
Enhancing Graph Transformers with SNNs and
Mutual Information

Ziyu Wang

The University of Tokyo, Japan
sltdwzy@outlook.com

Abstract. Although the integration of Graph Neural Networks (GNNs)
and Transformers has demonstrated promising performance across vari-
ous graph tasks, it remains computationally expensive. In contrast, brain-
inspired Spiking Neural Networks (SNNs) offer an energy-efficient ar-
chitecture due to their unique spike-based, event-driven paradigm. To
address the high computational cost issue of Graph Transformers while
maintaining the effectiveness to the maximum, in this paper, we propose
a novel framework CSSGT, which leverages both the strength of Trans-
formers and the computational efficiency of SNNs for graph tasks, trained
under the graph contrastive learning framework. CSSGT comprises two
key components: Mutual Information -based Graph Split (MIGS) and
Spike-Driven Graph Attention (SDGA). MIGS is designed for sequential
input of SNNs, splitting the graph while maximizing mutual informa-
tion and minimizing redundancy. SDGA, tailored for graph data, ex-
ploits sparse graph convolution and addition operations, achieving low
computational energy consumption. Extensive experiments on diverse
datasets demonstrate that CSSGT converges within two epochs and out-
performs various state-of-the-art models while maintaining low compu-
tational cost.

Keywords: Graph Neural Networks, Spiking Neural Networks, Trans-
formers, Mutual Information, Graph Contrastive Learning.

1 Introduction

The integration of Graph Neural Networks (GNNs) and Transformers have
achieved remarkable success across various graph tasks (19; 20; 6; 3; 33; 24).
Additionally, this combination demonstrates high biological plausibility. GNNs
are closely aligned with biological systems, while Transformers parallel current
hippocampus models and recapitulate spatial representations found in the brain
(23). However, despite their success, the combination of GNNs and Transform-
ers remains computationally expensive, especially when dealing with large-scale
datasets (28).

Brain-inspired spiking neural networks (SNNs), considered the third gener-
ation of neural networks (11), possess superior energy efficiency and biological
plausibility due to the unique event-driven processing paradigm and the binary
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Fig. 1: Overview of CSSGT, trained under the graph contrastive learning
paradigm. The detailed architecture is shown in Figure 2.

nature of spikes (15). In SNNs, neurons generate sparse and events-driven binary
spikes (0 or 1) to communicate. Thus, during inference, the sparse and event-
driven nature of spikes in SNNs eliminates the need for multiplication and signif-
icantly reduces computational cost, showing the outstanding energy-saving and
memory-saving advantages when deployed on neuromorphic hardware (12; 4; 8).
Moreover, SNNs exhibit memory capabilities due to their intrinsic temporal dy-
namics and the requirement for sequential input (14; 17). Given these charac-
teristics, it is attractive to further incorporate SNNs to improve efficiency while
developing highly biologically plausible models.

There has been research on incorporating SNNs into Transformers. Most
Transformer-based SNNs prioritize maximizing performance instead of fully uti-
lizing the energy efficiency of SNNs, often relying on Multiply-Accumulate (MAc)
operations introduced by the vanilla Transformer architecture (5; 37; 36). (32)
and (31) use the spike-driven paradigm, which only involves sparse Accumu-
late (Ac) operations, thus utilizing the advantage of SNNs to further reduce the
computational cost. However, none of these works have incorporated GNNs or
involved graph tasks. Efforts have also been made to combine SNNs and GNNs.
The main challenge is how to fully exploit the benefits of SNNs for processing
sequential input. (39) employs a strategy in which the graph is repeated multiple
times to sequence the input, resulting in a large amount of redundant informa-
tion without informative content, thereby limiting the performance of SNNs.
Despite these efforts, the advantages of SNNs have yet to be fully exploited.

Our Contributions. In this work, We propose Contrastive learning -based
Split Spiking Graph Transformer (CSSGT). We develop a novel mutual informa-
tion -based graph split method (MIGS), which maximizes mutual information
with class labels while minimizing redundancy between subsets. We theoretically
proved that MIGS is guaranteed to fa within the range of optimal methods.
Inspired by (32), we propose spike-driven graph attention (SDGA) specifically
designed for graph data, which improves performance while maintaining low com-
putational cost by adopting the spike-driven paradigm. To advance our work, we
train CSSGT under the graph contrastive learning framework, further enhancing
its biological plausibility and generalization ability to various datasets.

We conduct comprehensive evaluations on diverse node classification tasks,
ranging from citation networks to Wikipedia networks. Experimental results
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indicate that CSSGT converges within just 2 epochs, achieving performance
surpassing various state-of-the-art (SOTA) models from different perspectives,
while maintaining low energy consumption across various datasets. The main
contributions of this work can be summarized as follows:

– We propose MIGS and SDGA tailored for SNNs in graph tasks. SDGA
achieves significantly lower energy consumption compared to vanilla self-
attention (19).

– Based on MIGS and SDGA, we develop CSSGT. CSSGT is trained under
the graph contrastive learning framework, further enhancing its biological
plausibility and generalizability.

– We conduct comprehensive evaluations on diverse datasets. The results demon-
strate that CSSGT converges within two epochs and outperforms various
SOTA models while maintaining low energy consumption.

2 Related Work

Spiking Neural Networks. SNNs benefit from the integration of deep learn-
ing and neuroscience. Many key SNN designs are inspired by various biological
mechanisms (11; 15; 16; 26). However, the traditional backpropagation training
algorithm cannot be applied directly to the discrete spikes, an alternative we
adopt is surrogate gradient learning (9; 25). It avoids the non-differentiability
of spike signals and approximates the backward gradients of the hard threshold
function using a smooth activation function during backpropagation.

Efficient Transformers. Deploying Transformers with limited resources re-
mains challenging due to their high computational cost (18). Typical optimiza-
tions include token (34), attention (2), and multi-head (13) approaches. Due
to the attention mechanism’s high computation scale, its optimization is a key
focus. Removing softmax and modifying the operation and value of query, key,
and value components are common methods for the optimization. Spiking Trans-
formers typically follow this direction, incorporating SNNs and various compu-
tational orders into Query, Key, and Value components. However, most Spiking
Transformers adopt MAc operations, limiting their efficiency benefits (37; 5; 36).
(32) and (31) adopt the spike-driven paradigm, which involves only sparse Ac
operations to further reduce the computational cost.

3 Method

In this section, we present CSSGT. We first briefly introduce the notation, mu-
tual information, and spiking neuron layer, then present the overall architecture
and the details of each component of CSSGT.

Notations. Let G = (V, E ,X) denote a graph with n nodes and f features,
where V = {vi}ni=1, E and X ∈ Rn×f represent the set of nodes, the set of
edges, and node feature matrix, respectively. Let X(i) be the i-th partition of
X after applying MIGS. Let H(i), Z, and Y denote the node feature matrix in
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the hidden layers of the input partition X(i), the final output of CSSGT, and
the class labels, respectively.

Mutual Information. Mutual information is a measure of shared informa-
tion between variables. Given two variables A and B, mutual information I(A;B)
can be understood as the reduction in uncertainty of B with the knowledge of
A. Formally, I(A;B) is defined as: I(A;B) = H(A)−H(A|B) = H(B)−H(B|A)
where H(A),H(B) are marginal entropies, and H(A|B),H(B|A) are conditional
entropies.

Spiking Neuron Layer. As a fundamental component of SNNs, the spiking
neuron layer (SN) receives input signals, accumulates membrane potential and
compares it with the threshold to determine whether to fire a spike. By default,
we adopt the Parameterized Leaky Integrate-and-Fire (PLIF) neuron model in
our work, whose dynamics can be described as:

U [t] = H[t− 1] +X[t],

S[t] = Hea(U [t]− uth),

H[t] = Vreset · S[t] + βU [t](1− S[t]),

β = exp(−∆t/τ)

where t denotes the time step of the input sequence, and U [t] denotes the mem-
brane potential produced by combining the spatial input X[t] and the temporal
input H[t− 1]. PLIF model extends the LIF model by making key neuronal pa-
rameters learnable during training. Specifically, membrane constant τ , threshold
uth, and reset potential Vreset are all learnable parameters. When the membrane
potential exceeds the threshold uth, SN fires a spike (denoted by S[t] = 1); other-
wise it does not (denoted by S[t] = 0). We use the Heaviside step function Hea(·)
to describe this mechanism, Hea(x) = 1 when x ⩾ 0, and Hea(x) = 0 otherwise.
H[t], Vreset, and β < 1 denote the temporal output, the reset potential, and the
decay factor, respectively.

3.1 Overall Architecture

The architecture of CSSGT is shown in Figure 1 and Figure 2. The implemen-
tation of each component is detailed in Appendix C. The input is first split into
T groups {Gi}Ti=1 using MIGS. Each group Gi then passes through a graph con-
volution block, Spiking Graph Position Encoding, and SDGA in order. Residual
connections are incorporated in SGPE and SDGA. The outputs {Hi}Ti=1, are
concatenated into H, which is fed into a classification head and trained under
the standard graph contrastive learning paradigm. The model can be written as
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Fig. 2: The detailed architecture of CSSGT encoder.

follows:

{X(i)}Ti=1 = MIGS(X), X(i) ∈ Rn×fi , X ∈ Rn×f

H
(i)
GCB = GCB(X(i)), H

(i)
GCB ∈ Rn×h

H
(i)
SGPE = H

(i)
GCB + SGPE, H

(i)
SGPE ∈ Rn×h

H(i) = H
(i)
SGPE + SDGA, H

(i)
Att ∈ Rn×h

H = Concat({H(i)}Ti=1), H ∈ RT×n×h

Z = CH(H), Z ∈ RT×n×c

Where h is the hidden dimension, T is the number of partitions, n is the
number of nodes and fi is the feature dimension of the i-th partition. CH is
classification head, which is implemented using a linear layer.

3.2 Mutual Information-based Graph Split

We address the challenge of processing graph data to meet SN’s requirement
for sequential input. A common approach is to split the graph into multiple
groups along the feature dimension, ensuring a uniform distribution of nodes
across these groups. This reduces inter-group variability, simplifies further pro-
cessing, and lowers computational complexity. The key challenge, as mentioned
earlier, is organizing the feature distribution to allow SNs to effectively integrate
information over time while minimizing information loss.

We propose MIGS, a graph splitting method based on information theory.
Along the feature dimension, we split X into T disjoint subsets {X(i)}Ti=1, such
that each subset X(t) ∈ RN×Ft maximizes the mutual information I(X(t);Y )
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Algorithm 1 Mutual Information-based Graph Split
Input:
Feature matrix X ∈ Rn×f

Class labels Y ∈ {1, 2, · · · , C}N
Number of partitions T
Regularization parameter λ
Output:
Partitions {X(i)}Ti=1

Initialize:
Mutual information I(xi;Y ),
I(xi;xi′)
Empty partitions {X(i)}Ti=1

Unassigned features U = {xi}fi=1

for t = i to T do
Select xf with highest I(xf ;Y )
Assign xf to partition X(i)

Remove xf from U
end for

while U is not empty do
for each unassigned feature xf ∈ U do

for each partition i = 1 to T do
Calculate mutual information gain
∆I

(i)
label(xf ) = I(xf ;Y )

Calculate redundancy
∆I

(i)
rdd(xf ) =

∑
xf′∈X(t)

I(xf ;xf ′)

Compute net gain ∆I(i)(xf )

= ∆I
(i)
label(xf )− λ∆I

(i)
rdd(xf )

end for
Assign xf to partition
t∗ = argmaxi∆I(i)(xf )
Remove xf from U

end for
end while

with the class labels Y , ensuring that the most discriminative features are pre-
served and propagated through the network. The partition also ensures each
subset minimizes the redundancy between subsets, reducing information over-
lap.

We start by formulating the optimization problem (proved in Appendix B.1):

Proposition 1. Maximizing the mutual information I(Z;Y ) between Z and Y
is equivalent to solving the following optimization problem, where λ is a regular-
ization parameter:

X(t) = argmax
T∑

t=1

I(X(t);Y )− λ
∑
t ̸=s

I(X(t);X(s)),∀t, s ∈ {1, 2, · · · , T}

We employ a greedy feature partitioning algorithm to solve this optimization
problem. The algorithm begins by computing the mutual information between
each feature and the class labels I(xf ;Y ) = H(xf ) − H(xf |Y ), as well as the
mutual information between all pairs of features I(xf ;xf ′) = H(xf )−H(xf |xf ′).
Each partition X(i) is initialized with the feature that has the highest I(xf ;Y ).

At each iteration, we assign a feature to the partition that yields the maxi-
mum net gain ∆I(t)(xf ) = ∆I

(t)
label(xf )−λ∆I

(t)
rdd, where ∆I

(t)
label(xf ) = I(xf ;Y ),

∆I
(t)
rdd(xf ) =

∑
xf′∈X(t)

I(xf ;xf ′). By selecting the partition that maximizes the

net gain for each feature, the algorithm ensures that each partition contains
highly informative and minimally redundant features. This method effectively
constructs feature subsets that, when processed through SNs, minimize infor-
mation loss and enhance performance by providing diverse and complementary
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and our Spike-Driven Graph Attention (SDGA). The key differences are: (a) we
use graph convolution layer instead of re-parameterization convolution layer and
linear layer to process graph data; (b) we use column-wise average operation
instead of column-wise sum operation.

information across partitions. A comprehensive description is provided in Algo-
rithm 1.

We further conclude that the greedy algorithm is guaranteed to fall within
the range of optimal solutions, as shown in Proposition 2 (proved in Appendix
B.2).

Proposition 2. The greedy algorithm given above approaches the optimal solu-
tion. Specifically, For the maximization optimization of the objective function f
in Proposition 1, the greedy algorithm partition solution SGreedy and the optimal
solution S∗ satisfy:

f(SGreedy) ⩾ (1− 1

e
)f(S∗)

3.3 Spike-Driven Graph Attention

In this section, we present the architecture of SDGA. The detailed energy anal-
yses are provided in Section 4.5 and Appendix A.

Given the input X ∈ Rn×f , to leverage the computational efficiency, we first
apply SN to the input:

Xs = SN(X)

Instead of using the convolution layer employed by Spike-Driven Self-Attentions (32;
31), or the linear layer adopted by the Vanilla Self-Attention, SDGA employs
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graph convolution to obtain the query Q, key K and value V :

Q = BN(GConvQ(Xs)),

K = BN(GConvK(Xs)),

V = BN(GConvV (Xs))

where Q,K,V ∈ Rn×h, GConvQ, GConvK , GConvV are graph convolution
layers, BN is batch normalization layer, h is the hidden dimension. Since Xs is
a sparse binarized matrix, the computation cost of graph convolution remains
low. Then we apply SN again:

Qs = SN(Q), Ks = SN(K), Vs = SN(V )

Inspired by SDSA-1 (32), we compute the Hadamard product between Qs and
Ks. This operation can be regarded as energy-free, as the Hadamard product
between spikes is equivalent to the element-wise mask operation:

α = Qs ⊙Ks, α ∈ Rn×h

Given that the threshold of SN is in the range [0, 1], instead of column-wise
sum operation, we use column-wise average operation before SN, ensuring the
input is scaled appropriately within the range [0, 1]. We then compute the mask
operation with Vs:

α = SN(Average(α)), α ∈ Rn×1

Vmask = Mask(α, Vs), Vmask ∈ Rn×h

Finally we apply graph convolution to Vmask to obtain the SDGA:

SDGA = BN(GConv(Vmask))

We outline the architecture of SDGA and compare it with other attention mech-
anisms (see Figure 3). The intuition behind SDGA is that graph convolution
is better suited for graph data, with energy consumption comparable to MLP,
significantly lower than traditional convolution. Therefore, we integrate graph
convolution into the attention mechanism, and the column-wise average opera-
tion ensures the input is appropriately scaled within the range [0, 1].

It is important to note that the single-head SDGA can be easily extended
to multi-head SDGA (MSDGA). After the first graph convolution, we split the
query Q, key K, and value V into H multiple heads: Q = (Q̂1, Q̂2, · · · , Q̂H),

K = (K̂1, K̂2, · · · , K̂H), V = (V̂1, V̂2, · · · , V̂H) Where Q̂i, K̂i, V̂i ∈ Rn×h/H .
Then we apply SDGA on each head and concatenate the outputs to obtain the
final output MSDGA:

MSDGA = (SDGA(Q̂1, K̂1, V̂1), · · · , SDGA(Q̂H , K̂H , V̂H))
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3.4 Graph Convolution Block

The graph convolution block (GCB) contains two graph convolution layers (GConv)
and two batch normalization layers (BN):

Ĥ
(i)
GCB = BN1(GConv

(i)
1 (X(i))), i ∈ {1, · · · , T}

H
(i)
GCB = BN2(GConv2(SN(Ĥ

(i)
GCB)))

Different graph subsets are processed sequentially by GCB. For each input sub-
set, the first graph convolution layer Conv

(i)
1 has different inputs but identical

output dimensionality. The second graph convolution layer Conv2 has the same
input and output dimensionality with parameters shared for different input sub-
sets.

3.5 Spiking Graph Position Encoding

In spiking graph position encoding, similar to SDGA, we first apply the spiking
neuron layer to reduce computational cost, followed by graph convolution to
encode the position information. Specifically, for the input X, spiking graph
position encoding (SGPE) can be expressed as:

SGPE = BN(GConv(SN(X)))

3.6 Graph Contrastive Learning

We follow the conventional graph contrastive learning framework for training.
To generate two different views, we apply edge dropout and cosine loss (1) on
the final outputs:

loss(x, y) =

{
1− cos(Z1,Z2), if y = 1

max(0, cos(Z1,Z2)− margin), if y = −1

Where Z1, Z2 are the final output pairs, x = (Z1,Z2) represents a pair of graph
representations, and y determines whether the pairs are positive or negative.
Cosine loss maximizes the similarity between positive pairs and minimizes it for
negative pairs by computing the cosine similarity.

4 Experiments

In this section, we first present the experimental settings(Section 4.1). We then
evaluate the test accuracy and convergence performance of CSSGT on node
classification tasks across diverse datasets, comparing it with various models
(Sections 4.2 and 4.3). We also conduct ablation studies on SDGA, MIGS, and
the impact of hyperparameters, including spiking threshold, the number of GNN
layers, and the type of SNs (Section 4.4). Finally, we provide the analysis of en-
ergy efficiency across various attention mechanisms and models (Section 4.5).
Implementation details and additional experiment results are provided in Ap-
pendix C and Appendix E.
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4.1 Setup

Datasets. The experiments are conducted on six commonly used graph datasets:
Cora, Citeseer, Pubmed, Chameleon, Squirrel, and obgn-Arxiv. The first three
are medium-sized citation networks with high homophily ratios. Chameleon and
Squirrel are Wikipedia networks and identified as heterophilic graphs. obgn-Arxiv
is a well-known large-scale graph. The details are provided in Appendix D.

Baselines. We compare CSSGT with a wide range of SOTA baselines from
various perspectives. In terms of classical supervised GNNs, We compare against
GCN (7), GAT (21), and an advanced GNN, JKNet-GAT (29), in which GAT
is used as the backbone of JKNet. In terms of unsupervised models, we compare
with SOTAs including DGI (22), GRACE (38), and CCA-SSG (35). In terms
of spiking-based models, we compare against GC-SNN (30), GA-SNN (30), and
SpikingNet (10). In terms of Transformer-based models, we compare with various
SOTAs including NodeFormer (24), Graphormer (33), GraphTrans (27), and
SGFormer. Since the original Graphormer and GraphTrans are too large to scale
on all datasets, we compare with the small-sized versions, Graphormersmall (3
layers and 8 heads), GraphTranssmall (3 layers and 4 heads), Graphormerultrasmall
(2 layers and 1 head), GraphTransultrasmall (2 layers and 1 head).

4.2 Node Classification

Table 1 reports the results of all the models. Results demonstrate that CSSGT
effectively handles both homophilic and heterophilic graphs, consistently outper-
forming all competitors across every dataset. Notably, CSSGT achieves its high-
est improvements on Citeseer over Transformer-based models, and on Pubmed
over classical and unsupervised models. Since both of these datasets have high
feature dimensions, a possible explanation for the significant improvement of
CSSGT is that MIGS splits the high-dimensional input into multiple lower-
dimensional inputs, which helps to reduce information loss from the input data.

4.3 Convergence Analysis

We further study the convergence performance of CSSGT in node classification
task. To ensure the clarity of the figures, we report the accuracy curves on
Cora, Pubmed, Chameleon, and Squirrel, comparing CSSGT with NodeFormer,
GAT, JKNet-GAT, and GCN. The results are presented in Figure 4. Results
demonstrate that, across all the datasets, CSSGT consistently converges within
two epochs and achieves the highest accuracy. In contrast, on medium-sized
datasets Cora and Citeseer, competitors require at least 30 epochs to converge.
On larger datasets Chameleon and Squirrel, the performance of competitors
barely improves after 30 epochs. A possible explanation is that the combination
of MIGS and SDGA effectively leverages the advantages of SNs for processing
sequential data, as the input data in each epoch is split into multiple partitions,
serving as sequential input to the SNs.
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Methods U S T Cora Citeseer Pubmed Chameleon Squirrel obgn-Arxiv
GCN 81.5±0.1 71.3±0.2 79.0±0.2 54.3±3.0 38.6±1.8 71.8±0.3
GAT 83.0±0.7 72.5±0.7 79.0±0.3 51.2±3.1 35.6±2.1 72.1±0.1

JKNet-GAT 83.3±0.4 72.7±0.3 79.9±0.5 51.5±1.3 40.1±1.5 72.3±0.2
DGI ✓ 82.3±0.6 71.8±0.7 76.8±0.6 60.3±0.7 39.4±1.1 70.3±0.2

GRACE ✓ 81.9±0.4 71.2±0.5 80.6±0.4 58.1±0.9 41.4±0.7 71.5±0.4
CCA-SSG ✓ 84.0±0.4 73.1±0.3 81.0±0.4 57.4±1.4 42.2±1.0 71.2±0.5
GC-SNN ✓ 80.7±0.6 69.9±0.9 OOM 53.1±1.4 39.4±1.1 66.4±0.3
GA-SNN ✓ 79.9±0.6 69.1±0.5 OOM 54.6±0.9 38.7±1.3 66.7±0.2

SpikingNet ✓ 82.6±0.5 71.4±0.5 78.6±0.3 55.7±1.9 40.7±1.8 67.5±1.8
Nodeformer ✓ 83.2±0.9 72.5±1.1 79.9±1.0 49.6±4.1 38.5±1.5 59.9±0.4

Graphormersmall ✓ 75.8±1.1 65.6±0.6 OOM 54.9±2.8 40.9±2.5 OOM
Graphormerultrasmall ✓ 74.2±0.9 63.6±1.0 OOM 54.2±2.4 33.9±1.4 OOM

GraphTranssmall ✓ 80.7±0.9 69.5±0.7 OOM 55.7±3.3 41.0±2.8 OOM
GraphTransultrasmall ✓ 81.7±0.6 70.2±0.8 77.4±0.5 55.2±2.9 40.6±2.4 OOM

SGFormer ✓ 84.5±0.8 72.6±0.2 80.3±0.6 56.9±3.9 41.8±2.2 72.6±0.1
CSSGT (ours) ✓✓✓ 87.3±1.2 77.6±1.0 86.9±0.8 60.7±1.2 42.6±1.9 73.2±0.7

Table 1: Node classification test accuracy. U, S, T, and OOM stand for unsuper-
vised, spiking-based, Transformer-based, and out of memory, respectively.

4.4 Ablation Study

We proceed to conduct ablation studies on MIGS, SDGA, SGPE, and the impact
of hyperparameters, including spiking threshold, number of GNN layers, and
type of SNs. Due to space limitations, we present the figures of accuracy curves
and the table of results on dataset Chameleon, Squirrel, Cora, and Citeseer. The
implementation details and additional results are provided in Appendix C and
Appendix E.

Model Cora Citeseer Chameleon Squirrel
w/o SDGA 85.4 73.8 60.5 40.0
w/o SGPE 85.4 75.4 59.6 38.2

1-head 87.2 76.5 61.2 41.3
2-head 87.5 76.3 61.2 40.6
4-head 87.3 76.5 61.4 41.3
8-head 87.6 76.5 61.2 40.8

Table 2: Ablation on SDGA and
SGPE

Mutual Information-based Graph
Split. Figure 5a presents the accuracy
curves of CSSGT with varying numbers of
split groups, ranging from 1 to 100. The
results consistently indicate that CSSGT
is relatively insensitive to the number of
groups when the number is greater than 20.
However, when the number of groups is less
than 20, both performance and convergence
speed improve as the number of groups in-
creases.

Spike-Driven Graph Attention and
Spiking Graph Position Encoding.

Table 2 presents the accuracy comparison of CSSGT with varying numbers
of attention heads, from 1 to 8, without SDGA, and without SGPE. The results
demonstrate that, both SDGA and SGPE consistently enhance the performance
of CSSGT. The 4-head SDGA achieves the best performance, surpassing CSSGT
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Fig. 4: Node classification accuracy curves comparison on Chameleon, Squirrel,
Cora, and Citeseer datasets. CSSGT consistently converges within two epochs
and achieves the highest accuracy.

1 10 20 40 60 80 100 PLIF LIF IF 0.1 0.3 0.5 0.7 0.9 16 32 64 128

1 2 3 4 5 6 7 8 9 10
Epoch

.3

.4

.5

.6

A
cc

ur
ac

y

Chameleon

(a) MIGS

1 2 3 4 5 6 7 8 9 10
Epoch

.30

.40

.50

A
cc

ur
ac

y

Squirrel

(b) Spiking type

1 2 3 4 5 6 7 8 9 10
Epoch

.8

.9

A
cc

ur
ac

y

Cora

(c) Spiking threshold

1 2 3 4 5 6 7 8 9 10
Epoch

.70

.80

A
cc

ur
ac

y

Citeseer

(d) Dimensions

Fig. 5: Ablation studies. (a) MIGS with different number of partitions; (b) type
of the spiking model type in SNs; (c) threshold of SNs; (d) hidden dimension
of all graph convolution layers.

without SDGA by 3.7% on Citeseer and CSSGT without SGPE by 3.3% on
Squirrel.

Impact of spiking type and hyperparameters. Figure 5b, 5c, and 5d
present the accuracy curves of CSSGT with different types of SNs: Parameter-
ized Leaky-and-Integrate (PLIF) model, Leaky-and-Integrate (LIF) model, and
Integrate-and-Fire (IF) model; different spiking thresholds: 0.1, 0.3, 0.5, 0.7, 0.9;
and different hidden dimensions: 16, 32, 64, and 128, respectively. The results in-
dicate that CSSGT is relatively insensitive to spiking type and hyperparameters.
Nevertheless, a spiking threshold of 0.7, and hidden dimension of 64 outperforms
other settings.

4.5 Efficiency Analysis

Attention analysis. We calculate the complexity, total number of operations,
and energy consumption of SDGA compared with VSA, SDSA-1, and SDSA-2.
We assume the input matrix is of size n × h. The results are summarized in
Table 3, and the detailed calculation process is provided in Appendix A. The
results show that SDGA achieves the lowest number of operations and energy
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Architecture Complexity Cora Citeseer Chameleon Squirrel
VSA O(hn2) 994M/4.57mJ 1491M/6.86mJ 707M/3.25mJ 3608M/16.60mJ

SDSA-1 O(h2n) 559M/0.50mJ 655M/0.59mJ 571M/0.51mJ 1202M/1.08mJ
SDSA-2 O(h2n) 581M/0.52mJ 687M/0.62mJ 610M/0.55mJ 1265M/1.14mJ

SDGA (ours) O(h2n) 198M/0.18mJ 232M/0.21mJ 203M/0.18mJ 426M/0.38mJ
Table 3: Comparison of the number of operations and energy consumption be-
tween different attention mechanisms. The results are presented in the form of
operations/energy.

Architecture Cora Citeseer Chameleon Squirrel
CCA-SSG 4.40B/20.08mJ 13.12B/60.24mJ 5.76B/26.48mJ 11.84B/54.64mJ
SGFormer 0.57B/2.62mJ 1.67B/7.66mJ 0.74B/3.39mJ 1.53B/7.03mJ

CSSGT (ours) 0.93B/0.84mJ 2.09B/1.88mJ 1.16B/1.04mJ 2.38B/2.14mJ
Table 4: Comparison of the number of operations and energy consumption be-
tween CCA-SSG, SGFormer, and CSSGT. The results are presented in the form
of operations/energy.

consumption across all datasets, with up to 43.68× lower energy consumption
compared to VSA, and around 3× lower energy consumption compared to SDSA-
1 and SDSA-2.

Model analysis. We further compare the number of operations and energy
consumption of CSSGT with CCA-SSG and SGFormer, two of the most effi-
cient architectures in contrastive learning-based and Transformer-based models.
The results are presented in Table 4, with detailed calculations provided in Ap-
pendix A. The results show that CSSGT is significantly more efficient compared
to CCA-SSG. Although CSSGT has a larger number of operations compared
to SGFormer, since the operations are Ac in CSSGT, while CCA-SSG and SG-
Former rely on MAc, the energy consumption of CSSGT is even 3× lower.

5 Conclusion and Discussion

In this paper, to address the high computational cost issue of Graph Transform-
ers during inference, we aim to achieve effective performance while fully lever-
aging the efficient nature of SNNs. Therefore, we first propose the novel MIGS
minimizing the information loss to ensure effectiveness, supported by solid theo-
retical foundations. We then incorporate SNNs globally in Graph Transformers a
spike-driven paradigm to ensure efficiency, which is also, to our best knowledge,
the first study in this direction. This incorporation consists of SDGA, SGPE,
and GCB. We train the network under GCL and name it CSSGT.

Discussion on performance. A possible explanation for CSSGT’s great
performance lies in the combination of SNNs and MIGS. In CSSGT, we intro-
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duce an SN before each graph convolution operation, which sparsifies the data
and limits the operations to simple Accumulate operation (detailed in Appendix
A), significantly reducing energy consumption. While some information loss is
inevitable, this approach introduces two key advantages beyond efficiency: a tem-
poral dimension, along which MIGS encodes the information of the input; and
the accumulation dynamics of SNs, which provide memory of previous inputs.

Discussion on experiments. Given the theory of GCL and the linear eval-
uation protocol used for evaluation, which is a simple linear classifier on top
of the frozen representations for a specific downstream task, as detailed in the
implementation details section, the model’s representations will generalize to
various downstream tasks, even with a minimal and task-agnostic evaluation
setup. Thus, it is standard practice to use the node classification evaluation
task as a proxy to assess the representation of the model. We note that CSSGT
can potentially be extended to other graph tasks such as dynamic graph node
classification and graph classification.

Discussion on GCL. The key insight of using Contrastive learning is that
SNNs inherently introduce the temporal dimension into the graph data, result-
ing in additional information and relevance in the time domain. However, the
binary nature of SNNs causes the loss of information for the supervised-based
method, which makes it hard to handle the relevance of data. Contrastive learn-
ing provides a framework to explicitly leverage temporal correlations, fully align-
ing with the SNNs’ strength in processing sequential data. Moreover, since the
spikes generated by SNNs often exhibit high sparsity (please refer to Appendix
E.6), contrastive learning can handle the sparse data well by enhancing the
ability to utilize the relevant information. Lastly, Contrastive learning improves
robustness, which can be crucial given SNNs’ binary nature.

Limitation. Although the calculation of mutual information in MIGS is
required only once for a given dataset, it remains relatively computationally
expensive.
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