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Abstract. Recent advancements in Large Language Models (LLMs)
have significantly improved their problem-solving capabilities. However,
these models still struggle when faced with complex multi-step reason-
ing tasks. In this paper, we propose the Multi-Layered Self-Reflection
with Auto-Prompting (MAPS) framework, a novel approach designed
to enhance multi-step mathematical reasoning in LLMs by integrating
techniques such as Chain of Thought (CoT), Self-Reflection, and Auto-
Prompting. Unlike traditional static prompting methods, MAPS employs
an iterative refinement process. Initially, the model generates a solu-
tion using CoT prompting. When errors are detected, an adaptive self-
reflection mechanism identifies and analyzes them, generating tailored
prompts to guide corrections. These dynamically adjusted prompts en-
able the model to iteratively refine its reasoning. Experiments on four
well-established benchmarks across multiple LLMs show that MAPS sig-
nificantly outperforms standard CoT and achieves competitive results
with reasoning-optimized models. In addition, MAPS enables general-
purpose LLMs to reach performance levels comparable to specialized
reasoning models. While deeper reflection layers improve accuracy, they
also increase token usage and costs. To balance this trade-off, MAPS
strategically limits reflection depth, ensuring an optimal balance between
cost and reasoning performance.

Keywords: Large Language Models · Adaptive Prompting · Multi-Step
Reasoning · LLMs for Mathematical Reasoning.

1 Introduction

Large Language Models (LLMs) have significantly impacted a wide range of
applications, including healthcare, finance, education, and others [1,6]. Despite
these advances, researchers in academia and industry continue striving to equip
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LLMs with human-like reasoning skills to enhance generalization in real-world
problem-solving through abstraction and logical inference [13,11,1].

A common approach involves fine-tuning LLMs for logical and mathematical
tasks. For instance, models from the GPT-4 family [9] have demonstrated strong
performance in logical inference, problem-solving, and mathematical reasoning.
Models such as OpenAI o3-mini [8] and DeepSeek-R1 [3], further strengthen
reasoning and coding. However, while effective in multi-step problem-solving,
pre-trained models with native reasoning abilities require substantial computa-
tional resources, making training and deployment costly.

A more resource-efficient alternative to extensive pre-training is prompt tun-
ing, a process in which a pre-trained model is further optimized using curated
datasets containing labeled instruction-response pairs [15]. However, conven-
tional prompting strategies such as zero-shot or auto-prompts do not fully exploit
the reasoning potential of LLMs [6,13].

Recent advances in adaptive prompting techniques have aimed to enhance
multi-step reasoning. Chain-of-Thought (CoT) prompting, for example, guides
the model to generate intermediate reasoning steps before arriving at a final
answer [12]. Although CoT improves performance, it does not always prevent
the propagation of errors. Self-Reflection (SR) has been introduced to address
this shortcoming by prompting the model to critically review and adjust its
own responses, mimicking human self-correction [10]. However, relying solely on
single-pass reflection often limits the model’s ability to correct deeper logical
or arithmetic mistakes. Thus, for more complex problem statements, multiple
iterative reflection layers are needed to achieve better results [7].

These limitations underscore the need for more sophisticated techniques ca-
pable of iteratively refining a model’s reasoning process. To address this, we pro-
pose the Multi-layer Auto-Prompted Self-reflection (MAPS) framework, a novel
approach designed to enhance reasoning capabilities by dynamically generating
customized reflection prompts and incorporating iterative feedback mechanisms.
In contrast to conventional prompting techniques that utilize static reflection
prompts, MAPS engages in a multi-stage process. Initially, the model generates
a preliminary solution using CoT prompting, which guides the reasoning pro-
cess through explicit step-by-step analysis. If the initial answer is found to be
incorrect, the framework then initiates adaptive reflection iterations. In these
iterations, the model produces tailored prompts that specifically address the
identified errors, allowing for focused self-reflection and correction. This itera-
tive refinement process enables the model to improve its reasoning over successive
attempts, ultimately leading to more accurate solutions.

To validate the effectiveness of the MAPS framework, we perform a com-
prehensive evaluation on GSM8K [2], GSM-Symbolic [7], AIME 2025 [17], and
MATH [16] datasets. The results demonstrate that MAPS significantly enhances
the ability of general-purpose LLMs, such as LLaMA, to detect and correct
errors. Furthermore, MAPS demonstrates competitive performance when com-
pared to pre-trained models that are specifically engineered with inherent reason-
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ing capabilities, such as OpenAI’s o3-mini and o4-mini [19], as well as Google’s
Gemini 2.5 Flash and Gemini 2.5 Pro [18].

The remainder of this paper is structured as follows. Section 2 provides a
review of the most relevant prompting techniques for enhancing reasoning in
large language models. Section 3 introduces the MAPS framework, detailing its
operational mechanisms. Section 4 outlines the experimental setup designed to
assess the performance of MAPS. Section 5 presents and discusses the results of
the experimental evaluation across various models. Finally, Section 6 summarizes
the key findings and highlights potential directions for future research.

2 Related Work

General-purpose LLMs often struggle with solving mathematical word problems.
This challenge arises in part because transformer-based architectures are inher-
ently designed to generate text one token at a time [2]. Consequently, to improve
their problem-solving capabilities, it is crucial to design prompts that encourage
step-by-step reasoning.

A key approach to guiding LLMs in step-by-step reasoning is prompt learn-
ing, which instructs the model to follow structured reasoning steps. Wei et
al. (2022) [12] introduced Chain-of-Thought (CoT) prompting, showing that
prompting an LLM to rephrase question information as intermediate steps sig-
nificantly improves performance over direct answers. CoT’s success has driven
further research into reasoning in LLMs, inspiring techniques like auto-CoT, ZS-
CoT, Complexity-based prompting, Tree of Thoughts (ToT), and others [13,14].

Renze & Guven (2024) [10] introduced Self-Reflection (SR) prompting to
address CoT’s limitations. While CoT improves reasoning through step-by-step
guidance, it lacks mechanisms for evaluating and correcting errors. SR prompting
enables models to refine responses, enhancing accuracy and problem-solving.
However, its effectiveness depends on the use of well-constructed prompts [5] and
the implementation of multi-layered strategies to tackle more complex logical or
arithmetic problems [7].

Despite advancements, existing methods often struggle with dynamic error
adaptation in complex tasks. Techniques like CoT and SR provide structured
reasoning but lack iterative error correction. Our proposal addresses these gaps
by integrating adaptive self-reflection to identify errors and generate tailored
prompts, enhancing reasoning in general-purpose LLMs and bridging the gap
between static methods and dynamic reasoning needs.

3 MAPS: Multi-layer Auto-Prompted Self-reflection

In this section, we present our novel framework, Multi-Layered Self-Reflection
with Auto-Prompting (MAPS), which is designed to enhance multi-step rea-
soning in LLMs. MAPS builds on the Chain-of-Thought (CoT) paradigm and
traditional self-reflection techniques by introducing an iterative mechanism that
dynamically adjusts reflection prompts according to the problem’s structure,
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complexity, and previously identified errors. This adaptive approach seeks to
improve the model’s reasoning accuracy and robustness by fostering deeper in-
trospection and targeted problem-solving strategies. The details of MAPS are
explained below.

3.1 Framework Overview

Traditional prompting methods, including the original version of SR (i.e., single-
pass SR), utilize a fixed reflection prompt to identify and correct errors in an
initial CoT-generated solution, as illustrated in Figure 1a. However, such static
prompts may fail to address diverse error types or deeper logical and arithmetic
mistakes, particularly in complex symbolic problems. To overcome these limita-
tions, our framework introduces the following key contributions.

Question

CoT Prompt

LLM Answer

Correct?

Self-Reflection
Prompt

LLM Self-Reflection

Re-Answer Prompt

LLM New Answer

Yes

No

(a) SR with single-pass.

Question

CoT Prompt

LLM Answer

Correct?

Auto Gener-
ates Reflection

LLM Self-Reflection

Re-Answer Prompt

LLM New Answer

Correct?

Yes

No

Yes
No

(b) MAPS.

Fig. 1: Comparison of (a) Self-Reflection with single-pass and (b) Multi-layer
Auto-Prompted Self-Reflection (MAPS).

1. Iterative Reflection: After the initial CoT response, the model’s answer is
examined for correctness. If incorrect, the framework initiates one or more
reflection iterations.
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2. Auto-Prompting (Meta-Prompting): Instead of applying a one-size-fits-all
reflection template, the model is guided to generate a tailored self-reflection
prompt. This reflection prompt is dynamically created based on the prob-
lem’s characteristics, known error patterns, and the complexity of the task.

3. Dynamic Adaptation: If a single reflection iteration does not yield the correct
answer, additional layers of self-reflection are executed. In each iteration, a
new auto-generated reflection prompt is produced to iteratively refine the
reasoning until the correct solution is obtained or a preset maximum number
of iterations is reached.

Therefore, while SR performs one reflection cycle using a static prompt,
MAPS fine-tunes the model iteratively by generating customized reflection prompts
and continuously updating answers, as depicted in Figure 1b. This capability
allows for systematic detection and correction of errors, ensuring better perfor-
mance in reasoning-related tasks.

3.2 Methodology

As illustrated in Figure 1b, our approach proceeds in the following steps:

1. Initial CoT Reasoning: The LLM is provided with the original question and a
Chain-of-Thought prompt (e.g., “Let’s think step by step . . . ”). This produces
an initial answer along with intermediate reasoning steps.

2. Correctness Verification: The output is evaluated against the expected an-
swer or verified using an external correctness check. If the response is correct,
the process is terminated.

3. Auto-Prompt Generation: If the answer is incorrect, the LLM is tasked with
generating a customized reflection prompt that adapts the standard reflec-
tion template to the specifics of the problem. This meta-prompt encourages
the LLM to: (i) diagnose its mistakes, (ii) list common error types, and (iii)
provide refined instructions for re-solving the problem.

4. Self-Reflection and Re-Answering: Guided by the auto-generated reflection
prompt, the model analyzes the errors in its previous attempt, identifies the
missteps, and then re-solves the problem with corrective feedback incorpo-
rated.

5. Iterative Update: The newly generated answer undergoes verification. If it
remains incorrect, the auto-prompt generation and self-reflection cycle repeat
until a correct solution is produced or a predefined maximum number of
iterations is reached. We recommend limiting this process to a maximum of
three cycles (layers) to balance thoroughness with computational efficiency.

By iteratively generating and responding to tailored auto-prompts, the model
systematically identifies and corrects errors through self-reflection. Consequently,
MAPS effectively stimulates the reasoning capabilities of base models.
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Role

You are an expert in adapting instructions for language models. Your task is to create a personalized Self-Reflection prompt
for a model that is trying to solve a mathematical problem.

Task Description

Your task is to modify the Self-Reflection template so that it is as specific and helpful as possible for the problem. Focus
on aspects such as:

• Type of problem: The Self-Reflection prompt should guide the model to solve the specific type of problem presented
in the question.

• Common mistakes: The Self-Reflection prompt should guide the model to identify the common mistakes that are
made when solving this type of problem.

• Complexity of the problem: The Self-Reflection prompt should guide the model to try to understand the complexity
of the problem, if more steps are needed to solve it.

Self-Reflection Template

You are an expert in <PROBLEM AREA>.
You have incorrectly answered the following question.
Your task is to reflect on the problem, your solution, and the correct answer.
You will then use this information to help you answer the same question in the future:

Step 1: Explain why you answered the question incorrectly.
Step 2: List the keywords that describe the type of your errors from most general to most specific.
Step 3: Solve the problem again, step-by-step, based on your knowledge of the correct answer.
Step 4: Create a list of detailed instructions to help you correctly solve this problem in the future.
Step 5: Create a list of general advice to help you solve similar types of problems in the future.

Be concise in your response; however, capture all of the essential information.

Example

For guidance, I will provide you with a single generic example problem and reflection (below).

[Example Input]
Question: <an example question similar on complexity to the question received>
Wrong answer: <the wrong reasoning and answer to the example question>

[Example Output]
Explanation: I miscalculated the <explanation of the mistake>
Error Keywords: - <keywords of the mistake>
Instructions: <list of instructions to solve the problem>
Advice: <list of general advice to solve similar types of problems>
Solution: <the correct reasoning and answer to the example question>

Final Task

Now, adapt the above template for the following question:
Question: {question}
Generate the adapted Self-Reflection prompt. Remember, you need to create a similar example question on complexity to
the question received (NOT THE SAME ONE), a wrong answer to it, and the correct answer.

1

Fig. 2: Meta-prompt (template) to apply MAPS.

3.3 MAPS Meta-prompt

Figure 2 illustrates the meta-prompt that guides the model in generating tailored
self-reflection prompts for each question. Rather than relying on static instruc-
tions, the MAPS meta-prompt defines the model’s role as an expert in adapting
reasoning strategies and ensures that self-reflection is dynamically adjusted to
the specific characteristics of the problem.

This adaptation within the meta-prompt allows the model to consider crucial
factors such as the type of problem (e.g., arithmetic or geometry), typical errors
associated with that domain, and the complexity of the reasoning required. The
meta-prompt employs a structured yet flexible framework, enabling the model
to integrate pertinent domain knowledge at each stage of reflection. To support
this process, examples, including error cases, are provided to demonstrate ef-
fective self-reflection. Finally, the model applies this structured methodology to
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novel problems, generating reflection prompts dynamically rather than relying
on static templates.

3.4 Applying MAPS

MAPS can be applied to any LLM. To illustrate its use, we implement it on
Llama 3.1-8B Instruct and demonstrate its performance on a representative
instance from the GSM-symbolic-p2 dataset, which naturally embodies a math-
ematical problem (details in Section 4.2). The selected data instance is depicted
in Figure 3.

Question

Carlos places almonds on bowls and tables. Each bowl can hold 24 almonds, while each table can hold three times that.
Carlos has 720 almonds, 7 bowls, and 3 tables. Unfortunately, 2 tables break. Carlos then eats one-fifth of all the almonds.
How many more bowls does Carlos need so he can place all the remaining almonds?

Expected Answer

14 more bowls.

1

Fig. 3: Instance of question and expected answer from GSM-symbolic-p2.

The reflection cycle for this problem, executed through CoT and MAPS, is
summarized in Table 1. Initially, the CoT reasoning produces an incorrect answer
of 7 more bowls, likely due to an error in adding or subtracting the available
capacity. In the first reflection layer for MAPS (1L), despite the use of an auto-
generated prompt, the LLM fails to identify and correct the miscalculation.
However, in the second reflection layer (2L), an adapted prompt generated based
on the prior error analysis enables the model to identify the mistake and compute
the correct answer of 14 more bowls.

Table 1: Summary of multi-layer reflection iterations for a sample from GSM-
symbolic-p2.

Stage Answer Reflection Layer Correct?
CoT 7 – No
MAPS 1L 7 1 No
MAPS 2L 14 2 Yes

This example clearly illustrates the fundamental capability of MAPS: when
a single-pass reflection is insufficient, multiple layers of auto-prompting and self-
reflection progressively refine the solution until the correct answer is obtained.
To provide a closer approximation of the model’s reflection process, an excerpt
from the second reflection prompt is presented in Figure 4.
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Reflection Prompt Excerpt (auto-generated)

You are an expert in solving algebra and real-world problems involving division, multiplication, and fractions.
Your task is to reflect on the problem, your solution, and the correct answer.
You will then use this information to help you answer the same question in the future.
First, explain why you answered the question incorrectly.
Second, list the keywords that describe the type of your errors from most general to most specific.
Third, solve the problem again, step-by-step, based on your knowledge of the correct answer.
Fourth, create a list of detailed instructions to help you correctly solve this problem in the future.
Finally, create a list of general advice to help you solve similar types of problems in the future.
Be concise in your response; however, capture all of the essential information.

. . . Example of similar question . . .
Your initial Chain-of-Thought answer was: 7.0
Your previous reflection answers were:
Reflection 1: 7.0

You previously answered this question incorrectly. Reflect on why your answer was incorrect and identify the type
of error. Then, solve the problem again step-by-step with corrections. Your new answer MUST be different from your
previous answers because they were all incorrect. . . .

1

Fig. 4: Excerpt of the auto-generated reflection prompt from the second MAPS
cycle (2L).

4 Experimental Setup

This section outlines the experimental setup for evaluating MAPS in prompt
tuning to enhance multi-step reasoning in LLMs, ensuring reproducibility and
transparency.

4.1 Models

Our evaluation encompassed a diverse array of LLMs, selected based on vari-
ations in parameter size, architecture, computational efficiency, and reasoning
capabilities.

Firstly, we evaluated smaller but cost-effective models such as Meta’s Llama
3.1–8B Instruct, OpenAI’s GPT-4o-mini-2024-07-18 and Google’s Gemma-2-
9b-it. These models are optimized for rapid inference and lower operational
costs, although their performance on complex tasks tends to be limited. Second,
we considered mid-sized models, including Google’s Gemma-2-27b-it and Mis-
tral AI’s instruct-optimized Mistral-Small-24b-Instruct-2501. These mod-
els strike an effective balance between computational expense and performance,
demonstrating robust capabilities across a wide range of applications. Lastly, we
examine larger models, such as Meta’s Llama 3.1–70B Instruct, DeepSeek’s
DeepSeek-V3, and OpenAI’s and GPT-4o-2024-11-20, which were selected for
their superior performance enabled by extensive parameter counts and advanced
pre-training techniques.

To establish performance benchmarks, we included specialized reasoning mod-
els from OpenAI, such as o1-preview, o3-mini, and o4-mini, as well as Google’s
models, Gemini 2.5 Flash and Gemini 2.5 Pro. These models are explicitly
optimized for complex reasoning tasks and serve as essential reference points for
contextualizing the results obtained from general-purpose models enhanced by
MAPS.
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4.2 Datasets

We evaluated our approach using four prominent datasets for mathematical rea-
soning: GSM8K, GSM-Symbolic, AIME 2025, and MATH 500, which collectively
cover a broad spectrum of difficulty, from basic arithmetic to advanced symbolic
manipulation, allowing for a comprehensive evaluation of our proposal.

GSM8K. This dataset contains grade school-level mathematical problems re-
quiring multi-step reasoning, serving as a standard benchmark for assessing LLM
performance on basic arithmetic and algebra tasks [2].

GSM-Symbolic. Derived from GSM8K, this dataset introduces varying lev-
els of symbolic complexity to assess reasoning robustness [7]. It includes three
progressively challenging variants. The main variant consists of original prob-
lems with modified entity names and numerical values, designed to evaluate the
model’s ability to generalize beyond surface-level features. The p1 variant ex-
tends the main version by adding an extra complexity clause, requiring more
nuanced reasoning. Finally, the p2 variant represents the most challenging set-
ting, incorporating two additional complexity clauses to test performance under
significant symbolic transformations.

AIME 2025. The American Invitational Mathematics Examination (AIME)
consists of highly challenging competition-level problems in algebra, combina-
torics, and number theory [17]. These questions are crafted to test the boundaries
of advanced mathematical reasoning, making AIME 2025 a formidable bench-
mark for evaluating current models.

MATH 500. This dataset is a curated selection of 500 diverse problems from
the original MATH benchmark, encompassing topics such as probability, algebra,
trigonometry, and geometry [16]. It is designed to assess a model’s capability to
apply mathematical principles and execute complex calculations.

4.3 Evaluation Metrics

To evaluate our framework, we used three key metrics:

Accuracy. The proportion of correctly answered questions, Ncorr, relative to the
total number of questions, Ntotal. Thus, accuracy is given by Accuracy = Ncorr

Ntotal
.

Symbolic Loss. Measures the accuracy drop from the GSM8K dataset to
the GSM-Symbolic variants, calculated as Symbolic Loss = AccuracyGSM8K −
AccuracyGSM-Symbolic. Lower values indicate greater robustness to symbolic com-
plexity.

Cost Analysis. The total inference cost per 100 questions, calculated from
generated tokens and provider-specified costs.
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4.4 Procedure

This study conducts two evaluations to assess the effectiveness of prompting
techniques for tuning both conventional LLMs and reasoning-specialized mod-
els. The first evaluation explores smaller, mid-sized, and larger general-purpose
LLMs with limited reasoning abilities and apply the prompting methods:

1. Baseline: The model is provided solely with the problem statement, without
additional instructions or step-by-step reasoning prompts (e.g. zero-shot).
For the MATH 500 and AIME 2025 datasets, however, the prompt includes
a minimal instruction to format the final answer using boxed notation.

2. Chain-of-Thought (CoT): For the GSM8K and GSM-Symbolic datasets, this
involves providing the model with eight exemplar problems that illustrate
step-by-step reasoning, followed by the directive to “think step by step”. For
AIME 2025 and MATH 500 datasets, the CoT prompt instructs the model
to reason step-by-step and present the final answer in boxed notation.

3. Self-Reflection (SR) with Single-Pass: Following the generation of an initial
response based on CoT, a predetermined static reflection prompt is appended
to the model’s output.

4. Multi-layered Adaptive Prompting Strategy (MAPS): Our proposed frame-
work, MAPS, begins with the initial CoT-derived answer and subjects it to
a multi-round iterative self-reflection process. We consider scenarios where
a single reasoning layer is employed (MAPS 1L) as well as cases where the
iterative process continues until either a correct answer is reached or a pre-
defined limit of three reflection layers is attained (MAPS 2-3L).

For the second evaluation, we expanded our investigation by comparing the
performance of MAPS on the previously evaluated LLMs with that of advanced
reasoning models.

All experiments were conducted in Python using either OpenRouter’s4 or
OpenAI’s API5. To ensure output consistency and facilitate reproducibility, we
fixed the temperature at 0 and top_p at 1. Our evaluation protocol was adapted
according to the scale of each benchmark. For the large-scale datasets GSM8K
and GSM-Symbolic, we performed five independent runs, each using a distinct
random sample of 100 questions, to ensure result robustness without compromis-
ing experimental feasibility. The final accuracy scores for these two benchmarks
reflect the mean performance across the five samples. In contrast, for the smaller
datasets AIME 2025 and MATH 500, evaluation was carried out on their entire
test sets based on a single execution.

5 Results and Discussion

In this section, we present the experimental results and have a comprehensive
discussion of our findings.
4 https://openrouter.ai/
5 https://platform.openai.com/

https://openrouter.ai/
https://platform.openai.com/
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5.1 Accuracy Gains across Prompting Methods

Table 2 reports the experimental accuracy for the prompting strategies defined
in Section 4.4. We evaluated eight LLMs, categorized as smaller, mid-sized and
larger, as mentioned in Section 4.1. For each dataset and LLM, the best result
is highlighted in bold.

From Table 2, we observe that across all models and datasets, step-by-step
reasoning via CoT consistently enhances performance compared to the Baseline.
The addition of SR further improves accuracy. Notably, the MAPS framework
achieves the highest results, often surpassing SR even with just a single reflec-
tion layer (MAPS 1L). When employing two to three reflection layers (MAPS
2−3L), MAPS consistently delivers exceptional performance, particularly in the
challenging GSM-Symbolic-p2 subset, where its iterative error-correction mech-
anism proves most effective. This trend is corroborated by results on the AIME
2025 and MATH 500 benchmarks, where MAPS 2− 3L consistently attains the
highest accuracy, highlighting its effectiveness in tackling complex mathematical
reasoning tasks.

To enhance the rigor of our analysis, we applied the Nemenyi post-hoc test [4]
to the accuracy results reported in Table 2, with the corresponding critical dif-
ference diagram shown in Figure 5. The Friedman test produced a statistic of
227.44 with a p-value of 1.71 × 10−25, indicating significant differences among
the prompting strategies. The Nemenyi test identified a critical difference (CD)
of 0.88, confirming that the full version of MAPS, i.e., MAPS 2− 3L, is statis-
tically superior to all other prompting methods. The basic version, MAPS 1L,
ranked second and showed no statistically significant difference from SR, which
ranked third. Although CoT outperformed the Baseline, their performances re-
main statistically indistinguishable. Figure 5a visually summarizes the relative
rankings among all evaluated strategies.

To better understand which of the evaluated LLMs benefit most from prompt-
ing strategies, we conducted the Nemenyi post-hoc test using only the accuracy
results for the GSM-Symbolic-p2 subset presented in Table 2. The Friedman
test yielded a statistic of 30.48 and a p-value of 3.91 × 10−6, indicating statis-
tically significant differences among the models. The subsequent Nemenyi test
revealed a critical difference (CD) of 4.70, as illustrated in Figure 5b. The results
show that larger models derive the greatest benefit from prompting techniques in
terms of enhanced reasoning capabilities. Specifically, GPT-4o-2024-11-20 and
DeepSeek-V3 achieved the highest ranks, followed closely by Llama 3.1–70B
Instruct in third and GPT-4o-mini-2024-07-18 in sixth, with no statistically
significant differences among them. Mid-sized LLMs such as Mistral-Small-24b
-Instruct-2501 and Gemma-2-27b-it, ranked fourth and fifth respectively, also
demonstrated strong performance, statistically comparable to their larger coun-
terparts. In contrast, the smaller models Gemma-2-9b-it, ranked seventh, and
Llama 3.1–8B Instruct, ranked last, did not exhibit meaningful improvements
in reasoning performance under the tested prompting methods.
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Table 2: Accuracy of different prompting strategies across all benchmarks. For
GSM8K and GSM-Symbolic, results correspond to the mean accuracy over five
independent runs, each based on a distinct random sample of 100 questions. Sym-
bolic loss (in parentheses) indicates the performance drop relative to GSM8K.
For AIME 2025 and MATH 500, results are based on a single evaluation over
the full dataset.

Dataset Base CoT SR MAPS 1L MAPS 2–3L
meta-llama/llama-3.1-8b-instruct

GSM8K 0.761 0.822 0.920 0.910 0.955
GSM-Symbolic-main 0.680 (-10.60%) 0.766 (-6.81%) 0.890 (-3.26%) 0.852 (-6.37%) 0.916 (-4.08%)
GSM-Symbolic-p1 0.604 (-20.6%) 0.630 (-23.36%) 0.740 (-19.57%) 0.754 (-17.14%) 0.838 (-12.25%)
GSM-Symbolic-p2 0.376 (-50.59%) 0.376 (-54.26%) 0.600 (-34.78%) 0.540 (-40.66%) 0.680 (-28.80%)
AIME 2025 0.000 0.000 0.000 0.000 0.000
MATH 500 0.470 0.360 0.410 0.470 0.540

google/gemma-2-9b-it
GSM8K 0.790 0.856 0.888 0.914 0.946
GSM-Symbolic-main 0.770 (-2.53%) 0.784 (-8.41%) 0.850 (-4.28%) 0.882 (-3.5%) 0.922 (-2.54%)
GSM-Symbolic-p1 0.618 (-21.77%) 0.688 (-19.63%) 0.794 (-10.59%) 0.838 (-8.32%) 0.888 (-6.13%)
GSM-Symbolic-p2 0.476 (-39.75%) 0.516 (-39.72%) 0.632 (-28.83%) 0.684 (-25.16%) 0.792 (-16.28%)
AIME 2025 0.000 0.000 0.000 0.000 0.000
MATH 500 0.440 0.420 0.430 0.500 0.520

google/gemma-2-27b-it
GSM8K 0.822 0.950 0.976 0.972 0.986
GSM-Symbolic-main 0.778 (-5.35%) 0.846 (-10.95%) 0.878 (-10.04%) 0.910 (-6.38%) 0.940 (-4.67%)
GSM-Symbolic-p1 0.756 (-8.03%) 0.900 (-5.26%) 0.938 (-3.89%) 0.942 (-3.09%) 0.956 (-3.04%)
GSM-Symbolic-p2 0.660 (-19.71%) 0.784 (-17.47%) 0.860 (-11.89%) 0.872 (-10.29%) 0.936 (-5.07%)
AIME 2025 0.033 0.000 0.000 0.000 0.067
MATH 500 0.480 0.420 0.440 0.490 0.520

mistralai/mistral-small-3.1-24b-inst
GSM8K 0.858 0.970 0.972 0.980 0.980
GSM-Symbolic-main 0.804 (-6.29%) 0.928 (-4.33%) 0.942 (-3.09%) 0.948 (-3.27%) 0.962 (-1.84%)
GSM-Symbolic-p1 0.748 (-12.82%) 0.898 (-7.42%) 0.920 (-5.35%) 0.952 (-2.86%) 0.974 (-0.61%)
GSM-Symbolic-p2 0.716 (-16.55%) 0.768 (-20.82%) 0.840 (-13.58%) 0.884 (-9.8%) 0.948 (-3.27%)
AIME 2025 0.033 0.033 0.033 0.067 0.100
MATH 500 0.670 0.590 0.650 0.650 0.730

meta-llama/llama-3.1-70b-instruct
GSM8K 0.835 0.948 0.970 0.971 0.984
GSM-Symbolic-main 0.808 (-3.19%) 0.910 (-4.01%) 0.960 (-1.03%) 0.952 (-1.95%) 0.968 (-1.63%)
GSM-Symbolic-p1 0.800 (-4.19%) 0.894 (-5.70%) 0.940 (-3.09%) 0.940 (-3.19%) 0.964 (-2.03%)
GSM-Symbolic-p2 0.716 (-14.25%) 0.792 (-16.46%) 0.870 (-10.31%) 0.876 (-9.78%) 0.928 (-5.69%)
AIME 2025 0.067 0.033 0.033 0.067 0.100
MATH 500 0.580 0.560 0.600 0.590 0.660

deepseek/deepseek-V3
GSM8K 0.934 0.964 0.976 0.972 0.978
GSM-Symbolic-main 0.904 (-3.21%) 0.924 (-4.15%) 0.956 (-2.05%) 0.950 (-2.26%) 0.960 (-1.84%)
GSM-Symbolic-p1 0.892 (-4.50%) 0.908 (-5.81%) 0.952 (-2.46%) 0.946 (-2.67%) 0.970 (-0.82%)
GSM-Symbolic-p2 0.852 (-8.78%) 0.852 (-11.62%) 0.924 (-5.33%) 0.936 (-3.70%) 0.944 (-3.48%)
AIME 2025 0.333 0.300 0.300 0.400 0.400
MATH 500 0.750 0.760 0.760 0.780 0.810

gpt-4o-mini-2024-07-18
GSM8K 0.849 0.949 0.970 0.967 0.975
GSM-Symbolic-main 0.864 (+1.77%) 0.920 (-3.06%) 0.930 (-4.12%) 0.938 (-3.00%) 0.954 (-2.15%)
GSM-Symbolic-p1 0.794 (-6.48%) 0.878 (-7.48%) 0.910 (-6.19%) 0.938 (-3.00%) 0.950 (-2.56%)
GSM-Symbolic-p2 0.776 (-8.60%) 0.708 (-25.40%) 0.840 (-13.40%) 0.844 (-12.72%) 0.876 (-10.15%)
AIME 2025 0.133 0.100 0.100 0.100 0.133
MATH 500 0.660 0.630 0.640 0.670 0.700

gpt-4o-2024-11-20
GSM8K 0.844 0.943 0.956 0.969 0.979
GSM-Symbolic-main 0.810 (-4.03%) 0.908 (-3.71%) 0.924 (-3.35%) 0.928 (-4.23%) 0.952 (-2.72%)
GSM-Symbolic-p1 0.782 (-7.35%) 0.944 (+0.10%) 0.964 (+0.84%) 0.970 (+0.10%) 0.980 (+0.10%)
GSM-Symbolic-p2 0.830 (-1.66%) 0.915 (-3.00%) 0.956 (+0%) 0.976 (+0.72%) 0.984 (+0.51%)
AIME 2025 0.067 0.100 0.100 0.133 0.167
MATH 500 0.590 0.630 0.660 0.700 0.760
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5.2 Symbolic Loss Performance

Still within the scope of the first evaluation procedure, Table 2 presents the
symbolic loss values, shown in parentheses, calculated across the three GSM-
Symbolic variants and GSM8K. The best symbolic loss values are highlighted
in bold. Once again, MAPS 2 − 3L achieves the best performance in the vast
majority of cases.

1 2 3 4 5

MAPS 2-3L
MAPS 1L

SR
CoT
Base

CD

(a) Prompting performance.

1 2 3 4 5 6 7 8

GPT-4o-2024-11-20
DeepSeek-V3

Llama 3.1-70B Instruct
Mistral-Small-24b-Instruct-2501 Gemma-2-27b-it

GPT-4o-mini-2024-07-18
Gemma-2-9b-it
Llama 3.1-8B Instruct

CD

(b) LLM performance.

Fig. 5: Nemenyi post-hoc test applied to the accuracy results from Table 2 to
statistically assess (a) the performance of prompting techniques and (b) their
impact on LLM performance.

The importance of symbolic loss lies in the fact that the GSM-Symbolic
benchmark introduces increasing symbolic complexity, progressing from main
to p1 and finally to p2. As shown in Table 2, each additional complexity clause
significantly reduces accuracy for the Baseline, CoT, and SR techniques. In con-
trast, MAPS recovers much of the lost performance, demonstrating the value of
iterative error diagnosis and correction for symbolic tasks.

Notably, certain larger models, such as GPT-4o-2024-11-20, can even surpass
their GSM8K accuracy on some symbolic variants when multi-layer reflection
is applied, effectively achieving zero or even negative symbolic loss. For smaller
and mid-sized models, such as Llama 3.1–8B Instruct and Gemma-2-27b-it,
MAPS also mitigates symbolic loss effectively, though the gains are less pro-
nounced compared to larger models, highlighting the influence of model capacity
on the effectiveness of iterative prompting strategies.

5.3 MAPS versus specialized Reasoning Models

In the context of the second evaluation procedure, as described in Section 4.4, we
compare MAPS against specialized pre-trained LLMs renowned for their strong
reasoning capabilities. Table 3 presents the comparison of general-purpose mod-
els enhanced with MAPS against native reasoning models such as o1-Preview
and o3-mini, with the best accuracy results highlighted in bold.

Overall, the MAPS approach enables several general-purpose models to match
or even surpass specialized reasoning models, as evidenced in the upper section of
Table 3. For example, GPT-4o-2024-11-20 with MAPS achieves 98.4% accuracy
on the challenging GSM-Symbolic-p2 subset, outperforming both o1-Preview
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Table 3: Comparison of MAPS with specialized reasoning models: general-
purpose LLMs + MAPS vs. native reasoning LLMs.

Benchmark
GPT-4o-2024-11-20

+ MAPS
DeepSeek-V3

+ MAPS
Llama 3.1–70B

+ MAPS o1-preview o3-mini
GSM8K 0.979 0.978 0.984 0.960 0.944
GSM-Symbolic-main 0.952 0.960 0.968 0.927 0.966
GSM-Symbolic-p1 0.980 0.970 0.964 0.954 0.972
GSM-Symbolic-p2 0.984 0.944 0.928 0.940 0.924

and o3-mini. To assess the statistical significance of these differences, we ap-
plied the Friedman test, which yielded a statistic of 4.44 and a p-value of 0.218,
indicating no significant performance differences among the compared models.
The subsequent Nemenyi post-hoc test, with a critical difference (CD) of 3.05,
supports this conclusion. As illustrated in Figure 6, although the differences are
not statistically significant, general-purpose LLMs augmented with MAPS con-
sistently exhibit higher accuracy than their specialized counterparts under the
same evaluation conditions.

1 2 3 4 5

GPT-4o-2024-11-20 + MAPS
Llama 3.1-70B Instruct + MAPS

DeepSeek-V3 + MAPS
o3-mini
o1-preview

CD

Fig. 6: Nemenyi post-hoc test applied to the accuracy results of the top-3 general-
purpose LLMs enhanced with MAPS against specialized reasoning models.

To assess the robustness of our proposal, we applied MAPS to specialized
reasoning models on the challenging AIME 2025 and MATH 500 benchmarks.
As shown in Table 4, MAPS consistently enhances performance across all mod-
els, including the state-of-the-art Gemini family. For example, on AIME 2025,
Gemini 2.5 Flash improves from 66.7% to 80.0%, and Gemini 2.5 Pro from
80.0% to 86.7%. A similar +4.0% absolute gain is observed on MATH 500 for
both models. Additionally, OpenAI’s o4-mini shows performance gains of up to
+6.0% on MATH 500.

These findings demonstrate that MAPS is a versatile enhancement strategy
that improves inference quality across various models, even in competitive en-
vironments. This indicates that the core mechanism of MAPS offers a distinct
advantage that complements the internal optimizations of modern LLMs.

5.4 Cost Analysis

Table 5 presents the inference cost of MAPS on GSM-Symbolic for four represen-
tative general-purpose LLMs: GPT-4o-mini-2024-07-18, GPT-4o-2024-11-20,
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Table 4: Comparison of MAPS with specialized reasoning models: Applying
MAPS to Reasoning LLMs on Complex Benchmarks.

Benchmark Model CoT Accuracy MAPS 2–3L
AIME 2025 Gemini 2.5 Flash (no tools) 0.667 0.800
AIME 2025 Gemini 2.5 Pro (no tools) 0.800 0.867
AIME 2025 o4-mini (medium / no tools) 0.800 0.867
MATH 500 Gemini 2.5 Flash (05-20) 0.840 0.880
MATH 500 Gemini 2.5 Pro (05-06) (no tools) 0.840 0.880
MATH 500 o4-mini (medium / no tools) 0.760 0.820

Llama 3.1–8B Instruct, and Llama 3.1–70B Instruct, in comparison to the
specialized reasoning model o3-mini. While deeper reflection processes increase
token usage and costs, so the results highlight key trade-offs in performance and
efficiency.

The cost analysis in Table 5 shows that GPT-4o-mini-2024-07-18 proves
to be highly cost-effective, requiring only US$ 0.045 on main and US$ 0.08
on p2, costs significantly lower than o3-mini’s US$ 0.078 and US$ 0.144, re-
spectively. Despite its lower cost, GPT-4o-mini-2024-07-18 closely matches or
slightly lags behind o3-mini in accuracy across most subsets. Although MAPS
increases token usage due to auto-prompt generation and iterative refinement,
GPT-4o-mini-2024-07-18’s low per-token cost offsets this, reinforcing its effi-
ciency. Llama-3.1-70B-Instruct also delivers strong performance, matching or
surpassing o3-mini in accuracy on certain tasks while remaining more econom-
ical, costing US$ 0.052 versus US$ 0.078 on main (a 33% reduction) and US$
0.085 versus US$ 0.144 on p2 (41% lower). Like GPT-4o-mini-2024-07-18, we
observe that Llama-3.1-70B-Instruct also benefits from lower inference costs,
compensating for the added token consumption of deeper self-reflection layers.
Conversely, GPT-4o-2024-11-20 incurs the highest costs, reaching US$ 0.94 on
main, US$ 0.92 on p1, and US$ 1.07 on p2, over 600% higher than o3-mini
despite outperforming it by 6% in accuracy on p2 (0.984 versus 0.924).

The use of MAPS requires generating unique auto-prompts at each reflection
layer, which increases token consumption and makes it less optimal for cost-
sensitive applications. Llama-3.1-8B-Instruct is the most affordable, costing
only US$ 0.025 on main, but its accuracy in symbolic reasoning tasks is the
lowest, ranking the worst in terms of performance. However, with a cost reduction
of over 60% compared to o3-mini on p2 (US$ 0.060 versus US$ 0.144), it presents
a viable option for scenarios where minor accuracy trade-offs are acceptable.

Overall, GPT-4o-mini-2024-07-18 and Llama-3.1-70B-Instruct stand out
as cost-efficient alternatives to reasoning-specific models like o3-mini, maintain-
ing competitive performance at a fraction of the cost. While GPT-4o-mini-2024-
07-18 has considerable accuracy, its high cost makes it less attractive for practi-
cal deployment. Additionally, costs consistently increase from main to p1 to p2
across all models, reflecting the additional complexity and token requirements
associated with deeper reasoning steps in specialized models and extended self-
reflection in our multi-layer approach.
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Table 5: Total inference cost (USD) for processing the GSM-Symbolic dataset
(100 questions).

Model Dataset Total Cost (US$)
GPT-4o-2024-11-20 + MAPS main 0.944251

p1 0.918467
p2 1.066514

GPT-4o-mini-2024-07-18 + MAPS main 0.045059
p1 0.053559
p2 0.079530

Llama 3.1–70B Instruct + MAPS main 0.052105
p1 0.054528
p2 0.084594

Llama 3.1–8B Instruct + MAPS main 0.025040
p1 0.034904
p2 0.059944

o3-mini main 0.07795458
p1 0.10527242
p2 0.14444980

5.5 Single-Pass Comparison: Traditional SR versus MAPS 1L

Before examining the benefits of multiple reflection layers, it is useful to compare
the traditional SR method which considers single-pass with our proposal MAPS
1L, i.e. MAPS considering only one adaptive reflection layer. As observed in
the SR and MAPS 1L results from Table 2, it is possible to point out two key
observations.

First, the overall performance of most LLMs remains similar under SR and
MAPS 1L across GSM8K and all variants of GSM-Symbolic, suggesting that
in a single-pass scenario, generating a custom reflection prompt in MAPS 1L
does not significantly differ from using a well-tuned static prompt in SR. Sec-
ond, model capacity plays a crucial role in the effectiveness of adaptive prompt-
ing. While Llama-3.1-8B-Instruct exhibits slightly lower accuracy with MAPS
1L compared to SR, particularly on p2, indicating that smaller models may
struggle to generate or leverage effective adaptive prompts in a single pass,
Mistral-Small-24b-Instruct-2501 consistently benefits from auto-prompted
reflection, suggesting that certain architectures or parameter scales are better
suited for adaptive meta-prompting.

These findings suggest that auto-prompting in a single reflection pass can
yield performance comparable to, or even surpass, that of a fixed self-reflection
prompt. However, as evidenced by the results, incorporating additional reflection
layers, as done in MAPS 2 − 3L, consistently improves performance across all
LLMs, highlighting the critical role of iterative error correction in addressing the
most complex reasoning tasks.
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6 Conclusion

This work introduced Multi-Layered Self-Reflection with Auto-Prompting (MAPS),
a framework that dynamically adapts reflection templates based on problem
type and complexity. Through comprehensive evaluations on benchmarks such
as GSM8K, GSM-Symbolic, AIME 2025, and MATH 500, MAPS consistently
outperformed baseline methods including Chain-of-Thought (CoT) and single-
pass Self-Reflection (SR). The most significant gains were observed on symbolic
subsets p1 and p2, underscoring the framework’s effectiveness in handling com-
plex, abstract reasoning tasks.

MAPS enhances the reasoning capabilities of LLMs through an iterative and
adaptive self-reflection process. This aligns with human-like problem-solving be-
haviors that rely on successive refinement and contextual learning. Notably,
MAPS not only boosts general-purpose models to match or surpass special-
ized reasoning LLMs (such as o1-Preview and o3-mini), but also improves the
performance of the specialized models themselves. For instance, state-of-the-art
Gemini variants and OpenAI’s o4-mini exhibited consistent performance im-
provements when enhanced with MAPS, achieving average gains between 4%
and 6% on challenging benchmarks like AIME 2025 and MATH 500. These find-
ings confirm MAPS as a model-agnostic reasoning enhancer that generalizes well
across architectures and difficulty levels.

Nonetheless, MAPS depends on the availability of explicit correctness sig-
nals to guide the self-reflection loop, which may restrict its applicability to
open-ended tasks lacking ground-truth answers. Future work should address this
limitation by integrating techniques such as uncertainty estimation, human-in-
the-loop validation, or proxy supervision via auxiliary tasks.

Further research should also investigate the use of MAPS in other domains
requiring structured reasoning, such as code generation, logical deduction, and
scientific modeling. Enhancing the auto-prompting component with more expres-
sive and context-sensitive mechanisms may further improve the system’s adapt-
ability and efficiency. Overall, MAPS represents a promising direction toward
more robust, generalizable, and cognitively inspired frameworks for LLM-based
reasoning.

To foster transparency and encourage further research, we release the full im-
plementation of the MAPS framework, along with evaluation scripts and prompt
templates, at: https://github.com/and270/maps_prompting.
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