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Abstract. Zero-day anomaly detection is critical in industrial applica-
tions where novel, unforeseen threats can compromise system integrity
and safety. Traditional detection systems often fail to identify these un-
seen anomalies due to their reliance on in-distribution data. Domain
generalization addresses this gap by leveraging knowledge from multi-
ple known domains to detect out-of-distribution events. In this work, we
introduce a multi-task representation learning technique that fuses in-
formation across related domains into a unified latent space. By jointly
optimizing classification, reconstruction, and mutual information reg-
ularization losses, our method learns a minimal(bottleneck), domain-
invariant representation that discards spurious correlations. This latent
space decorrelation enhances generalization, enabling the detection of
anomalies in unseen domains. Our experimental results demonstrate sig-
nificant improvements in zero-day or novel anomaly detection across di-
verse anomaly detection datasets.

Keywords: Representation Learning · OOD Detection · Multi-task Learn-
ing.

1 Introduction

Anomaly detection is a fundamental task in various applications, enabling the
early identification of unusual patterns in network traffic, system logs, or user
behavior that may signal intrusions or malicious activities [23, 27]. As cyber
threats evolve and novel attacks—such as zero-day vulnerabilities—emerge, tra-
ditional defenses often fall short, leading to severe disruptions and data breaches.
In many real-world applications, training and test data stem from different dis-
tributions, making out-of-distribution (OOD) generalization a critical challenge.
Standard deep neural networks excel when the training and testing data are
drawn from the same distribution; however, their performance degrades when
confronted with unseen domains. Existing approaches such as few-shot learn-
ing and meta-learning [19, 25, 17, 16, 21] attempt to bridge this gap but often
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require target domain data during training or otherwise risk embedding biases
from specific domains. Our approach addresses these challenges by targeting a
latent space that embodies a minimal sufficient representation for the down-
stream task of OOD classification. We consider a scenario where the samples
from different domains or datasets have distinct feature correlation structures.
High-dimensional data poses unique challenges due to the curse of dimension-
ality. In such spaces, conventional distance measures lose their discriminative
power because the relative contrast between the nearest and farthest neighbors
diminishes—a phenomenon highlighted by the principle of concentration of dis-
tance. Inspired by the principle of relevant information(PRI) preservation [35],
we design a latent space classification loss that aims to regularize the latent
space by minimizing the mutual information content between the input and la-
tent space, effectively decorrelating class-specific feature correlation information
of the original data. To guarantee that the latent space preserves sufficient in-
put information, we incorporate a reconstruction loss that compels the model to
accurately reconstruct the input data from its latent embedding. This prevents
over-compression and ensures that the latent space retains the necessary struc-
ture for the task. These two losses guide the cross-entropy loss to preserve only
the relevant information required for accurate classification. Multi-task learn-
ing facilitates learning representations from multiple diverse domains and the
joint optimization help improve generalization to unseen domains. By integrating
these objectives, our framework works as a zero-shot multi-task learning system.
We mix data from multiple source domains with cross-domain samples and also
attempt to decorrelate dataset specific spurious correlation information with the
mutual information (MI) penalty. This strategy ensures that the learned latent
space is invariant to domain-specific correlation information, thereby enhancing
generalization to unseen OOD classes without requiring any target domain data
during training. Our main contributions can be summarized as follows:

– We propose a novel classification framework that leverages mutual informa-
tion regularization and reconstruction loss to guide the latent space toward
retaining only the most relevant features for out-of-distribution (OOD) clas-
sification. The result is a compressed, invariant representation that effec-
tively discards spurious domain-specific information.

– We demonstrate that integrating data from multiple sources and cross-domains
with varying correlation patterns enhances coverage, improving generaliza-
tion to unseen domains.

– Our domain-invariant latent space analysis mitigates the adverse effects of
high-dimensionality. Experiments demonstrate an 8%-15% increase in aver-
age precision, and recall and a 4%-9% improvement in average AUC-ROC
across all source/IN, cross-domain, and OOD datasets.

2 Related Work

Domain generalization techniques can be grouped into the following primary
categories: domain invariant representation learning, meta-learning,latent di-
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mension regularization, and metric learning. 1) Domain Invariant Represen-
tation Learning: This method aims to identify domain invariant representations
that can be extended to unseen domains. The crux of these strategies, as seen
in works such as [33], is to filter out domain-specific insights while maintain-
ing cross-domain information. Notable studies employing autoencoders, such as
[1], amalgamate multiple domains during training, augmented by data enhance-
ment techniques, to extract domain-invariant characteristics. These features then
demonstrate superior generalization to out-of-distribution data. Another study,
Maximum Mean Discrepancy Adversarial Autoencoder (MMD-AAE) [24], in the
context of few-shot learning, emphasizes aligning varied domain distributions to
a generic prior distribution while engaging in adversarial feature learning. An in-
novative approach is suggested in [14], where a domain-centric masking technique
is applied to learn both domain-specific and domain-invariant features. This will
facilitate efficient source domain classification and sufficient generalization to tar-
get domains. In [15], a noise-enhanced supervised autoencoder reconstructs and
classifies both inputs and their reconstructions, using intra-class correlation to
show improved feature discrimination and generalization. Moreover, the authors
[29] propose domain generalization through domain-invariant representation that
uniformly distributes across multiple source domains. Their approach employs
moment alignment of distributions and enforces feature disentanglement via an
entropy loss. The DIFEX [18] paper employs knowledge distillation to capture
internally-invariant Fourier phase features and aligns cross-domain correlations
to extract mutually-invariant representations.

2) Meta-learning: This approach employs learning from several related tasks
for domain generalization, as observed in works such as [21, 28, 32]. The study in
[30] introduces a technique to discern a domain interdependent projection leading
to a latent space. This space minimizes biases in the data while preserving the
inherent relationship across multiple domains. Model Agnostic Meta-Learning
(MAML) has also been extended to latent dimension settings by performing the
gradient-based adaptation in the low dimensional space instead of the higher di-
mensional space of model parameters [31]. Zero-shot learning [9] aims at learning
models from seen classes and inferring on samples whose categories were unseen
during the training process.

3) Information Bottleneck Principle and Metric Learning: In contrast to the
aforementioned methodologies, our strategy propels direct disentanglement or
decorrelation between multiple training domains. An information-theoretic per-
spective on variance-invariance-covariance has been provided here [3] in the con-
text of self-supervised learning which helps to achieve generalization guarantees
for downstream supervised learning tasks. Adversarial learning-based domain
adaptation methods are prone to negative transfer which hurts the generaliza-
tion performance [4]. Metric learning aims to learn a representation function
that can map higher-dimensional data to a latent embedded space. The authors
[5] propose mixing target labels with training samples to improve the quality of
representations or embeddings for classification purposes.
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4) Other Related Works: The authors [6] suggest using the statistics of soft-
max outputs to estimate both the probability of error and the likelihood of a test
sample being out-of-domain. They compare the performance of this approach by
directly using the raw softmax output probabilities as a measure of confidence.
The paper [7] addresses the problem of domain shift when a learned model tends
to degrade heavily on a target domain via unsupervised domain adaptation by
learning a common feature map from multiple source domains by minimizing the
domain distribution discrepancy between those multiple source domains. The au-
thors in [10] use nearest-neighbor distance for flexible OOD detection without
strict assumptions, while [11] address spurious correlations by developing causal
tools to distinguish invariant features, thereby improving generalization.

Our approach is inspired by the principle of relevant information (PRI) [35],
aiming to learn a compressed latent space that retains only the relevant infor-
mation for downstream tasks. By combining data from multiple domains and
de-correlating their spurious correlations, we encourage the network to learn in-
variant representations. This multi-task representation learning method ensures
that the latent space captures minimal, sufficient information for classification
while discarding irrelevant, domain-specific details.

3 Problem Formulation

In our domain generalization problem, let C = {0, 1, . . . ,K} denote the com-
plete set of class labels, which we partition into three disjoint subsets; C =
Cs ∪ Cc ∪ Co, Cs ∩ Cc = Cs ∩ Co = Cc ∩ Co = ∅. For example, if Cs = {1, 3, 5}
(source domain), then Cc = {2, 4, 6} (cross-domains) and Co = {9, 10, 11} (OOD).
During training, we have access only to samples from the source and cross-
domains. Formally, the training set is defined as Strain =

⋃M
i=1{(xi

j , y
i
j) | yij ∈

Cs ∪ Cc, j = 1, . . . , Ni}, where M is the total number of tasks and Ni is the
number of samples in task i. Our objective is to learn a model that generalizes
to unseen OOD classes y ∈ Co by leveraging multi-task representation learn-
ing. We enforce domain-invariant feature extraction through joint optimization
over classification, reconstruction, and mutual information regularization losses,
thereby encouraging a disentangled latent space that tends to forget spurious
correlations. The extension to multiple domains necessitates the definition of a
multi-task learning objective over all the M source and cross domains which can
be given as

Lrec (Strain; θ, ϕ) =

M∑
i=1

∥∥∥f (i)
θ

(
g
(i)
ϕ

(
Xi
))

−Xi
∥∥∥2
2

(1)

In this expression, g(i)ϕ and f
(i)
θ denote the encoder and decoder functions re-

spectively for each of the M sources and cross domains, Xi is the input training
data from a particular domain. We aggregate the reconstruction loss across dif-
ferent source and cross-domain datasets, ensuring that the total loss accounts
for all input domains. Basically, the reconstruction error is computed separately
for each domain and then summed to form the overall reconstruction loss.
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Fig. 1: Training the Multi-task Latent Space Regularized Encoder-Decoder
Model (MTLS-RED). During testing, the trained latent space is directly used to
classify new samples.

3.1 Mutual Invariance Regularization

In information theory, the dependence measure or the total correlation between
the feature variables is measured as the statistical independence in each dimen-
sion and is expressed as the Kullback Leibler(KL) divergence between the joint
probability distribution and the marginal distribution of the features [26]. We
enforce de-correlation between the input and the latent kernel space—spanning
multiple source and cross-domains—by introducing a mutual information mini-
mization penalty that explicitly reduces dependencies between input and latent
space kernels in the form of decorrelation. The matrix-based Renyi’s second-
order entropy [26] of a normalized positive definite(NPD) matrix Kx, estimated
on l × l samples in the input space, where l is the batch size, can be given as

Ĥ2(Kx) =
1

1− α
log2

(
l∑

k=1

λk(Kx)
α

)
, (2)

where the Gram matrix Kx is obtained by evaluating the positive definite (PSD)
kernel on all l pairs of training samples in a batch of training data, that is, and
λk(X) denotes the kth eigenvalue of the input kernel matrix Kx of the lth batch,
Here, α = 2 considering Renyi’s second-order entropy.

Similarly, Renyi’s quadratic entropy of the latent space kernel KZ of size l× l
is estimated as

Ĥ2(Kz) =
1

1− α
log2

(
l∑

k=1

λk(Kz)
α

)
, (3)
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The argument in equation (3) is called the information potential. In the above
section, we use the matrix-based second-order Renyi’s entropy (α = 2) [26] to
evaluate the entropy or the uncertainty of the latent and the input space in terms
of the normalized eigenspectrum of the Hermitian matrix of the projected data
in the Hilbert space. Now, we can estimate the matrix-based second-order joint
entropy between the latent space kernel Z and the input space kernel X as

Ĥ2 (Kx,Kz) = H2

(
Kx ◦ Kz

tr (Kx ◦ Kz)

)
, (4)

where ◦ represents the Hadamard product. Based on the above definitions, we
calculate the joint entropy of the latent and the input space with the help of the
matrix-based normalized Renyi’s entropy of the latent space and the input space
kernels. The joint entropy is used to derive the mutual information between the
input and the latent space.

The Mutual Information Divergence We use the matrix-based mutual in-
formation divergence to estimate the mutual information between the latent and
input space kernels. Minimizing the mutual information indirectly results in de-
correlating the feature correlation that exists in the original input space which
helps in improving the generalization performance. The mutual information dur-
ing each batch of the training can be estimated as

M̂I(Kx;Kz) = Ĥ2 (Kx) + Ĥ2 (Kz)− Ĥ2 (Kx,Kz) , (5)

where Ĥ2 (KX ,KZ) , is the second-order joint entropy between the latent and
the input kernel space. Minimizing this divergence as a regularization penalty in
the final loss objective will aid in preserving useful disentangled information in
the latent space during each iteration of the training process.

3.2 The Multi-Task Learning Objective

In our latent space multi-task learning approach, we leverage the label informa-
tion of the multiple source and cross-domain encoded data in the latent space
during the training process. In our approach, we do a joint optimization of
the classification and the reconstruction loss along with the mutual informa-
tion penalty in the latent space. The total loss calculated over all the M tasks
can be written as

L (Strain, Z;ϕ, θ, σ) = min
ϕ,θ,σ

M∑
i=1

{
Lce

(
gϕ
(
Xi
)
, yi
)

+β · LMI

(
Xi;Zi, σ

)
+ λ · Lrec

(
Xi;ϕ, θ

)}
,

(6)

where, Lce is the cross-entropy loss calculated on the latent space encoding
considering the binary classification problem, given as,

Lce

(
gϕ
(
Xi
)
, yi
)
= −

(
yi log

(
Si
y

(
gϕ
(
Xi
)))

+
(
1− yi

)
log
(
1−

(
Sy

(
gϕ
(
Xi
)))))
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Algorithm 1 The Multi-task Latent Space Regularized Encoder-Decoder Model
(MTLS-RED)

Input:
Source domain data {Xs1, Xs2, ..., Xsm}, Xs ∈ Rd, ∀m ∈ {1, 2, 3, ..}
Cross-domain data {Xc1, Xc2, ..., Xcn}, Xc ∈ Rd, ∀n ∈ {4, 5, 6, .., }
Out-of-distribution (OOD) datasets {Xo1 , Xo2 , ..., Xok}, Xo ∈ Rd, ∀k ∈ {7, 8, 9, .., }
(used for testing only)
Source and cross-domain labels {ym

i }ni=1, ∀m ∈ {1, 2, 3, 4, 5, 6, ...,M}
Initialize encoder (E) and decoder (D) weights:

Wϕ ∈ Rdx×dz , Wθ ∈ Rdz×dx

Initialize kernel bandwidths: σx, σy (learnable)
Set learning rates α1, α2, ασ

while not end of epochs do:
for batch = 1 to total batches N do:

Sample mini-batch data {Xi}l1 ∈ Rd, where l is batch-size
Compute RBF kernels for input space Kxl and latent space Kzl of size l × l
Compute mutual information between input space Xl and latent space Zl

using matrix-based Rényi’s entropy:

MI (KXl ;KZl)

Perform a forward pass on encoder E (Xϕi)
Compute total batch loss:

Ll = Lce

(
Xl, yl

)
+ λLrec

(
Xl, Xl′

)
+ βLMI

(
Xl||Zl

)
Update Wϕ, Wθ, and σx, σz

Wϕt+1 ←Wϕt − α1∇ϕLl (θ, ϕ, σ)
Wθt+1 ←Wθt − α2∇θLl (θ, ϕ, σ)
σxt+1 , σzt+1 ← σxt , σzt − ασ∇σLl (θ, ϕ, σ)

end for
end while
Output: Trained MTLS-RED model with optimized encoder-decoder weights
Wϕ,Wθ and learned kernel bandwidths σx, σy

LMI is the disentanglement or de-correlation loss between the latent space and
the input space expressed in the form of mutual information divergence measured
in their kernel space, given in eq: 5, Sy is the softmax function applied on the
encoded data gϕ(x), Lrec is the reconstruction loss, ϕ, θ are the encoder and
decoder parameters. The σ represents the kernel bandwidth, a crucial parameter
for estimating mutual information between the input and latent space.

We guide the cross-entropy loss by incorporating mutual information regular-
ization between the latent and input spaces. This regularization discourages the
retention of irrelevant information in the latent representation, with its strength
governed by the hyperparameter β The parameter β regulates the trade-off be-
tween reducing dependencies in the latent space and maintaining classification
performance. During joint optimization, we aim to balance the reconstruction
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loss and mutual information regularization. The parameter λ controls the recon-
struction weight, determining the extent of compression we want to enforce in
the latent space.

4 Experiments

In this section, we demonstrate the performance of our proposed model on bench-
mark cybersecurity and healthcare datasets.

4.1 Dataset

– CSE-CIC-IDS2018 [20] This is a publicly available cybersecurity dataset
that is made available by the Canadian Cybersecurity Institute (CIC). It con-
sists of 7 major kinds of intrusion datasets. We use SOLARIS, GOLDENEYE
as source domain data, INFILTRATION, BOTNET as cross-domain data,
and RARE, SLOWHTTPS, HOIC and a BENIGN dataset of a different day
as the OOD test classes.

– CICIoT 2023 [20] This is a state-of-the-art dataset for profiling, behavioral
analysis, and vulnerability testing of different IoT devices with different pro-
tocols from the network traffic, consisting of 7 major attack classes. We use
BENIGN, DoS, and DDoS as source data, RECON, as cross-domain data
and WEB, MIRAI as OOD test data.

– CICIoMT 2024 [20] This is a benchmark dataset to enable the develop-
ment and evaluation of Internet of Medical Things (IoMT) security solutions.
The attacks are categorized into five classes. We use BENIGN, DDoS, DoS
as source-domain, RECON, and SPOOFING as cross-domain, and MQTT
as OOD data.

– Arrythmia This dataset is about atrial fibrillation (also called AFib or
AF) which is a quivering or irregular heartbeat (arrhythmia) that can lead
to blood clots, stroke, heart failure, and other heart-related complications.
The dataset contains five classes/categories: N (Normal), S (Supraventric-
ular ectopic beat), V (Ventricular ectopic beat), F (Fusion beat), and Q
(Unknown beat).

4.2 Baselines

We consider the following models related to multi-task representation learning
and few-shot learning as baselines.

– Correlation Alignment for Deep Domain Adaptation (CORAL) [34]
This work has been employed for supervised domain adaptation, aligning
source and target covariances to enhance OOD generalization.

– Multi-task Autoencoder (MTAE) [1] This encoder-decoder model opti-
mizes reconstruction error across multiple domains in a supervised manner,
jointly training sources and cross-domain data with label information in a
two-stage process.
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– Minimum Mean Discrepancy-Autoencoder(MMD-AE)[24, 2] This pa-
per uses the MMD measure as regularization for domain generalization be-
tween multiple cross-domain data. We use it as a few-shot learning method
where the cross-domain data are added to improve the OOD generalization.

– Noise Enhanced Supervised Autoencoder (NSAE) [15]This model
jointly predicts input labels, reconstructs inputs as noisy samples, and refines
them through an additional fine-tuning step using a supervised classifier.

– Domain-invariant Feature Exploration for Domain Generalization
(DIFEX) [18] This paper utilizes mutual invariance to extract cross-
domain features for OOD classification, capturing domain-specific semantics
through internal invariance while preserving shared information, and extends
CORAL with an additional regularization term.

4.3 Training Strategy

To achieve robust generalization, we arbitrarily categorize the datasets into three
groups: source domain datasets, cross-domain datasets, and out-of-distribution
(OOD) datasets. The OOD datasets are reserved exclusively for testing pur-
poses, serving as an evaluation benchmark for assessing model generalization.
Our training strategy focuses on enhancing OOD performance by leveraging
source domain data to improve learning on cross-domain datasets. To accom-
plish this, we systematically mix different proportions of source domain data
with cross-domain data, integrating them into the benign dataset to construct
the final training set. Additionally, we experiment with different combinations
of source and cross-domain datasets to identify the most effective configurations
for improving coverage across all three dataset categories—source, cross-domain,
and OOD. Our training strategy is detailed in MTLS-RED Algorithm 1.

Selecting the cross-domains, source and OOD domains In [36], the au-
thors argue that learning a model that generalizes to unseen data can be fa-
cilitated when the covariance (or correlation structure) among features is well-
conditioned and sufficiently diverse. In other words, if the training data exhibit
meaningful variations or “patterns of dependencies” across features, then a func-
tion that captures those variations can more reliably extrapolate beyond the
training distribution. Hence, by adding source domain data (with one correlation
structure) to cross-domain data (with a different correlation structure), we pro-
duce a more varied training distribution—one that exposes the learner to mul-
tiple ways in which features can co-vary. The learner, in turn, is incentivized to
find a representation that extracts the stable, non-spurious relationships across
these distributions.

This approach is inspired by the paper’s emphasis on the role of well-conditioned
covariances for successful extrapolation, suggesting that diverse training corre-
lations expand the set of feature configurations on which the model is trained,
thus boosting generalization performance in truly novel test domains. DOS and
DDOS share similar feature correlations, while MIRAI and WEB differ, and
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(a)

(b)

(c)

(d)

Fig. 2: Precision, recall, and accuracy plots for the rarest class (RARE, in blue),
which has only 525 samples in the CIC-IDS dataset using training data from
GOLDENEYE (source) and BOTNET (cross) domains. Figures (a) show preci-
sion, recall, and AUC over epochs without regularization on validation data; (b)
apply MI = 0.01, reconstruction = 0.99; (c) apply MI = 0.99, reconstruction =
0.01, (d)use equal weights of 0.5. High MI regularization (case (c)) leads to over
10-20% improvement and stability across all metrics. Higher MI penalty helps
in achieving better classification of the RARE class
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Table 1: We report accuracy (with standard deviation) of the proposed and
baseline methods on the CIC-CSE-IDS dataset, where cross-domain data is grad-
ually added to the source domain during training in the range (0–50%). Best test
accuracies for each model are highlighted. The OOD domains are used only for
test/evaluation purposes. During train, each anomaly dataset has equal amount
(50%) of BENIGN samples added to it, i.e, the train and test datasets are bal-
anced (equal normal and anomaly samples).

SOURCE DOMAIN CROSS DOMAIN OOD DOMAIN

Model Percent SOLARIS GOLDEYE INFIL BOTNET RARE HOIC HTTPS BENIGN

MTAE 0% 99.97 (2.5) 92.70 (1.3) 04.00 (0.1) 09.50 (0.2) 00.30 (0.0) 00.38 (0.0) 02.30 (0.1) 97.98 (2.4)
20% 99.50 (2.5) 99.70 (2.5) 69.40 (2.5) 79.50 (2.5) 61.30 (1.5) 27.38 (0.7) 32.30 (0.8) 98.11 (2.5)
30% 81.60 (2.0) 79.60 (2.0) 69.70 (1.7) 78.50 (2.0) 65.40 (1.6) 50.00 (1.3) 42.40 (1.1) 62.00 (1.6)
50% 61.61 (1.5) 61.30 (1.5) 31.30 (0.8) 61.60 (1.5) 72.60 (1.8) 48.50 (1.2) 69.80 (1.7) 83.32 (2.1)

MMD-AE 0% 99.99 (2.5) 99.29 (2.5) 00.53 (0.0) 99.98 (2.5) 55.47 (1.4) 99.98 (2.5) 99.69 (2.5) 99.71 (2.5)
20% 99.98 (2.5) 92.55 (0.1) 22.55 (0.6) 99.83 (2.5) 12.19 (0.3) 41.34 (1.0) 98.77 (2.5) 98.67 (2.5)
30% 99.78 (2.5) 02.52 (0.1) 15.35 (0.4) 99.83 (2.5) 12.19 (0.3) 41.27 (1.0) 99.69 (2.5) 98.61 (2.5)
50% 99.96 (2.5) 01.88 (0.1) 12.30 (0.3) 99.83 (2.5) 14.13 (0.4) 41.12 (1.0) 56.21 (1.4) 99.14 (2.5)

NSAE 0% 99.99 (2.5) 99.98 (2.5) 00.09 (0.0) 99.99 (2.5) 77.03 (1.9) 99.90 (2.5) 97.02 (2.4) 99.58 (2.5)
20% 99.80 (2.5) 99.99 (2.5) 04.82 (0.1) 34.92 (0.9) 36.04 (0.9) 00.00 (0.0) 05.16 (0.1) 99.80 (2.5)
30% 99.99 (2.5) 03.16 (0.1) 00.32 (0.0) 99.83 (2.5) 59.36 (1.5) 15.90 (0.4) 00.35 (0.0) 99.69 (2.5)
50% 99.98 (2.5) 34.36 (0.9) 53.66 (1.3) 99.83 (2.5) 12.36 (0.3) 00.00 (0.0) 19.33 (0.5) 99.40 (2.5)

CORAL 0% 59.18 (1.5) 90.61 (2.3) 30.45 (0.8) 00.80 (0.0) 08.40 (0.2) 55.06 (1.4) 03.40 (0.1) 69.94 (1.7)
20% 61.53 (1.5) 12.64 (0.3) 31.79 (0.8) 50.43 (1.3) 33.74 (0.9) 41.31 (1.0) 50.38 (1.3) 67.54 (1.7)
30% 38.85 (1.0) 99.99 (2.5) 0.00 (0.0) 0.01 (0.0) 22.96 (0.6) 82.21 (2.1) 0.00 (0.0) 95.01 (2.4)
50% 99.99 (2.5) 38.85 (1.0) 00.01 (0.0) 00.00 (0.0) 22.96 (0.6) 82.21 (2.1) 00.01 (0.0) 99.19 (2.5)

MTLS-RED 0% 98.83 (2.2) 96.08 (2.2) 72.41 (2.1) 96.12 (2.4) 28.01 (0.7) 80.99 (2.0) 73.93 (1.8) 73.23 (1.8)
20% 79.00 (2.0) 78.85 (2.0) 78.71 (2.0) 78.68 (2.0) 78.88 (2.0) 79.13 (2.0) 78.82 (2.0) 79.01 (2.0)
30% 83.90 (2.1) 80.70 (2.0) 70.70 (2.0) 83.80 (2.1) 76.50 (1.9) 81.96 (2.0) 85.00 (2.1) 77.10 (1.9)
50% 86.46 (2.0) 89.33 (2.0) 79.20 (2.0) 89.12 (2.0) 78.99 (2.0) 89.33 (2.0) 79.25 (2.0) 79.64 (2.0)

GOLDEN and SOLARIS exhibit distinct correlations from INFIL and BOT-
NET. We aim to enhance generalization by training on datasets with varying
feature correlation structures while ensuring overlapping marginal distributions
for effective extrapolation. 3

4.4 Hyperparameter Sensitivity

In the joint optimization framework, achieving an optimal balance between
the compression regularization (λ) and the mutual information regularization
(β) is crucial for ensuring strong generalization across all classes. The recon-
struction loss, weighted by λ, governs the degree of compression in the la-
tent space—excessive compression may lead to the loss of essential features,
while insufficient compression can result in overfitting to the input distribution.
Meanwhile, the mutual information regularization, controlled by β, acts as a
de-correlation penalty, reducing redundant dependencies between the latent and
input spaces. Properly tuning β ensures that the latent representation retains
only the most discriminative information for classification. Our findings indicate

3 https://github.com/padmaksha18/MTRAE/blob/main/mtrae/mtl-reg-cse-cic-ids-
V333333-noisy-equal-cross.ipynb
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(a) BOTNET (0.0,
0.0; 0.6760)

(b) BOTNET (0.5,
0.5; 0.7332)

(c) BOTNET, SO-
LARIS (0.1,0.1;
0.7670)

(d) BOTNET, SO-
LARIS(0.01, 0.99;
0.7983)

(e) GOLDEN-EYE
(0.0, 0.0; 0.749)

(f) GOLDEN-EYE
(0.01, 0.99; 0.7721)

(g) GOLDEN-EYE,
BOTNET (0.1, 0.1;
0.849)

(h) GOLDEN-EYE,
BOTNET (0.1, 0.9;
0.8915)

Fig. 3: From left to right, the plots show improved average AUC-ROC as datasets
are combined and regularization is applied, enhancing generalization to unseen
domains. We evaluate this using seven CIC-CSE-IDS attack datasets with equal
benign samples, reporting results as (reconstruction weight, MI penalty, Average
AUC on all datasets).

that prioritizing entropy regularization (higher β) while reducing the empha-
sis on reconstruction loss (lower λ) yields the best overall model performance
across diverse scenarios, reinforcing the importance of controlled compression
and structured disentanglement in the latent space.

Importance of kernel bandwidth In a non-parametric estimation method
such as our mutual information penalty, the kernel bandwidth σ plays a crucial
role. By learning σ jointly with the encoder and decoder, we adapt the kernel
scale to match the data distribution’s complexity. We vary the proportion of
cross-domain data in training, ranging from 0%-50% of the source data, to an-
alyze the effects of the de-correlation penalty and reconstruction regularization
under different scenarios. In Tables 1 and 2, we observe that as the proportion
of cross-domain data in training increases, the performance of most baseline
models deteriorates on the IN distribution. In particular, OOD domain data
remain completely unseen throughout the training process. Table 1 reveals an
intriguing trend: as cross-domain data increases to 40% − 50%, adjusting the
kernel bandwidth and hyperparameters β and λ allows us to train a model that
achieves comprehensive generalization across all training and test datasets. Fig-
ure 3 illustrates the improvement in average AUC-ROC as datasets are combined
and regularization is introduced. Both strategies—dataset combination and reg-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: T-SNE projection of the latent space of without regularization case (bot-
tom row) and MTL-RED (top row) for some of the attacks in CIC-IDS and CIC-
IOMT/IOT: SOLARIS, RARE, DOS, DDOS, and RECONAISSANCE. Subfig-
ures (a)–(e) correspond to MTL-RED, and (f)–(j) to no regularization case.

Table 2: We report accuracy (with std deviation) of the proposed and baseline
methods on the CIC-IOMT/IOT dataset Other details are similar as Table 1.

Model Percent SOURCE DOMAINS CROSS DOMAINS OOD DOMAINS
DDOS DOS RECON SPOOF MQTT MIRAI WEB BENIGN

MTAE 0% 99.96 (2.5) 99.99 (2.6) 54.07 (1.5) 46.98 (1.3) 78.43 (2.1) 99.97 (2.8) 30.55 (0.8) 97.53 (2.8)
20% 99.99 (2.8) 99.99 (2.7) 98.66 (2.3) 71.84 (1.4) 78.43 (2.0) 79.38 (1.8) 30.55 (0.7) 97.53 (2.2)
30% 99.99 (2.4) 99.99 (2.5) 99.99 (2.5) 75.55 (1.9) 99.93 (2.9) 80.07 (2.3) 21.38 (0.6) 98.63 (2.3)
50% 99.99 (2.4) 99.99 (2.7) 98.53 (2.1) 74.43 (2.2) 89.42 (2.2) 80.83 (2.2) 29.02 (0.7) 97.78 (2.7)

MMD-AE 0% 99.96 (3.0) 99.96 (2.5) 49.95 (1.3) 41.32 (0.9) 95.87 (2.7) 84.01 (1.8) 21.15 (0.6) 98.56 (2.9)
20% 99.99 (2.8) 99.99 (2.7) 98.47 (2.9) 70.54 (1.9) 90.54 (2.7) 84.01 (2.2) 42.53 (0.9) 96.49 (2.1)
30% 99.99 (2.4) 99.99 (2.8) 99.11 (2.1) 73.60 (1.7) 89.42 (2.5) 77.60 (2.2) 58.04 (1.4) 93.48 (2.4)
50% 99.61 (2.4) 99.46 (2.4) 99.30 (2.5) 78.23 (2.2) 94.84 (2.4) 72.08 (2.1) 67.21 (1.5) 92.41 (2.3)

NSAE 0% 99.99 (2.5) 99.99 (2.0) 46.90 (1.1) 32.42 (0.8) 69.11 (1.7) 99.90 (2.7) 56.05 (1.1) 94.68 (2.0)
20% 99.99 (3.0) 99.99 (2.9) 97.77 (2.8) 69.11 (1.9) 99.90 (2.6) 99.87 (2.1) 36.66 (0.9) 97.71 (2.3)
30% 99.99 (2.6) 99.99 (2.9) 98.70 (2.5) 71.29 (1.9) 99.71 (2.7) 99.90 (2.1) 43.83 (1.2) 96.11 (2.0)
50% 99.99 (2.4) 99.99 (2.7) 98.62 (2.1) 70.64 (2.0) 99.89 (2.3) 99.90 (2.6) 49.70 (1.1) 95.78 (2.4)

CORAL 0% 99.99 (2.6) 99.99 (3.0) 98.53 (2.4) 74.43 (2.2) 89.42 (2.0) 81.13 (2.3) 30.53 (0.8) 98.73 (2.7)
20% 99.99 (2.2) 99.99 (2.8) 98.53 (2.8) 74.43 (2.2) 89.42 (2.1) 81.13 (2.1) 42.30 (1.0) 98.73 (2.2)
30% 99.99 (2.4) 99.99 (2.9) 98.86 (2.5) 75.55 (1.9) 99.90 (2.9) 80.08 (2.3) 42.03 (0.9) 98.73 (2.5)
50% 99.99 (2.5) 99.99 (2.7) 99.11 (2.3) 77.21 (2.0) 99.57 (2.7) 80.51 (2.2) 42.30 (1.0) 98.73 (2.4)

MTLS-RED 0% 99.99 (2.7) 99.99 (2.8) 98.41 (2.4) 78.92 (2.0) 78.21 (1.9) 76.04 (1.8) 73.91 (1.7) 87.67 (2.5)
20% 99.99 (2.6) 99.99 (2.7) 98.41 (2.3) 78.92 (1.9) 78.21 (1.8) 99.75 (2.5) 68.03 (1.6) 91.83 (2.4)
30% 99.99 (2.8) 99.99 (2.5) 98.41 (2.8) 78.21 (1.9) 53.19 (1.5) 99.87 (2.6) 73.67 (1.8) 93.05 (2.3)
50% 99.99 (2.5) 99.99 (2.8) 98.98 (2.5) 81.17 (2.3) 95.87 (2.7) 99.88 (2.3) 75.91 (1.6) 91.20 (2.4)

ularization—enhance generalization to unseen domains. The datasets are added
strategically to improve coverage of unseen domains, ensuring a broader repre-
sentation. In most cases, assigning higher weight to the MI penalty while keeping
the reconstruction weight minimal leads to the best generalization performance.
Figure 2 demonstrates the impact of the regularization penalty on the RARE
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dataset. Our results indicate that incorporating regularization—and particularly
increasing the weight on the mutual information (decorrelation) penalty—leads
to improved and more stable precision, recall, and AUC when training on the
combined GOLDEN-EYE and SOLARIS dataset.

Table 3: We report accuracy (with std deviation) of the proposed and baseline
methods on the Arrythmia dataset. For each case, the dataset contains equal
amount of normal and anomaly samples.

Model Percent (%) SOURCE DOMAINS CROSS DOMAINS OOD DOMAINS
VEB BENIGN SVEB Q F

MTAE 50% 99.17 (2.48) 62.94 (1.57) 60.53 (1.51) 90.41 (2.26) 60.00 (2.50)

MMD-AE 50% 98.58 (2.46) 63.63 (1.59) 44.90 (1.12) 93.33 (2.33) 89.66 (2.24)

NSAE 50% 97.18 (2.43) 72.71 (1.82) 41.70 (1.04) 80.00 (2.00) 90.17 (2.25)

CORAL 50% 97.87 (2.45) 58.24 (1.46) 69.70 (1.74) 95.26 (2.38) 73.33 (1.83)

MTLS-RED 50% 99.34 (2.48) 77.49 (1.94) 73.48 (1.84) 95.52 (2.39) 93.33 (2.33)

In Figure 4, we visualize the latent space representations of a standard multi-
task encoder-decoder model without regularization and our proposed model in-
corporating the MI penalty. We observe improved clustering of source, cross-
domain, and target domain classes when regularization is applied, demonstrating
its effectiveness in structuring the latent space. As shown in Table 2, increas-
ing the proportion of cross-domain data during training significantly enhances
classification performance across OOD datasets, such as WEB and SPOOFING
attacks. Likewise, Table 3 presents the evaluation of our method on the Arrhyth-
mia dataset, where the model is trained on the normal and VEB classes while
considering all other anomaly classes—SVEB, Q as cross-domain, and F—as
OOD test class. In Table 4, we evaluate our approach on a time-series dataset
(EMG Gesture Recognition) and compare with the baselines.

MODEL Domain1 Domain2 Domain3 Domain4
DIFEX 65.02 ± 2.00 66.15 ± 2.50 64.06 ± 2.00 62.98 ± 2.00
CORAL 52.39 ± 2.00 52.51 ± 2.50 53.89 ± 2.00 57.06 ± 2.00

MTL-RED 66.41 ± 3.40 66.30 ± 2.50 55.92 ± 2.00 65.82 ± 2.50

Table 4: Performance (accuracy %) of MTL-RED, DIFEX, CORAL with EMG
time series dataset divided into 4 domains each consisting of 6 classes for all the
9 persons.

5 Conclusion

Our paper addresses the challenge of detecting novel and out-of-distribution
(OOD) anomalies through domain generalization techniques. By training on mul-
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tiple source and cross-domain datasets with distinct correlation structures, we
aim to increase the coverage to generalize to unseen anomaly classes. Subse-
quently, guided by the principle of relevant information preservation (PRI), our
regularization steers the cross-entropy loss in latent space to retain essential fea-
tures to achieve domain generalization. Real-world cybersecurity and healthcare
datasets often exhibit different correlation patterns (varying joint distributions)
among the different classes, which can be exploited to increase the coverage for
extrapolation to new, unseen domains. Future work will further explore methods
for latent space anomaly detection.

Acknowledgment

We gratefully acknowledge the support of the Virginia Tech National Security
Institute (VTNSI) and the Deloitte & Touche LLP, USA, for supporting this
research. We also extend our sincere thanks to our collaborators at Deloitte —
Ajay Kumar, Alison Hu, Sanmitra Bhattacharya, and Edward Bowen for their
insightful contributions.

References

1. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object
recognition with multi-task autoencoders. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2551–2559 (2015)

2. Sathya, R., Sekar, K., Ananthi, S., Dheepa, T.: Adversarially Trained Variational
Auto-Encoders With Maximum Mean Discrepancy based Regularization. In: 2022
International Conference on Knowledge Engineering and Communication Systems
(ICKES), pp. 1–6. IEEE (2022)

3. Shwartz-Ziv, R., Balestriero, R., Kawaguchi, K., Rudner, T.G.J., LeCun, Y.: An
information-theoretic perspective on variance-invariance-covariance regularization.
arXiv preprint arXiv:2303.00633 (2023)

4. Jeon, E., Ko, W., Yoon, J.S., Suk, H.I.: Mutual information-driven subject-invariant
and class-relevant deep representation learning in BCI. IEEE Transactions on Neural
Networks and Learning Systems 34(2), 739–749 (2021)

5. Venkataramanan, S., Psomas, B., Kijak, E., Amsaleg, L., Karantzalos, K., Avrithis,
Y.: It takes two to tango: Mixup for deep metric learning. arXiv preprint
arXiv:2106.04990 (2021)

6. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

7. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: Multi-source
unsupervised domain adaptation with category shift. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3964–3973 (2018)

8. Yang, J., Wang, P., Zou, D., Zhou, Z., Ding, K., Peng, W., Wang, H., Chen, G., Li,
B., Sun, Y., et al.: Openood: Benchmarking generalized out-of-distribution detec-
tion. Advances in Neural Information Processing Systems 35, 32598–32611 (2022)

9. Wang, Wei, Vincent W. Zheng, Han Yu, and Chunyan Miao. "A survey of zero-shot
learning: Settings, methods, and applications." ACM Transactions on Intelligent
Systems and Technology (TIST) 10, no. 2 (2019): 1-37.



16 padmaksha roy et al.

10. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep near-
est neighbors. In: International Conference on Machine Learning, pp. 20827–20840.
PMLR (2022)

11. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization.
arXiv preprint arXiv:1907.02893 (2019)

12. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5400–5409 (2018)

13. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift:
Category-level adversaries for semantics consistent domain adaptation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2507–2516 (2019)

14. Chattopadhyay, P., Balaji, Y., Hoffman, J.: Learning to balance specificity and
invariance for in and out of domain generalization. In: ECCV 2020, pp. 301–318.
Springer International Publishing (2020)

15. Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in
cross-domain few-shot learning via noise-enhanced supervised autoencoder. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9424–
9434 (2021)

16. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D.: Matching networks for one
shot learning. Advances in Neural Information Processing Systems 29 (2016)

17. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Ad-
vances in Neural Information Processing Systems 30 (2017)

18. Lu, W., Wang, J., Li, H., Chen, Y., Xie, X.: Domain-invariant feature exploration
for domain generalization. arXiv preprint arXiv:2207.12020 (2022)

19. Vuorio, R., Sun, S.H., Hu, H., Lim, J.J.: Multimodal model-agnostic meta-learning
via task-aware modulation. Advances in Neural Information Processing Systems 32
(2019)

20. Canadian Institute for Cybersecurity: Public datasets for intrusion detection and
anomaly detection, including CSE-CIC-IDS2018, IoT Dataset, IoMT Dataset, and
Arrhythmia Dataset. Available at https://www.unb.ca/cic/datasets/, last accessed
2025/02/14.

21. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning, pp. 1126–1135.
PMLR (2017)

22. Guo, Y., Codella, N.C., Karlinsky, L., Codella, J.V., Smith, J.R., Saenko, K.,
Rosing, T., Feris, R.: A broader study of cross-domain few-shot learning. In: ECCV
2020, pp. 124–141. Springer International Publishing (2020)

23. Zhou, Kaiyang, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. "Domain
generalization: A survey." IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022).

24. Li, Haoliang, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. "Domain generaliza-
tion with adversarial feature learning." In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5400-5409. 2018.

25. Sung, Flood, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy
M. Hospedales. "Learning to compare: Relation network for few-shot learning." In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1199-1208. 2018.

26. Yu, Shujian, Francesco Alesiani, Xi Yu, Robert Jenssen, and Jose Principe. "Mea-
suring dependence with matrix-based entropy functional." In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 10781-10789. 2021.



Title Suppressed Due to Excessive Length 17

27. Wang, Jindong, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu,
Yiqiang Chen, Wenjun Zeng, and Philip Yu. "Generalizing to unseen domains: A
survey on domain generalization." IEEE Transactions on Knowledge and Data En-
gineering (2022).

28. Li, Ya, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and
Dacheng Tao. "Deep domain generalization via conditional invariant adversarial
networks." In Proceedings of the European conference on computer vision (ECCV),
pp. 624-639. 2018.

29. Jin, Xin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. "Feature alignment
and restoration for domain generalization and adaptation." arXiv preprint
arXiv:2006.12009 (2020).

30. Erfani, Sarah, Mahsa Baktashmotlagh, Masud Moshtaghi, Xuan Nguyen, Christo-
pher Leckie, James Bailey, and Rao Kotagiri. "Robust domain generalisation by
enforcing distribution invariance." In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI-16), pp. 1455-1461. AAAI Press,
2016.

31. Rusu, Andrei A., Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pas-
canu, Simon Osindero, and Raia Hadsell. "Meta-learning with latent embedding
optimization." arXiv preprint arXiv:1807.05960 (2018).

32. Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. "Learning to gen-
eralize: Meta-learning for domain generalization." In Proceedings of the AAAI con-
ference on artificial intelligence, vol. 32, no. 1. 2018.

33. Seo, Seonguk, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bohyung
Han. "Learning to optimize domain specific normalization for domain generaliza-
tion." In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXII 16, pp. 68-83. Springer International
Publishing, 2020.

34. Sun, Baochen, and Kate Saenko. "Deep coral: Correlation alignment for deep do-
main adaptation." In Computer Vision–ECCV 2016 Workshops: Amsterdam, The
Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14, pp. 443-450.
Springer International Publishing, 2016.

35. Tishby, N., Pereira, F. C., Bialek, W. (2000). The information bottleneck method.
arXiv preprint physics/0004057.

36. Kefan Dong and Tengyu Ma. First steps toward understanding the extrapolation
of nonlinear models to unseen domains. arXiv preprint arXiv:2211.11719, 2022.

6 Joint Optimization and the Principle of Relevant
Information Preservation (PRI)

Our approach is motivated by Tishby’s Principle of Relevant Information (PRI),
which states that an optimal representation should preserve only the information
in the input that is necessary for the task at hand, while discarding irrelevant
details. In our context, the goal is to learn a latent representation Z from the
input X that is both predictive of the target Y and minimally influenced by
spurious correlations present in X. To achieve this, we jointly optimize a loss
function that combines three key components:

1. Cross-Entropy Loss (LCE): This term ensures that the latent representa-
tion Z is discriminative enough to accurately predict the target Y .
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2. Reconstruction Loss (Lrecon): This term (e.g., mean squared error) forces
Z to retain sufficient information to reconstruct the input X, thereby pre-
venting excessive compression.

3. Mutual Information Penalty (LMI): By penalizing the mutual informa-
tion between X and Z, this term encourages the model to discard spurious
and domain-specific correlations, leading to a more invariant and disentan-
gled latent space.

The overall objective can be written as:

L = LCE + λrecon Lrecon + λMI LMI, (7)

where λrecon and λMI are hyperparameters that balance the trade-off between re-
construction fidelity and the strength of the decorrelation (compression) penalty.

In the framework of PRI (proposed by Tishby and later on implemented in
various contexts), we aim to minimize the mutual information between X and Z
while maintaining high mutual information between Z and Y . This idea is often
expressed as:

LPRI = I(X;Z)− β I(Y ;Z), (8)

where:

– I(X;Z) quantifies the total information that the latent representation Z
retains about X.

– I(Y ;Z) measures the information in Z that is useful for predicting Y .
– β is a parameter controlling the trade-off between compression (minimizing

I(X;Z)) and predictive power (maximizing I(Y ;Z)).

In practice, our joint loss in Equation (7) serves as a proxy for the PRI
objective in Equation (8):

– The LCE term drives Z to retain information relevant to Y (i.e., maximizing
I(Y ;Z)).

– The combination of Lrecon and LMI encourages Z to compress X by pre-
serving only the necessary information and discarding spurious correlations,
effectively minimizing I(X;Z).

Moreover, our implementation of the mutual information penalty is based
on the Renyi entropy of kernel matrices computed from X and Z, with kernel
bandwidths sx and sy that are adjusted during training. This enables the model
to learn an optimal level of decorrelation, ensuring that the latent space does not
overfit to domain-specific artifacts while still preserving the relevant structure
needed for accurate classification and reconstruction. In summary, our joint op-
timization framework, which integrates classification, reconstruction, and decor-
relation, is a practical instantiation of the PRI principle. By carefully balancing
these objectives, our model is guided to learn a compressed yet task-relevant
latent representation that generalizes effectively across domains.


