X be the input domain and ) the finite set of task labels. A labeled dataset is

! The code and data for replicating our results, along with the appendix document, are
archived at https://github.com/utahnlp/logic_as_loss_with_transformers/.
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aset D C X x ) of pairs (z,y), while U C X denotes additional inputs drawn
from the same distribution but without ground-truth labels.

Atomic Predicates and Rules. For every label y € ) we introduce the atomic
predicate
y(z) : “the instance x has the label y”.

Task-specific axioms or expert knowledge are expressed by rules C(z) that may
apply to any instance x € D UU. Because every unlabeled input will ultimately
be mapped to some y € ) by the model, the atomic predicates y(x) and the
constraints C'(z) are well-defined for all inputs in DU U.

Logic-as-Loss Objective. The labeled examples require the model to match ground-
truth labels, while the rules propagate domain knowledge to all inputs. Learning
amounts to ensuring the following logical expression holds:

A v@ Al A c@ . (1)

(z.y)eD (z€U)

2.2 Loss Relaxation with T-norm Logics

A common strategy to construct losses from the specification above employs
t-norms [I2] that generalize the logical connectives into the real domain. Each
element in the declarative loss is relaxed by translating the connectives with
their corresponding relaxation definition, enabling standard gradient-based op-
timization. There are infinitely many t-norms; Table 1 in Appendix [A] presents
the three canonical t-norms typically used.

Neural models predict the probabilities for the atomic predicates. The goal
of learning is to find model parameters that maximize a real-valued relaxation of
the specification . Logic directly yields a differentiable loss function, making
it possible to learn the predicate models by optimizing the total loss derived
from the labeled data D and the constraints C' applied to unlabeled examples:

L=Lp+ MLc. (2)

Here, A is a non-negative hyper-parameter for the knowledge constraints.

T-norm losses have been successfully used in recent literature across multiple
tasks [I3I27017]. While the underlying framework is agnostic to the choice of
the neural network, these applications use language models that rely on the
transformer family of models.

2.3 General Learning Setting for the Logic-as-Loss Framework

Let O = {01,09,...,0m} denote a set of objects (e.g., sentences, one cell in a
Sudoku game). An instance x may consist of one or more objects from the set
O (e.g., x = o1 or x = (01,09,03)) and represents a collection of objects (e.g.,
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a document, or an entire Sudoku with multiple cells). Let Y = {y1,y2,...,¥n}
be the set of possible task labels that are attached to objects in instances. We
associate each label y; with a predicate y; defined over objects in the set O.
A single labeled observation (o,y) corresponds to the predicate y(o). Together,
we have the labeled dataset D in . Additionally, logical rules specify how
these predicates labels interact within an instance (e.g., yi(o1) — —y2(02)).
Aggregated across instances, we get the constraints C' in .

We can identify two learning settings that differ in how many labeled obser-
vations are available.

Setting 1: Learning with Supervision or the “Generalization” Setting. An instance
x may contain both labeled objects (observations) and unlabeled ones. The ob-
servations and task rules constitute the sets D and C in respectively. The
constraints C' indirectly supervise the unlabeled objects through their relation-
ships with labeled objects. In this setting, we evaluate the model by its accuracy
on objects whose labels were entirely withheld during training—revealed only at
test time—together with the degree to which its predictions satisfy the specified
logical rules.

Setting 2: Rule-Only or the “Solving” Setting. A second scenario involves no di-
rect supervision (i.e., D = }). The truth value of every predicate is determined
solely by instance-level logical constraints. This is akin to solving a puzzle with
internally consistent labels. Here, the training process adapts the model parame-
ters to satisfy all the rules for a single instance. Because there is no labeled data
and no constraints crossing instances, we can disentangle the instances from each
other. In other words, there is no notion of generalizing beyond a given instance.
This scenario resembles a classical constraint satisfaction problem, rather than
a standard predictive task.

These two settings illustrate how logic-as-loss can flexibly accommodate dif-
ferent availability of labeled data and types of domain knowledge, ranging from
partially supervised tasks to purely rule-defined puzzles.

3 Investigating Logic-Aware Transformers

The logic-as-loss framework requires neural networks to produce logically con-
sistent outputs after training. This drives the network’s parameters to capture
the task-specific rules introduced during training. A natural question then arises:
how do the size and complexity of a model impact its ability to learn from rules?

We focus on transformer networks. They are not only the de facto choice
for a broad range of tasks, but have also been successfully used in logic-as-loss
pipelines as noted in §2] Yet, little is known about the impact of architectural
design decisions on their ability to internalize and enforce logical constraints.
To probe this, we use three controlled tasks. We introduce a new collinearity
task in which requires inferring whether a set of points on a plane are
collinear. We examine two Latin square reasoning puzzles — specifically, Sudoku



The Role of Transformer Architecture in the Logic-as-Loss Framework 5

and Futoshiki—in §3.2] Due to their structural complexity, these have been
used in recent literature to study model reasoning capabilities [BUISI2T].

By varying transformer size and architectural configurations in these tasks,
we aim to uncover when and why logic-as-loss succeeds (or fails), and how model
design contributes to logically consistent behavior.
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(a) Collinearity (b) Sudoku (¢) Futoshiki

Fig. 1: Controlled reasoning tasks used for evaluation. (a) Collinearity: deter-
mine whether a given set of points in the plane lies on a common straight line.
(b) Sudoku (4 x 4 variant): complete the grid so that each row, column, and
2 x 2 block contains all digits exactly once. (c) Futoshiki (5 x 5 variant): fill
the grid such that each row and column contains all digits exactly once, while
also satisfying the specified inequality constraints between adjacent cells; note
that no sub-block constraints apply.

3.1 Collinearity in the Real Plane

We introduce a new task of detecting collinearity among points in the real plane.
Each instance is a finite set of points {p1,p2, ...} C R? (Figure . We define
multiple collinearity-related predicates, detailed below.

At the core of the collinearity task is the predicate Collinear3(ps,p2,ps3),
which is true if, and only if, three points p1, p2, p3 lie on the same straight line.
This predicate serves as the primary source of supervision: we have a labeled
dataset of triplets indicating whether they are collinear or not.

Building on Collinear3, we define three more predicates by logical formulas
that tie back to Collinear3.

1. Collinearity of four points: A group of four points is collinear if every
triplet within that group is collinear.

Collinear4(py,p2,P3,P4) < /\ Collinear3(p;, p;, pk). (3)
1<i<j<k<4

2. Presence of 3-point collinearity: A set S has three collinear points if it
contains at least one collinear triplet.

HasCollinear3(S) < dpi,p2,p3 € S :Collinear3(pi, p2, p3). (4)
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3. Presence of 4-point collinearity: A set S has four collinear points if it
contains at least one collinear subset with four points.

HasCollinear4(S) <> Ip1,pa,p3,p4 € S : Collineard(py, ps, p3, pa). (5)

Note that only Collinear3 is supervised directly from data. The rest —
Collinear4, HasCollinear3, and HasCollinear4 —receive no direct labels and
instead derive their semantics through their definitions.

Joint Training via Logic-as-Loss. We use a common transformer network to em-
bed an instance (a point set), and define separate classification heads for each
predicate. Using logic-as-loss, we can derive the t-norm losses corresponding to
labeled examples and each of the constraints. (Due to space constraints, we do
not show the relaxations here. They can be obtained systematically as detailed
in §2[ and Appendix ) The loss penalizes the network whenever Collinear3
deviates from its labeled ground truth or any of the derived formulas are vio-
lated. That is, the training objective enforces: (a) correct classification of labeled
triplets for Collinear3, and (b) consistency with logical rules (3)—(5).

This task exemplifies the setting 1 of partially supervised logic-as-loss in
§2.3] By minimizing logical violations, the model learns to propagate collinearity
knowledge from the supervised triplets to the more complex unlabeled predicates
relying solely on rules.

3.2 Sudoku and Futoshiki

Beyond geometric reasoning, we consider two logic puzzles: Sudoku and Fu-
toshiki. Both are defined over an n xn grid, where some cells are given (pre-filled)
and the rest must be predicted.

A standard Sudoku grid is governed by three fized constraints that apply to
every instance: (i) each row must contain the digits 1,...,n exactly once, (ii)
each column must contain the digits 1, ..., n exactly once, and (iii) each \/nx/n
sub-grid (or “block”) must also contain each digit exactly once (Figure .

Futoshikﬂ is a Latin square puzzle variant that always enforces the row and
column uniqueness constraints (i)—(ii). Unlike Sudoku, it lacks block constraints.
Instead, each instance includes a set of < or > relations between adjacent cells
(Figure . These inequality constraints are dynamic: both their number and
placement vary across puzzles.

The label space for these tasks comprises all possible digit assignments for
each cell, formalized as predicates Cell(r,c,d): the cell in row r and column ¢
contains digit d. Puzzle-specific rules (e.g., “each digit must appear exactly once
in every row, column, and sub-grid” for Sudoku, or Futoshiki inequalities) form
the logical constraints.

For example, consider the rule that each digit must appear exactly once in
every row. First, each digit must appear on each row: for each digit d and row

2 From the Japanese word for “inequality.” The standard grid size is n = 5, though
larger sizes are common.
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r, some column ¢ contains the digit d. Second, no digit can appear more than
once in each row. This is, for a digit d, a row 7, and two columns ¢, ¢, the cells
(r,c) and (r,c¢’) cannot both contain the digit d. That is, we have

Vd,r3c: Cell(r, c,d). (6)
Vd,r,c,c # c:—[Cell(r,c,d) A Cell(r,c,d)]. (7)

Puzzle-Solving Setting. Each puzzle is an independent instance. So, given a puz-
zle, we can train a model to solve only that puzzle. The system trivially learns
the given cells (as they are fully known) and relies on puzzle rules to fill in
the remaining cells. Since there is no labeled supervision for the hidden cells,
the model must derive their values exclusively from the logical constraints. This
instantiates the purely rule-defined learning scenario, i.e., setting 2 from

Generalization Setting. In this setting, we train on a collection of distinct Sudoku
or Futoshiki instances—each defined by its own set of given cells and, in the case
of Futoshiki, a unique pattern of cell-to-cell inequalities. We evaluate on a disjoint
test set comprising puzzle configurations that were never seen during training.
Thus, each test example is an unseen puzzle, differing both in its initial given
values and, for Futoshiki, in its inequality layout.

1. Given-Cells Only: Only the puzzle’s given cells are available, forcing the
model to copy them into the solution and use the rules for the other cells.

2. Full Solutions: Each puzzle’s complete solution is labeled, offering direct
supervision for every cell in addition to the puzzle constraints.

By training over multiple puzzles, we seek to learn a general procedure for solving
new puzzles in a single forward pass. This setting is considerably more challeng-
ing as it incentivizes network parameters to internalize rules and patterns across
various puzzle configurations.

4 Experimental Setup

Our experiments share a common framework built around the transformer archi-
tecture. Given input sequences (e.g., points in the real plane or puzzle cells), we
first apply an embedding layer and a positional encoding module, then process
them with a transformer encoder. The encoder output is mapped to a set of lin-
ear classifier heads, each corresponding to an atomic predicate in the declarative
objective. Following [I0], we use the R-product t-norm relaxations of logic to
obtain loss functions. Appendix [A] provides additional details.

Training proceeds in two stages. First, we optimize predicates whose ground-
truth labels are available, monitoring performance on a development set for early
stopping. We then introduce knowledge rules into the objective and continue
training with the combined loss. Final model selection is guided by both labeled
predicates performance on the development set and the degree of rule consistency
over unlabeled instances. We optimize our system with AdamW with weight
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decay [I6] and learning rate scheduling with warmup and linear decay. Both,
optimizer and scheduler are reset before the second stage of training with rules.
We applied gradient clipping to stabilize training.

We explore various configurations of the standard transformer encoder archi-
tecture by modifying the input embedding dimension, number of encoder layers,
attention heads, and feedforward dimensionalities. For each configuration, we
further tune learning rates, batch sizes, layer normalization position, and rule
coefficients in the declarative loss. We run experiments with three random seeds
and report the mean performance in a hold-out test set unless otherwise stated.
The best values for these hyperparameters and architectural settings differ across
tasks. We describe these, and the datasets and experimental protocols in subse-
quent sections. Appendix [B] also gives more details for experiment replication.

Statistical Analysis of Architectural Parameters. To assess the impact of archi-
tectural parameters on performance, we group model results by each param-
eter individually (e.g., embedding dimensionality, number of layers, attention
heads, and feedforward dimensionality). Within each parameter, models with
identical settings form a distinct group, and we examine performance differences
among these groups. Our preliminary analysis revealed that scores for the met-
rics evaluated across groups are similarly distributed but typically not normally
distributed, as confirmed by the Shapiro-Wilk test (p < 0.05). Therefore, we
apply the non-parametric Kruskal-Wallis test to identify significant overall dif-
ferences in median performance across groups. If a significant difference emerges
(p < 0.05), we perform pairwise comparisons using Dunn’s post-hoc test with
Bonferroni correction. Significant differences between adjacent parameter sizes
are denoted in our results as: * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

5 Collinearity Experiments

Data Generation. We have four predicates, each representing a different collinear-
ity concept, and we collect a separate dataset for each. We sample points on
the real plane uniformly from the square [—1,1] x [—1,1] to construct four
datasets: (a) Collinear3: Triplets of points, (b) Collinear4: Sets of four points,
(¢) HasCollinear3: Sets of five points, and, (d) HasCollinear4: sets of five points.
Every dataset is split into 20K training examples, 4K development examples,
and 4K test examples, balanced with positive and negative labels.

Model and Training. We use the experimental setup described in §4] The first
stage of training focuses on Collinear3 for 100 epochs (with early stopping
based on development-set F1). Stage 2 incorporates rule-based terms for Collinear4,
HasCollinear3, and HasCollinear4, continuing training for 30 epochs (with
reinitialized learning scheduler and optimizer) under early stopping. The best
rule-constrained model is selected using the average between Collinear3 F'1
performance and the proportions of examples satisfying the rules , , and

in Importantly, only Collinear3 has direct supervision.
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We conduct a grid search over batch sizes {16, 32, 64}, learning rates {1073,
10,1075}, and rule-loss coefficients {5, 1, 0.1, 0.01, 0.001} for each transformer
configuration. We study the following architectural variations:

— Embedding Dimensions: {4, 16,32, 64,128},

— Encoder Layers: {1,2,4,6,8},

— Attention Heads: {2,4,8,16},

— Feedforward Dimensionality: %x, 1x, or 2x the embedding size.

This results in 270 distinct configurations. Further details on implementation
and batching are in the Appendix [C}

Evaluation. We evaluate the jointly trained model on the held-out test sets by
reporting the F1 score for each predicate classifier: Collinear3, Collinear4,
HasCollinear3, and HasCollinear4. Predictions are generated by applying the
corresponding linear head to each point tuple. Since only Collinear3 is directly
supervised, performance on the remaining predicates reflects the model’s grasp
of the rule-based definitions acquired during training.

Results. Figure [2] reports median F1 scores for each predicate across the trans-
former architectures (see §4). We observe a significant improvement in perfor-
mance when embedding dimensionality increases from 4 to 16 across all predi-
cates, after which performance does not improve with larger embedding dimen-
sions (Figure. Similarly, models with two or more encoder layers significantly
outperform single-layer models (Figure . This indicates that the system re-
quires a minimum input dimensionality and encoders to achieve optimal perfor-
mance; increasing above this threshold does not help.

Configurations with the maximum number of attention heads (16) outper-
form those with fewer heads, but only slightly so (Figure. Varying feedforward
dimensionality do not exhibit statistically significant differences (Figure .

We found that the median baseline F1 for Collinear3 is 97.1%, based on
ground-truth supervision before introducing logical constraints. However, after
constrained training, models with limited capacity (embedding dimension 4 and
depth 1, Figures and perform worse than direct supervision. Yet, such
models exhibit perfect rule satisfaction, suggesting they converge to spurious
solutions that trivially satisfy the constraints.

Figure |3| shows F1 scores for the HasCollinear3 predicate against model
capacity (total parameter count). We observe a performance jump when mod-
els reach approximately 16 embedding dimensions and 6 encoder layers. Below
this threshold, models struggle to use logical rules effectively. However, once
the minimum parameter requirement is met (darker green points), performance
stabilizes, with little to no improvement for larger models. Past this threshold,
narrow and deep architectures outperform wide and shallow architectures, con-
sistent with previous studies [29123]. Furthermore, wider and shallower models
with higher number of parameters are more susceptible to degenerate solutions,
but increased depth mitigates this issue.

We find similar trends for the unsupervised Collinear4 and HasCollinear4
predicates. Due to space constraints, the details are in Appendix [C}
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Fig.2: Median F1 score for each architectural parameter value for the
predicates Collinear3 (C3), Collinear4 (C4), HasCollinear3 (HC3), and
HasCollinear4 (HC4). Groups of values statistically different are enclosed in
green rectangles, and post-hoc significant adjacent pairs are connected by black
segments.

6 Puzzle Tasks

Sudoku and Futoshiki Datasets. For both puzzle tasks, we construct datasets for
two learning settings: a solving setting, where the model learns to solve a single
instance solely through rule interactions; and a generalization setting, where the
model is trained on a set of puzzles with rule-based supervision and evaluated
on its ability to solve unseen instances.

For Sudoku, we use the 4x 4 sudoku Kaggle datasetEl We extract 288 puzzles
with unique solutionsEl and different difficulty levels: 96 easy puzzles (67 hidden
cells), 96 medium puzzles (8-9 hidden cells), and 96 hard puzzles (10-12 hidden
cells). From this set, we sample 100 puzzles (33 easy, 34 medium, 33 hard) for

3 https://www.kaggle.com/datasets /redraiment/complete-13-million-4x4-sudoku-
puzzles
* The total number of distinct 4x4 Sudoku solutions is 288.
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Model capacity vs F1 score of HasCollinear3 prediction
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Fig.3: HasCollinear3 F1 performance (avg. of three runs) against the total
number of model parameters. Each point represents a different transformer con-
figuration, with color denoting the embedding dimensionality, color intensity
indicating the number of encoder layers, dot size reflecting the number of atten-
tion heads, and feedforward dimensionality increasing from left to right within
each color group. The maximum and average standard deviation across runs are
10.9 and 0.8 respectively.

the solving setting. For the generalization setting, the 288 puzzles are split into
training (70%), development (15%), and test (15%) sets, stratified by difficulty.

For Futoshiki, we use 5x 5 puzzles with unique solutions and 10 inequalities
introduced in [I9]. We sample 1000 boards spanning different difficulty levels:
345 easy (7-10 hidden cells), 402 medium (11-13 hidden cells), and 253 hard
(14-17 hidden cells). For the solving setting, we subsample 100 puzzles (33 easy,
34 medium, 33 hard). As with Sudoku, for the generalization setting, we use a
70/15/15 stratified train/dev/test split.

Each puzzle and its corresponding solution are encoded as a sequence of
one-hot vectors corresponding to a digit or an empty cell.

Solving Setting FEncoding. Here, we solve a single puzzle instance. The input
thus encodes only the given digits and empty cells. All Sudoku constraints and
Futoshiki inequalities are enforced via the loss, so no explicit rule encoding is
required in the input.

Generalization Setting Encoding. At test time the network receives a new (un-
seen) puzzle without any external rule module; we expect the solving procedure
to be internalized in the model weights. For Sudoku, the input encoding remains
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the same, containing only digits and empty cells. For Futoshiki, since inequali-
ties vary across puzzles, we augment the one-hot input with an additional binary
encoding marking the positions and orientations of each inequality sign (“<” or
“>7). This extra information enables the model to adjust its reasoning accord-
ing to puzzle-specific inequality constraints. Further implementation details are
provided in Appendix [E]

Model and Training. Each input puzzle is represented as a sequence of one-
hot encoded vectors. These vectors pass through an embedding layer and we
use a 2D sinusoidal positional encoding layer [28]. The resulting sequence is
fed into a transformer encoder. Each position in the puzzle grid is assigned a
dedicated predicate classifier head that produces the probability distribution of
the cell having any of the possible digits in the puzzle (i.e., for Sudoku 4 x 4 each
classifier head produces a probability distribution of four elements modeling the
score of the corresponding cell taking values 1-4).

During training, we use puzzles one at a time (batch size 1) to compute
the loss with respect to the rule constraints. In the first stage of training, the
system learns to “copy” the given cells without constraints. We continue training
introducing the rules of the game in the second stage (for 400 and 100 epochs,
for solving and generalization settings resp.). We perform a grid search over
learning rates {1075, 10=%, 1073, 1072} and rule-loss coefficients {107°, 1074,
1073,1072, 1071, 1, 5}. We explore the following architectural variations:

— Embedding Dimensions: {16, 64,256,1024},

— Encoder Layers: {1,2,6,12},

— Attention Heads: {4, 8,16},

— Feedforward Dimensionality: %x7 1x, or 2x the embedding size.

This results in 144 distinct configurations. Further details on implementation
and batching are in Appendix

FEvaluation. We evaluate each architecture configuration under both solving and
generalization experiments. For the former, we train a model to solve each puzzle
and measure the fraction of puzzles fully solved and the proportion of rule com-
ponents satisfied across all puzzles. For the latter, we train models on puzzles
from the train set and evaluate on unseen puzzles in the test set, considering two
regimes (cf. : given-cells only and full-solution supervision. We report the
ratio of correctly predicted hidden cells and fully solved puzzles from the test
set for both settings, averaged over three random seeds.

6.1 Solving Setting Results

Figure [4] shows that both tasks require a minimum embedding dimensionality
to reach near peak performance: 256 for Futoshiki and 64 for Sudoku. Smaller
embeddings struggle to fully solve puzzles, but surpassing the threshold triggers
a sharp increase in completion rates— a “phase shift” effect. Additional dimen-
sionality yields only limited gains.
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Model capacity vs Percentage of puzzles solved
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Fig. 4: Solved Futoshiki (top) and Sudoku (bottom) puzzles (three-run average)
against number of model parameters. The visual encoding is as in Figure [3| The
maximum and average standard deviation across runs are 7.5 and 9.0 and 3.1
and 4.5 for Futoshiki and Sudoku runs respectively.

Figure || reports the medians of solved puzzle rates for each architectural
parameter value. Below their respective dimensionality thresholds (16 and 64),
the performance for Futoshiki and Sudoku models is significantly worse than at
or above the threshold, and higher embedding dimensions offer no significant
improvements (Figure . No statistically significant differences exist for the
other architectural choices (Figures. .

Appendix [D] presents additional analyses demonstrating that this trend per-
sists when evaluating performance in terms of hidden-cell prediction accuracy.
Furthermore, when performance is analyzed separately across different puzzle
difficulty levels (easy, medium, and hard), the results consistently indicate that
embedding dimensionality remains the most critical architectural parameter.

6.2 Generalization Setting Results

Given-cells-only Supervision. Figure [6] shows the median fraction of correctly
predicted hidden cells. For both puzzles, smaller embedding dimensionalities
yield the best results. For Futoshiki, increasing dimensionality from 16 to 64
provides a statistically significant improvement of 8.2% (Figure @, and net-
work depth also significantly impacts performance: architectures with 12 layers
outperform (10%) those with 1 or 2 layers (Figure [6b]). For Sudoku, embedding
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Fig.5: Solving setting: Median percentage of puzzles solved for each architec-
tural parameter value-Futoshiki (Futo.) above, Sudoku (Sudo.) below. Groups
of values statistically different are enclosed in green rectangles, and post-hoc
significant contiguous pairs are connected by black segments.

dimensionalities of 16 and 64 outperform the others. Network depth, number of
attention heads, and feedforward dimensionality show no significant effects.

Curiously, models with larger embedding dimensionalities are significantly
worse. Evaluating them on the training sets reveals clear overfitting. We con-
jecture that smaller networks more readily lock onto puzzle constraints, leading
to faster convergence to consistent solutions. In contrast, larger networks likely
have more complex optimization landscapes, are more sensitive to hyperparam-
eter choices, and more prone to convergence to local minima. While our experi-
ments focus on architectural factors, we note that the degree of overfitting may
also be influenced by optimization choices such as learning rate, regularization,
and stopping criteria—variables we did not systematically ablate in this study.

Figure [7] shows hidden-cell prediction performance as a function of total
model parameters. Futoshiki models fare better than the Sudoku, despite the
former’s reputation as being more difficult. We conjecture that this is the case
due to our richer input encoding for Futoshiki puzzles, which incorporates in-
equality positions. Importantly, these models do not see any labeled data during
training, and rely only on the logical rules in the loss function to generalize
to unseen puzzles. Yet, some architectural configurations can fully solve up to
75% of Futoshikis and 12% of Sudokus from the test set. Appendix [E| has more
details.

Full-Solution Supervision. For the fully-supervised (full-solution) setting, results
follow analogous trends, but exhibit consistently higher performance due to the
additional explicit supervision. Here, rules function as auxiliary guidance on top
of direct puzzle solutions. Comparing performance before (stage one) and after
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Fig. 6: Given-cells-only setting: Median percent of correctly predicted hidden cell
for each architectural parameter value-Futoshiki (Futo.) above, Sudoku (Sudo.)
below. Groups of values statistically different are enclosed in green rectangles,
and post-hoc significant contiguous pairs are connected by black segments.

rule incorporation (stage two), we observe consistent improvements due to rules,
especially pronounced in deeper networks. Due to space constraints, detailed
figures and additional analyses are provided in Appendix [E]

7 Discussion

Unlike other work on neuro-symbolic models that seek to improve reasoning
performance [I5ST9TI3T], we do not introduce a model or a framework that
surpasses state-of-the-art results. Rather, our goal is to analyze the role and
impact of transformer architectural choices when these architectures serve as
the underlying neural component in logic-as-loss frameworks.

In this study, we design rule-governed synthetic tasks—such as planar collinear-
ity and Latin square puzzles—where each instance is fully defined by a known
set of logical constraints. Success in these tasks depends entirely on the model’s
ability to adhere to the rules, providing a noise-free setting to analyze how
Transformer design choices interact with the logic-as-loss objective. While this
controlled setup limits direct real-world applicability, it offers a clear lens for
studying rule internalization. Extending this analysis to more naturalistic do-
mains, where constraints are only partially known, is an important direction for
future work. Additionally, exploring how architectural factors interact with spe-
cific classes of logical rules (e.g., monotonic vs. non-monotonic) is an interesting
avenue for further research.

Our empirical findings consistently highlight the input embedding dimension-
ality as a critical architectural parameter, significantly impacting model perfor-
mance across all tasks (green squares in Figures [2a] [6a] [Fa)). Specifically, in the
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Model capacity vs Percentage of correct hidden cells
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Fig. 7: Given-cells-only setting: Average percent (over three runs) of correctly
predicted hidden cells for Futoshiki (top) and Sudoku (bottom), plotted against
the total number of model parameters (log scale). The visual encoding is as in
Figure [3] The maximum and average standard deviation across runs are 8.1 and
10.0 and 1.1 and 1.5 for Futoshiki and Sudoku experiments respectively.

collinearity task and puzzle-solving scenarios, we identify a clear threshold or
“phase shift” effect: performance significantly improves once embedding dimen-
sionality exceeds a critical value, beyond which additional capacity yields no
substantial gains. This observation suggests that increasing embedding size be-
yond a necessary threshold is computationally inefficient without performance
benefits. For generalization scenarios, smaller-capacity models appeared to incor-
porate the training rules more efficiently, often outperforming larger networks,
which exhibited higher susceptibility to overfitting and greater sensitivity to
hyperparameter tuning.

We further observe that network depth can positively impact performance
within fixed embedding dimensions. Particularly, in the collinearity task, deeper
networks were less prone to degenerate, trivial solutions. This result motivates
further exploration of network depth alongside other strategies from the litera-
ture aimed at mitigating spurious or degenerate solutions [TTII4].

While our analysis focused specifically on logic-as-loss using t-norm relax-
ations, prior studies have observed similar learning behaviors in probabilistic
logic-relaxation techniques [2J3J8]. Moreover, theoretical results indicate funda-
mental similarities between model-counting approaches such as semantic loss
and t-norm based methods within the logic-as-loss framework [25[24]. Thus, we
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anticipate that our architectural insights may generalize broadly across various
logic-relaxation methods, although empirical validation remains necessary.

8 Conclusion

We analyzed how architectural choices in transformers influence their ability
to incorporate logical constraints using the logic-as-loss framework. We used
controlled reasoning tasks — collinearity detection, Sudoku, and Futoshiki— to
identify a clear pattern: above a certain embedding dimensionality threshold, fur-
ther capacity increments provided limited performance improvements. Addition-
ally, deeper networks mitigated degenerate solutions, highlighting the advantage
of depth over width for robust rule ingestion. Our findings emphasize the critical
role of architectural design in transformer-based logic-as-loss applications.
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