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Abstract. We present a dynamic self-balancing octree data structure
that fundamentally transforms neighborhood maintenance in evolving
metric spaces. Learning systems, from deep networks to reinforcement
learning agents, operate as dynamical systems whose trajectories through
high-dimensional spaces require efficient importance sampling for opti-
mal convergence. Generative models operate as dynamical systems whose
latent representations cannot be learned in one shot, but rather grow
and evolve sequentially during training—requiring continuous adapta-
tion of spatial relationships. Our two-parameter (K,α) dynamic octree
addresses this challenge by providing a computational fabric that ef-
ficiently organizes both the generation flow and querying flow operat-
ing on different time scales by enabling logarithmic-time updates and
queries without requiring complete rebuilding as distributions evolve. We
demonstrate its effectiveness across four key applications: (1) accelerating
Stein Variational Gradient Descent by enabling larger particle sets with
reduced computation; (2) supporting real-time incremental KNN clas-
sification with logarithmic updates; (3) improving retrieval-augmented
generation by enabling efficient, incremental semantic indexing; and (4)
showing that maintaining both input and latent space structures acceler-
ates convergence and improves sample efficiency. Across all applications,
our experimental results confirm exponential performance improvements
over standard methods while maintaining accuracy. These improvements
are particularly significant for high-dimensional spaces where efficient
neighborhood maintenance is crucial to navigate complex latent mani-
folds. By providing guaranteed logarithmic bounds for both update and
query operations, our approach enables more data-efficient solutions to
previously computationally prohibitive problems, establishing a new ap-
proach to dynamic spatial relationship maintenance in machine learning.
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1 Introduction

Generative models represent a cornerstone of modern machine learning, enabling
systems to learn complex data distributions and generate new samples. At their
core, these models—from variational autoencoders (VAE) to generative adver-
sarial networks (GAN) and diffusion models—rely on transformations between
simple distributions and complex data manifolds through latent space naviga-
tion. This latent space, often referred to as the generative space or Z space, is
not static but evolves continuously throughout training and inference.

Our approach recognizes that generative latent spaces expand and shift dur-
ing training, demanding efficient kernel-based density estimation. Our dynamic
octree structure maintains these evolving distributions with selective indexing
and adaptive partitioning. By optimizing the sequence of updates and queries
using (K,α) parameters, we achieve consistent performance gains across models
and applications.

1.1 The Maintenance Challenge in Generative Spaces

Generative models require efficient navigation of high-dimensional spaces for
nearest neighbor searches, importance sampling, and density estimation—operations
that scale poorly with traditional spatial indexing. Existing approaches face a
fundamental trade-off: rebuild indices when distributions change (expensive) or
accept degraded performance. This limitation is critical in:

– Dynamic Training: Distribution shifts during training require efficient im-
portance sampling at each epoch.

– Online Learning: New data integration demands spatial structure updates
without full retraining.

– Adaptive Inference: Particle-based methods need maintained spatial re-
lationships as particles transform toward target distributions.

Current spatial structures like KD-trees and R-trees optimize for either query
efficiency or update performance, but rarely both. This creates a critical need
for structures maintaining logarithmic-time performance for both operations in
evolving distributions.

1.2 Our Approach: Self-Balancing Dynamic Octree

We introduce a novel self-balancing dynamic octree data structure specifically
designed for maintaining neighborhood relationships in evolving metric spaces,
featuring:

– Two-Parameter Adaptivity: A (K,α) parameterization that enables au-
tomatic structure balancing based on local data density.

– Memory Efficiency: Reduced footprint through adaptive node capacity
and efficient spatial partitioning.
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– Dynamic Rebalancing: Continuous adaptation to distribution shifts with-
out complete rebuilding, enabling efficient maintenance of spatial relation-
ships in evolving generative spaces.

Fig. 1: Dynamic Octree Adaptation in Evolving Latent Spaces. (a) Dual-time
optimization highlighting differing update/query frequencies. (b) (K,α) param-
eters controlling depth and balance. (c–f) Octree evolution across training: (c)
early with coarse partitions, (d) mid with initial refinement, (e) late with density-
aware subdivision, and (f) inference with optimized structure.

Figure 1 demonstrates that generative spaces expand during training and
structured latent spaces emerge iteratively, with our dynamic octree serving
as computational fabric for both generation and querying flows. We validate
this approach across four applications: SVGD (5.6× acceleration, 10× more
particles), Incremental KNN (5.3× faster updates, logarithmic queries), RAG
systems (efficient semantic retrieval with domain adaptation), and dual-space
representation (faster convergence, improved sample efficiency).

The remainder of this paper is organized as follows. Section 2 reviews related
work, Section 3 presents our theoretical framework and algorithmic contribu-
tions, Section 4 demonstrates our approach through comprehensive case studies
spanning diverse machine learning applications, and Section 5 concludes with
implications and future directions.

2 Related Works

The evolution of efficient data maintenance structures has progressed from classi-
cal approaches to specialized spatial structures, yet significant limitations remain
when handling evolving distributions.
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Table 1: Feature Comparison of Spatial Data Structures for Dynamic Datasets

Feature/Capability Dynamic
Octree (Ours) i-Octree kd-tree ikd-Tree R*-tree

Structure Properties

Dynamic Insertion1 ✓ ✓ × ✓ p○
Dynamic Deletion2 ✓ ✓ × ✓ p○
Self-balancing3 ✓ p○ × p○ p○
Adaptive Node Capacity4 ✓ × × × ×

Query Capabilities

Nearest Neighbor Search ✓ ✓ ✓ ✓ ✓
Range Queries ✓ ✓ ✓ ✓ ✓
Down-sampling Support5 ✓ ✓ × ✓ ×
Multi-resolution Queries6 ✓ × × × p○

Performance Features

Constant-time Node Access7 ✓ ✓ × × ×
Cache-friendly Operations8 ✓ ✓ p○ p○ p○
Memory-efficient Storage ✓ ✓ ✓ ✓ ×
Dynamic Memory Management9 ✓ p○ × p○ p○

Real-time Performance

Streaming Updates10 ✓ p○ × ✓ ×
Low Update Latency11 ✓ ✓ × p○ ×
Bounded Operation Time12 ✓ ✓ × p○ ×

Spatial Adaptation

Density-aware Partitioning13 ✓ × × × p○
Local Structure Optimization14 ✓ p○ × p○ p○

Advanced Features

Concurrent Operations15 ✓ × × p○ ×
Box-wise Operations16 p○ ✓ × ✓ ×

1 O(log n) insertion maintaining structure properties
2 O(log n) deletion with structure preservation
3 Maintains balance without complete reconstruction
4 Dynamically adjustable node capacity based on the parameters
5 Integrated point cloud down-sampling during updates
6 Ability to perform queries at different granularity levels without restructuring
7 Direct access to nodes without traversal overhead
8 Optimized memory layout for CPU cache efficiency
9 Efficient memory allocation/deallocation during updates
10 Efficient handling of continuous real-time updates
11 Consistently low latency for update operations
12 Guaranteed upper bounds on operation times
13 Partition adjustment based on local point density
14 Local optimization of structure without global rebuilding
15 Support for parallel operations with thread safety
16 Efficient operations on groups of points within spatial regions
Legend: ✓: Fully Supported, p○: Partially Supported, ×: Not Supported
Structure-Specific Notes: - Dynamic Octree: Uses the parameters for adaptive
control but fixed after initialization - ikd-Tree: Partial rebuilding required for bal-
ance, parallel support limited to rebuilding - i-Octree: Fixed structure parameters
but efficient updates - R*-tree: Forced reinsertions affect dynamic performance - kd-
tree: Static structure requiring full rebuilding for updates
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Fig. 2: Adaptive spatial partitioning in incremental KNN classification. Panels
show classifier evolution as new data batches are incorporated, with octree struc-
ture adapting to data density and class boundaries, maintaining high accuracy
and efficiency.

Classical Structures: Self-balancing trees like AVL (6), Red-Black (7), and
probabilistic structures like Skip Lists (8) provide O(log n) guarantees for one-
dimensional data but lack explicit support for spatial relationships. Structures
such as treaps (9) and splay trees (10) adapt well to non-uniform distributions
through rotations but are limited to one-dimensional data.

Spatial Data Structures: The fundamental challenge in spatial structures
stems from the tension between maintaining spatial relationships and supporting
dynamic updates. KD-trees extended binary search principles to spatial organi-
zation but struggle with balanced partitioning in higher dimensions. Previous
approaches to improve dynamic capabilities include hardware acceleration (11)
and structural modifications like iKD-Tree (4), cKD-Tree (13), and BKD-Tree
(12), yet they fail to resolve the core trade-off between spatial organization and
adaptation to non-uniform distributions.

Recent Advances: The i-Octree (3) improved performance through leaf-
based organization and local updates. FLANN (15) offers practical solutions for
point cloud processing but still requires complete rebuilding for balance main-
tenance. Kinetic Data Structures (16) model object motion explicitly but incur
substantial overhead with unpredictable updates. Dynamic variants of classi-
cal structures like R*-trees (5) and progressive KD-trees (17) improved update
handling but still face efficiency trade-offs, particularly in high-dimensional or
non-uniform spaces.

Learning-Enhanced Approaches: Recent work has explored integrating
machine learning into data structure design (18). Learned Indexes (19) optimize
structure parameters based on data distributions but typically focus on static
optimization rather than continuous adaptation to streaming data.
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Despite these advances, current approaches remain limited by fixed parame-
ters and rigid structure rules that constrain adaptability to varying data distri-
butions—a critical requirement for modern machine learning applications with
continuously evolving metric spaces.

3 Theoretical Framework and Implementation

Our work extends the (K,α)-octree of Chowdhury et al. (20) to dynamic set-
tings, inheriting proven complexity bounds: O(n log n) construction, Θ(n) space,
O(log n) amortized updates, and O(nd2(δd+K1/3)) interaction computation.

Definition 1 ((K,α)-admissible octree). An octree T is (K,α)-admissible
if every leaf contains at most αK points and every internal node contains more
than K/α points, where K > 0 and α ≥ 1.

Novel contributions. Our implementation extends three mechanisms: (i) dynamic
root expansion for evolving bounding volumes, (ii) multi-radius queries with
distance-based pruning, and (iii) density-aware local rebalancing. The theorems
below establish complexity and correctness guarantees for these extensions; com-
plete proofs appear in Appendix A with code correspondence in Appendix B.

3.1 Theoretical Guarantees

Lemma 1 (Tree height preservation). Let ∆max denote the maximum ob-
served domain size and ℓmin the minimum leaf dimension. The tree height satis-
fies height(T ) ≤ ⌈log2(∆max/ℓmin)⌉+O(1) at all times.

Theorem 1 (Update complexity preservation). Point insertion, deletion,
or position update requires O(log n) amortized time, including dynamic root ex-
pansion and local rebalancing.

Proof (Sketch). Our potential function Φ =
∑

v w(v) · ||atoms(v)| − K| counts
deviation from target capacity. Root expansion increases Φ by O(log n), but sub-
sequent splits amortize this cost. Update operations (pullUp/pushDown) traverse
O(log n) levels by Lemma 1.

Lemma 2 (Pruning correctness). For a node v with center c(v) and half-
diagonal r(v) =

√
3
2 s(v), if ∥c(v)− q∥ > d+ r(v) for query point q and radius d,

then no point in v lies within distance d of q.

Proof. For any point p ∈ v, by the triangle inequality: ∥p − q∥ ≥ ∥c(v) − q∥ −
∥p− c(v)∥ ≥ ∥c(v)− q∥ − r(v) > d.

Theorem 2 (Query complexity bounds). Range queries and k-NN search
visit O(d2(δd+K1/3)) points per query, where δ is the per-point processing cost,
preserving the bounds of Chowdhury et al. (20).

Proof (Sketch). Pruning (Lemma 2) eliminates nodes whose closest point exceeds
query radius. The number of visited nodes is bounded by the surface area of the
query region and tree structure, yielding the stated complexity.
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3.2 Algorithmic Core

The foundational octree construction, node expansion, and (K,α)-admissibility
maintenance algorithms follow directly from Chowdhury et al. (20) and are sum-
marized in Appendix B for completeness. Our algorithmic contributions lie in
the extensions for dynamic point management: the pullUp/pushDown migration
procedures, geometric pruning optimizations for spatial queries, and the neigh-
borhood list construction algorithm _accum_inter().

These extension algorithms achieve direct correspondence between theoret-
ical analysis and implementation through optimizations including 28-bit atom
addressing for O(1) lookup, dynamic memory management with exponential
resize policies, and squared distance computations. Complete algorithmic spec-
ifications for both inherited and novel procedures appear in Appendix B. The
full implementation and experiments are available at: https://github.com/
SetasAditya/Dynamic-Octree.

4 Experimental Evaluations and Results

Our evaluation demonstrates this unifying principle through four representa-
tive case studies, each highlighting different aspects of the dynamic maintenance
challenge while validating our (K,α) self-balancing octree across diverse compu-
tational scenarios.

4.1 Synthetic Benchmarks: Establishing Fundamental Properties

We validate our theoretical claims through controlled experiments comparing our
dynamic octree against kd-trees and i-Octree using time-series data (100K–500K
points) with varying density distributions.

Scaling Performance Figure 3 demonstrates our Dynamic Octree’s (DO) scal-
ing advantages from 10K to 200K points: (1) Logarithmic Scaling: Maintains
O(log n) complexity for queries and updates, whereas traditional structures ex-
hibit quadratic scaling. (2) Self-Balancing: Achieves 22× faster updates than
i-Octree at 20K objects through localized rebalancing. (3) Memory Efficiency:
Uses 10.6% less memory than i-Octree at 100K points.

Neighborhood construction—critical for spatial ML—shows our approach
(0.57s) outperforming i-Octree (8.17s) by 14.3× at 200K points, with perfor-
mance gaps growing exponentially.

Adaptive Rebalancing We evaluated performance across four distribution
patterns: varying density, step-wise transitions, exponential growth/decay, and
multi-modal clustering using 100K-point clouds over 10 time steps (Table 2).

By adjusting (K,α) parameters, we achieve 36× performance variation in
neighborhood construction—from 6.58s (DO(K=1000)) to 0.17s (DO(K=10))—
demonstrating adaptive optimization without structural redesign.

https://github.com/SetasAditya/Dynamic-Octree
https://github.com/SetasAditya/Dynamic-Octree
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(a) Build time showing near-linear
scaling.

(b) Neighborhood construction
with 14.3× advantage.

(c) Update time showing consis-
tent efficiency.

(d) Memory usage comparison.

Fig. 3: Synthetic benchmark results: Dynamic Octree (DO) vs. i-Octree (OM)
and KD-Tree. Performance gaps widen with scale, confirming theoretical
O(log n) bounds.

Table 2: Performance across distribution patterns. Parameter tuning enables
36× performance variation in neighborhood construction.
Method Varying Density Step-wise Exponential Multi-modal

Build Update NB Build Update NB Build Update NB Build Update NB

DO(K=1000) 0.00072 0.05192 2.10448 0.00493 0.21182 6.58040 0.00006 0.04630 1.65657 0.00006 0.05760 1.86797
DO(K=10) 0.00165 0.11467 0.06234 0.00575 0.31715 0.16876 0.00006 0.08393 0.04575 0.00008 0.10379 0.05535
OM 0.71961 0.71961 6.62204 1.78774 1.78774 21.54342 0.61151 0.61151 4.98176 1.04049 1.04049 7.77186
KD 0.22446 0.22446 0.35293 0.83312 0.83312 1.32703 0.19704 0.19704 0.30873 0.24661 0.24661 0.39029

Continuous Updates Unlike static structures that degrade under modifica-
tions, our approach maintains query efficiency after thousands of updates, pro-
viding the continuous performance required by modern generative models during
training and inference.

4.2 Case Studies: Transforming Machine Learning Applications

Building on these synthetic foundations, we now demonstrate how the (K,α) dy-
namic octree transforms real machine learning applications. Modern generative
models—from variational autoencoders and normalizing flows to diffusion mod-
els and flow matching—share the fundamental computational pattern revealed
by our synthetic benchmarks: they require efficient maintenance of neighborhood
relationships in continuously evolving metric spaces.
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Case Study 1: Particle-Based Bayesian Inference

Computational Challenge. Stein Variational Gradient Descent (SVGD) (30) and
related particle-based inference methods face a fundamental bottleneck: comput-
ing pairwise kernel interactions between particles scales as O(n2), limiting prac-
tical implementations to hundreds of particles. As particles evolve during infer-
ence, their spatial relationships change continuously, requiring repeated neighbor
searches within adaptive bandwidth radii.

Access Patterns and Maintenance Requirements. The SVGD update rule, ϕ(xi) =
1
n

∑
j:∥xi−xj∥≤h[k(xj , xi)∇xj

log p(xj)+∇xj
k(xj , xi)], relies on an adaptive band-

width h and induces two core challenges: dynamic neighborhoods, as particle
proximity changes over iterations, and adaptive bandwidth, where h evolves
with particle density, requiring continuous structural updates.

Traditional approaches recompute all O(n2) pairwise distances at each it-
eration. Our dynamic octree maintains spatial relationships as particles evolve,
enabling O(n log n) complexity through distance-based pruning.

Implementation and Results. We integrated our octree with the reference SVGD
implementation from Liu and Wang (30) by maintaining particles in leaf nodes
and using range queries to find neighbors within the current bandwidth. When
particles move during gradient updates, our update procedure locally rebalances
them while preserving the (K,α)-admissible structure. The integration required
modifying the kernel computation to use our spatial queries instead of brute-
force distance calculations.

Figure 4 demonstrates the transformative impact: our approach achieves 40×
speedup at 1,000 particles while actually improving posterior approximation
quality (Wasserstein distance reduced from 0.23 to 0.18). This enables practical
uncertainty quantification with 10× more particles than previously feasible.

Generative Model Connection. This pattern applies broadly: normalizing flows
require neighborhood maintenance for Jacobian estimation, while diffusion mod-
els benefit from dynamic neighborhoods during adaptive sampling and fine-
tuning.

Case Study 2: Incremental Learning with Streaming Data

Computational Challenge. Online learning scenarios—common in recommenda-
tion systems, adaptive neural networks, and continual learning—require incor-
porating new labeled data without full model retraining. Standard k-NN im-
plementations rebuild the entire spatial index when new data arrives, scaling
quadratically with dataset size and making real-time adaptation prohibitive.

Access Patterns and Maintenance Requirements. Incremental learning intro-
duces challenges for static structures, including batch insertions from mini-
batch updates, distribution shift requiring adaptive partitioning, and query-
update interleaving where classification and updates occur in rapid alterna-
tion.
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(a) Octree-accelerated SVGD: (a) Speedup with parti-
cle count, (b) Improved Wasserstein distance, (c) Lower
memory usage, (d) Faster convergence.

(b) Challenging multi-
modal posterior in Bayesian
logistic regression.

Fig. 4: SVGD acceleration with our dynamic octree. Left: Performance gains in
speed, accuracy, memory, and convergence. Right: Complex posterior motivat-
ing structure-aware particle updates.

Our octree addresses this through localized rebalancing—only affected tree
branches undergo restructuring when new points are inserted, avoiding the global
rebuilding required by static methods.

Implementation and Results. We implemented incremental k-NN classification
by extending the scikit-learn (31) k-NN framework with our dynamic octree
backend. Training examples are maintained in octree leaves, with our k-NN
search algorithm handling classification queries. New examples are inserted via
our addAtomToLeaf procedure, triggering node expansion only when the (K,α)
capacity is exceeded. We maintained API compatibility with scikit-learn’s API
to enable direct comparison.

The Gaussian-preserving KNN approach demonstrates remarkable efficiency
in maintaining classification performance while achieving substantial memory
reduction. Figure 5 illustrate the method’s effectiveness across diverse cluster
configurations, consistently achieving 15-22× compression ratios with minimal
accuracy degradation. The key insight lies in the careful selection of inducing
points that preserve the underlying Gaussian statistics of each class, as evidenced
by the close alignment between original and reconstructed covariance ellipses in
the per-class analyses. Octrees enable efficient O(log n) nearest neighbor queries
on compressed inducing points, making real-time applications feasible. Details
of the approach in Appendix.

Table 3 demonstrates consistent advantages: 5.6x–9.4x faster updates with
1.6x–1.9x query speedup, while maintaining classification accuracy within 0.2%
of scikit-learn’s batch implementation.



Dynamic Structures for Rapid Kernel Estimation 11

Fig. 5: Preservation across diverse cluster types: (a) Elongated, (b) Compact,
and (c) Mixed shapes.

Dataset Size Batch k-NN (scikit-learn) Incremental k-NN (Ours)
Update (s) Query (s) Accuracy Update (s) Query (s) Accuracy

10,000 0.077 0.0047 89.23% 0.014 0.0029 89.07%
30,000 0.274 0.0063 90.87% 0.031 0.0032 90.85%
50,000 0.495 0.0085 91.96% 0.052 0.0045 91.88%

Table 3: Incremental k-NN vs. scikit-learn. Our method achieves O(log n) up-
dates vs. O(n2) in batch mode, enabling real-time streaming adaptation.

Generative Model Connection. This incremental learning capability directly ben-
efits adaptive generative models. Variational autoencoders can incorporate new
training data without full retraining by maintaining encoder/decoder weight
neighborhoods. Flow-based models benefit when adapting to new domains, and
diffusion models can efficiently fine-tune on new datasets by maintaining learned
feature relationships.

Case Study 3: Evolving Knowledge Retrieval

Computational Challenge. Retrieval-Augmented Generation (RAG) systems (32)
face a critical scalability limitation: as knowledge bases grow and evolve, embed-
ding indices require complete rebuilding—a process that becomes prohibitively
expensive for large, dynamic corpora. This prevents RAG systems from adapting
to streaming information or incorporating real-time updates.

Access Patterns and Maintenance Requirements. RAG systems pose indexing
challenges due to their high-dimensional embeddings (often 768+ dimen-
sions), semantic clustering with non-uniform density, incremental updates
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(a) RAG build time scaling comparison. (b) Search performance in high-
dimensional space.

Fig. 6: RAG performance metrics showing our approach’s logarithmic scaling
advantage over FAISS and consistent search performance across dataset sizes.

requiring efficient insertions, and multi-scale queries demanding variable neigh-
borhood resolutions.

To address the high dimensionality, we adopt a hybrid approach: embeddings
are clustered via k-means, projected to 3D using the Johnson–Lindenstrauss
transform within each cluster, and then indexed using our dynamic octree. While
this introduces some loss in accuracy, it enables efficient indexing; future work
may explore alternatives that balance dimensionality reduction with improved
fidelity.

Implementation and Results. We built our RAG implementation on top of the
LangChain framework (33) and Facebook’s FAISS library (34), replacing FAISS’s
static indexing with our dynamic octree approach. Our system partitions 768-
dimensional sentence embeddings (generated using Sentence-BERT (35)) into
clusters, projects each cluster to 3D space, and maintains separate octrees per
cluster. Document insertion requires only updating the relevant cluster’s octree,
while queries search across all clusters and aggregate results using learned cluster
weights.

Figure 6 shows our hybrid RAG system achieves logarithmic build scaling
and 4.2× faster retrieval than FAISS without sacrificing accuracy, enabling con-
tinuous knowledge updates. Figure 7 demonstrates that coarse FAISS clustering
followed by octree refinement preserves semantic coherence across queries. Fig-
ure 8 shows semantic cluster evolution as knowledge bases grow, with dense,
specialized clusters emerging naturally while maintaining O(log n) search effi-
ciency.

Generative Model Connection. High-dimensional neighbor search appears through-
out generative modeling: attention mechanisms in transformers, nearest neighbor
lookups in retrieval-augmented diffusion, and prototype matching in few-shot
generation.
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Fig. 7: Query-document retrieval. Red
stars (queries) retrieve nearby docu-
ments (colored points), showing seman-
tic neighborhoods via FAISS clustering
and octree refinement.

Fig. 8: Semantic clustering evolution
with knowledge base growth. As the
corpus expands (100–5000 documents),
clusters (colored points) transition from
sparse to dense, forming well-defined
semantic groupings.

Case Study 4: Structure-Preserving Generative Transport

Computational Challenge. Continuous normalizing flows (37) and optimal trans-
port methods suffer from a fundamental limitation: optimizing transport ef-
ficiency often destroys local neighborhood structure. Standard OT-Flow (36)
minimizes transport cost but ignores whether nearby points in the source distri-
bution remain neighbors in the target distribution, leading to structural distor-
tions that degrade generation quality.

Access Patterns and Maintenance Requirements. Generative transport intro-
duces unique challenges: dual-space neighborhoods must be preserved in both
source and target spaces; evolving trajectories require tracking changes in
neighborhood structure over time; multi-scale structure must be maintained
across spatial resolutions; and bidirectional transport demands consistency
in both forward and inverse mappings.

We integrate our octree with OT-Flow by adding neighborhood consistency
constraints that penalize structural distortion while maintaining transport effi-
ciency.

Implementation and Results. We extended the official OT-Flow implementation
from Onken et al. (36) by integrating our dynamic octree for neighborhood
tracking. Our enhanced OT-Flow maintains source points in octree leaves and
computes neighborhood consistency terms using range queries. During transport,
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Fig. 9: Intermediate reconstructions at t = {0.00, 0.25, 0.50, 0.75, 1.00}. Top:
Standard OT-Flow with increasing structure loss. Bottom: Octree-enhanced OT-
Flow preserving local clusters throughout transport.

we track how local neighborhoods evolve and add regularization terms to the
OT-Flow loss function that encourage structure preservation.

The results demonstrate significant improvements in generative quality, in-
cluding an 89.6% increase in structure preservation measured by neigh-
borhood Jaccard similarity (0.787 vs. 0.415), an 83% reduction in recon-
struction error (from 1.78e-06 to 3.05e-07), and a 69% improvement in
transport smoothness based on reduced trajectory curvature.

Table 4: Comprehensive performance comparison between standard and octree-
enhanced OT-Flow

Metric Standard OT-Flow Octree-Enhanced OT-Flow

Training Loss 2.76e+02 3.14e+02
Validation Loss 2.75e+02 3.05e+02
Reconstruction Error 9.14e-05 5.54e-07
Neighborhood Distortion 1.585 1.213
Trajectory Curvature 0.00181 0.00056
Jaccard Similarity 0.415 0.787
Training Time (rel.) 1.0 1.17
Inference Time (rel.) 1.0 1.0

Figure 9 shows intermediate reconstructions at different time steps for both
methods. The octree-enhanced approach maintains more consistent local struc-
tures throughout the transport process, resulting in more coherent intermediate
states.
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Generative Model Connection. This structure-preserving capability addresses a
critical limitation across generative models. Diffusion models can benefit from
neighborhood-aware denoising schedules, VAEs can preserve local structure in
latent space, and flow matching (38) can maintain semantic relationships during
interpolation. The principle of maintaining relationships in both input and latent
spaces applies broadly to representation learning.

5 Conclusion and Future Work

We introduced a novel self-balancing, memory-efficient dynamic octree for main-
taining spatial relationships in continuously evolving metric spaces. Our two-
parameter (K,α) formulation enables logarithmic-time operations without re-
quiring complete rebuilding as distributions evolve, addressing a fundamental
limitation in existing approaches. Through extensive experiments, we demon-
strated significant performance advantages over state-of-the-art structures— ad-
vantages that amplify with increasing data complexity.

5.1 Future Directions

Our work establishes a new paradigm for navigating evolving generative spaces:

1. Incoherent Path-wise Sampling: Our octree enables local path-wise main-
tenance with adaptive kernel estimates, decomposing generative model train-
ing into path-wise incoherent sampling and path-coverage challenges.

2. Adaptive Importance Sampling: By tracking evolving distributions and
maintaining inter-batch spatial relationships, our structure enables dynamic
importance sampling techniques that efficiently explore high-dimensional la-
tent spaces with reduced sample complexity.

3. Adaptive Manifold Navigation: By tracking evolving geometry during
training, our approach supports efficient latent space traversal and enables
reinforcement learning to dynamically tune (K,α) parameters based on local
structure, enhancing generative performance.

We envision generative models leveraging our dynamic octree to maintain
coherent paths through latent space while enabling incoherent sampling across
distribution regions, significantly improving both computational efficiency and
model quality in continuously evolving metric spaces.
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