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Abstract. As machine learning techniques continue to permeate a variety of ap-
plication domains with significant societal impact, the focus on algorithmic fair-
ness is becoming an increasingly critical aspect of this established area of re-
search. Existing studies on fairness typically assume that algorithmic bias stems
from a single, predefined sensitive attribute in the data, thereby overlooking the
reality that multiple sensitive attributes are often prevalent simultaneously in the
real world. Unlike previous works, this paper delves into the realm of group fair-
ness involving multiple sensitive attributes, a setting that greatly increases the
difficulty of mitigating algorithmic bias. We posit that this multi-attribute per-
spective provides a more pragmatic model for fairness in real-world applications,
and show how learning with such an intricate precondition draws new insights
that better explain algorithmic fairness. Furthermore, we develop the first-of-its-
kind unified metric, Multi-Fairness Bonded Utility (MFBU), designed to simulta-
neously evaluate and compare the trade-offs between fairness and utility of multi-
source bias mitigation methods. By combining fairness and utility into a single,
intuitive metric, MFBU provides model designers the flexibility to holistically
evaluate and compare different fairness techniques. Thorough experiments con-
ducted on three real-world datasets substantiate the superior performance of the
proposed methodology in minimizing discrimination while maintaining predic-
tive performance.

Keywords: Fairness · Multi-dimensional sensitive attributes · Unified metric ·
Decision tree.

1 Introduction

Increasing integration of machine learning (ML) algorithms into various information
systems for decision-making applications has led to significant successes across numer-
ous domains [14,36,4]. Despite these remarkable achievements, as ML algorithms be-
come more deeply woven into our societal fabric and begin to supplant human decision-
making in high-stakes contexts such as resource allocation [68], and loan approval [52],
ensuring their fairness has gained increased prominence. This urgency is highlighted
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by cases where biases in ML algorithms have resulted in serious consequences, such as
Amazon’s decision to discard an automated hiring tool biased against women [46] and
the predictive policing software PredPol reinforcing racially biased practices by increas-
ing police presence in minority neighborhoods regardless of actual crime rates [27].

In response to these challenges, a number of fairness-aware ML methods have been
proposed in recent years that aim to prevent algorithmic decisions from discriminating
against specific groups defined by sensitive attributes such as race and gender. How-
ever, most existing works [68,29,64] addressing fairness in machine learning, including
their metrics (e.g., demographic parity [15], equal opportunity [10]), focus primarily
on the impact of a single sensitive attribute. This approach ignores that real-world data
often contains multiple sensitive attributes such as race and gender operating simultane-
ously. When fairness is considered along only one dimension, discrimination can persist
along others. For example, an algorithm that achieves statistical fairness with respect to
race in loan applications might still discriminate against Black female applicants due
to unaddressed gender bias, as intersectional combinations of attributes create unique
patterns of disadvantage that single-attribute approaches cannot detect [24].

On the other side, in the context of fairness, one long-standing challenge is the
trade-off between fairness and predictive performance, where improving fairness typ-
ically comes at the cost of reduced accuracy. Current evaluations present fairness im-
provement and accuracy loss as separate metrics, simply displaying performance indi-
cators and fairness indicators independently. In practical applications, stakeholders need
a consolidated metric that includes both dimensions [62]. This challenge becomes even
more complex with multiple sensitive attributes, as existing fairness indicators produce
multiple values—one for each sensitive attribute—further complicating the evaluation
process. Consequently, to address both challenges simultaneously, we need a cohesive
metric that can clearly delineate the trade-off between fairness and predictive perfor-
mance while handling multiple sensitive attributes.

There is an urgent practical need to design decision-making systems and fairness
metrics, both of which account for multiple sensitive attributes, presenting unique chal-
lenges: i) Multiple Potential Sources of Bias: In situations involving multiple sensitive
attributes, the bias of a sample may originate from several sources simultaneously [21].
Unlike scenarios with a single sensitive attribute, ensuring fair model predictions in
this setting necessitates that all potential sources of bias be mitigated concurrently. ii)
Effective and Robust Trade-off Balance Between Fairness and Performance: The
trade-off between performance and fairness, characterized by the typical inverse re-
lationship between algorithmic fairness based on sensitive attributes and utility [15],
introduces additional complexities in multi-sensitive attribute settings. When multiple
sensitive attributes are present, each attribute introduces its own fairness-performance
trade-off, requiring a balance not just between fairness and performance, but across the
different attributes themselves. Consequently, finding an optimal balance between miti-
gating multiple bias sources and preserving performance becomes a more complex op-
timization problem that requires a systematic approach. iii) The Lack of an Intuitive
Measure of Model Fairness for Multiple Sensitive Attributes: Traditional fairness
evaluations typically present improvements in fairness and losses in utility as distinct
metrics [25]. However, these metrics do not offer a reliable means of jointly quantify-
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ing the inherent trade-off between the two. Further, existing methodologies fall short
in measuring model fairness under multiple sensitive attributes using a single, unified
metric.

To tackle these challenges, this paper explores the mitigation and quantification of
algorithmic bias arising from multiple sensitive attributes, marking the first work, to the
best of our knowledge, to simultaneously address both the mitigation and measurement
of such biases. Specifically, we propose a fairness splitting criterion that incorporates
bias mitigation for multiple sensitive attributes with an efficient trade-off between utility
and fairness. Building on this, we propose a tree-based learning framework to build
statistically fair trees for multiple attributes, which can be adapted for any decision
tree algorithm. In addition, we propose a unified metric that captures the multifaceted
fairness-accuracy trade-off in this complex setting, enabling more direct measurement
of fairness and performance trade-offs.

Our major contributions are: i) Fair Intersectional Information Gain (FIIG), an in-
novative splitting criterion designed specifically for fairness-aware ML that pioneers
a systematic method to tackle bias across multiple sensitive attributes simultaneously.
Our unique splitting criterion seamlessly balances utility and fairness, thereby enhanc-
ing both the efficiency and robustness of the model. Furthermore, it can be readily
integrated into any decision tree learning algorithm, thus significantly broadening its
reach and impact. ii) FIIG is further incorporated into a pioneering probabilistic tree
learning framework, Multi-dimensional Fair Decision Tree (MFDT), which builds sta-
tistically fair trees for multiple sensitive attributes that are flexibly tunable regarding
the performance-fairness trade-off. For each node, MFDT generates a Pareto front to
first identify the set of Pareto-optimal solutions and then selects the feature maximizing
FIIG, thereby extending any decision tree algorithm to balance accuracy and fairness
effectively and in an adaptable manner. iii) A novel fairness-performance metric, Multi-
Fairness Bonded Utility (MFBU), capable of handling multiple sensitive attributes con-
currently just as effectively as a single sensitive attribute. MFBU unifies and intuitively
evaluates the trade-off between fairness and accuracy when mitigating biases from mul-
tiple sources. iv) Extensive empirical experiments on three real-world datasets with
multiple sensitive attributes demonstrate the efficacy of the proposed unified metrics
and fairness-aware algorithm.

2 Related work

Fairness-aware Learning with Single Binary Sensitive Attributes. Fairness is a
widespread issue in machine learning systems [25,39]. In recent years, researchers have
proposed a number of fairness notions and methods for quantification and mitigation of
bias in machine learning algorithms. For instance, Kamiran et al. established several
key approaches: modifying training data through label and attribute adjustments [21]
and developing fairness-aware splitting criteria for decision trees [22]. Building upon
these preprocessing and in-processing techniques, Zafar et al. [63] advanced the field
by incorporating fairness directly into the optimization function, limiting outcome dif-
ferences across demographic groups while maintaining model integrity. More recent
approaches have focused on optimizing fairness more efficiently. MiniMax [28] at-
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tempts to reduce maximum group risk, though residual bias can remain, while Herrear
et al. [35] proposed a novel meta-learning approach using regression models to pre-
dict the fairness of hyperparameter settings before full training, reducing computational
costs of fairness optimization. Despite these advancements, like most existing AI fair-
ness approaches, these methods are designed for a single binary sensitive attribute (e.g.,
Gender = {Male, Female}) and struggle to handle scenarios involving multiple sensitive
attributes simultaneously.
Fairness-aware Learning with non-Single Binary Sensitive Attributes. Recently,
researchers have started exploring fairness beyond binary single sensitive attributes,
addressing both multi-valued attributes (e.g., Race = {White, Black, Other}) and mul-
tiple attributes simultaneously (e.g., combining Race with Gender). For instance, Mo-
rina et al. [30] extended the single-attribute fairness metric proposed by [17] and miti-
gated bias for multiple attributes via a post-processing method. However, their work is
limited to binary-sensitive attributes, restricting its applicability in scenarios involv-
ing multi-valued attributes like race or ethnicity. Fair-SMOTE [58] is a representa-
tive method within another line of approach, data rebalancing techniques, that aim
to achieve group fairness by balancing representation among different subgroups in
a dataset. This method identifies similarity groups using clustering and generates sim-
ulated samples to guarantee adequate representation for all subgroups. However, the
oversampling strategy may lead to overfitting due to insufficient numbers of real sam-
ples, particularly for intersectional groups with minimal representation. In addition,
FairMask [32], a hybrid pre- and post-processing method for multiple attributes, re-
duces bias from imbalanced training data by using models learned from independent
non-sensitive variables to represent sensitive attributes and relabel sensitive attributes
seen during deployment. However, they ignore intersectional bias by handling only one
sensitive attribute at a time, resulting in samples that may suffer discrimination across
different sensitive attributes. For example, Black female applicants may face discrimi-
nation based on both gender and race simultaneously.

Different from existing works, our work explicitly addresses intersectional fairness
by developing methods that directly handle multiple sensitive attributes simultaneously.
Our main contributions are two-fold: First, we propose the Fair Intersectional Informa-
tion Gain (FIIG) criterion to efficiently tackle bias from multiple sensitive attributes
while preserving the advantages of decision trees. This approach offers a unique trade-
off between utility and fairness without restricting the algorithm to binary classifiers or
specific domains. Second, we introduce the MFBU metric that comprehensively eval-
uates and compares multiple fairness techniques based on their performance. MFBU
facilitates the intuitive selection of fairness techniques for any number of sensitive at-
tributes, accommodating both single-sensitive and multiple-sensitive attribute scenar-
ios. Importantly, our approach is flexible regarding the fairness metrics, enabling end-
users to select the most appropriate metric for their specific task.

3 Notations

Given a dataset D = {d1, d2, . . . , dn} containing a sequence of independent and iden-
tically distributed samples. Each data instance di ∈ D has an associated class label
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y ∈ {0, 1}, forming a sequence of class labels Y . The predicted class label is denoted by
ŷ. Every sample di can be described as di = {X , S, y}, where X = {x1, x2, . . . , xm}
denotes a set of non-sensitive attributes, and S = {s1, s2, . . . , sk} signifies sensitive
attributes (e.g., gender, race, age). Specifically, we use S0 = {∀ xi ∈ X | si = 0}
to denote the deprived group (e.g., female), and S1 = {∀ xi ∈ X | si = 1} to
denote the favored group (e.g., male). Without loss of generality, we consider situa-
tions where the given dataset is intrinsically biased with respect to one or more sen-
sitive attributes, which may be binary or multicategorical. Thus, we introduce a set
C = {c1, c2, . . . , ca}, where each ci represents a possible combination of sensitive
attributes in S.

4 Methodology

This section first introduces our proposed Multi-dimensional Fair Decision Tree, which
encompasses: i) a statistical fairness approach for multi-dimensional attributes, ii)
multi-dimensional fairness gain that measures bias vary across all pairs of sensitive at-
tribute combinations, and iii) a novel splitting criterion based on a flexible performance-
fairness trade-off mechanism. We then present the Multi-Fairness Bonded Utility, which
integrates multi-dimensional fairness and performance metrics into a single indicator
for comparative analysis, enabling the evaluation of various fairness and performance
metric combinations.

4.1 Multi-dimensional Fair Decision Tree

Various fairness-aware approaches have been built upon decision tree models [68,26,20]
due to their high interpretability, minimal data preprocessing requirements, computa-
tional efficiency, and lack of distributional assumptions; however, like most AI fairness
methods, they typically address only single sensitive attributes, overlooking the multi-
dimensional nature of bias in real-world scenarios [38]. To this end, we propose the
Multi-dimensional Fair Decision Tree (MFDT), a probabilistic tree learning framework
designed to: i) Defining multiple-dimensional Fairness which accounts for demo-
graphic subgroups formed by combinations of multiple sensitive attributes, ii) Evaluat-
ing Multi-dimensional Fairness in Tree Splits which examines the fairness impact of
feature splits across multiple sensitive attribute combinations, enabling us to build deci-
sion trees that maintain multi-dimensional fairness throughout the construction process,
and iii) Balance of Multi-dimensional Fairness and Performance which provides a
tunable trade-off between them via Pareto-optimal solutions. The following sections
detail each of these components.
i) Defining multi-dimensional Fairness. Straightforward ways to extend existing
single-attribute fairness (e.g., statistical parity [15], equal opportunity [19]) to multi-
dimensional fairness include summation or maximization of fairness values across in-
dividual attributes, but these approaches often overlook intersectional bias. Consider
this hypothetical scenario: a bank lending system with age and gender as sensitive at-
tributes. Suppose the system is designed to be unbiased towards gender or age individ-
ually. Combining the fairness values of the individual attributes would suggest overall
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fairness in the system. However, this fails to capture the complete picture, as multi-
dimensional bias towards certain demographic groups can still exist. For instance, the
system could favor lending to young men and older women while restricting loans to
young women and older men. Examining each sensitive attribute in isolation would
miss such multi-dimensional bias. Therefore, it is important to consider these crossover
effects when dealing with multi-dimensional fairness [17]. To this end, we extend the
statistical fairness notion to quantify model bias under multi-dimensional sensitive at-
tributes, as detailed in Definition 4.1.
Definition 4.1 (Multi-dimensional Fairness). Multi-dimensional Fairness (MF) mea-
sures the disparity between different subgroups, where each subgroup is defined by a
distinct combination of sensitive attributes (such as “Race & Gender”). We define MF
as the maximum statistical disparity in predicted positive outcomes between any two
subgroups:

MF = max
{
∀ci, cj ∈ C, i ̸= j :

∣∣P (ŷ = 1 | ci)− P (ŷ = 1 | cj)
∣∣} (1)

where ci represents a distinct combination of sensitive attributes (such as “white fe-
male”) with C denote the set of all such subgroups.

Overall, multi-dimensional fairness is measured by quantifying the maximum dis-
parity in predicted outcomes between any two subgroups formed by combinations of
sensitive attributes. This approach captures intersectional bias that might be ignored
when considering sensitive attributes in isolation.
ii) Evaluating Multi-dimensional Fairness in Tree Splits. Although various tree-
based fairness splitting criteria have been proposed [68,26,20], they focus solely on a
single sensitive attribute, leading to unfair predictions when multiple sensitive attributes
are involved. To address this limitation, we first propose Multi-dimensional Fairness
Imparity (MFI), which measures fairness disparities across multi-dimensional sensitive
attributes simultaneously per the proposed Definition 4.1. Specifically, MFI examines
how fairness impacts vary across all pairs of sensitive attribute combinations and identi-
fies the pair with the largest disparity. By doing so, it highlights where a split on a given
feature may disproportionately affect certain subgroups, providing a multi-dimensional
view of potential disparities. Mathematically, MFI is represented as:

MFI(D,xj , C) = max
∀ci, cl∈C, i̸=l

∣∣∣MFG(D,xj , ci)−MFG(D,xj , cl)
∣∣∣ (2)

where xj denotes a feature for splitting dataset D with C representing the set of all
subgroups, while MFG refers to Multi-dimensional Fairness Gain, where xj denotes a
feature for splitting dataset D with C representing the set of all subgroups, while MFG
refers to Multi-dimensional Fairness Gain, which for each combination of sensitive
attributes ci (e.g., “white female”), is defined as follows:

MFG(D,xj , ci) = H(y | ci)−H(y | xj , ci) (3)

where H(·) is the entropy measuring the uncertainty in the distribution of labels, with
H(y | ci) represents the entropy of the ground truth labels y given the combination ci,
and H(y | xj , ci) is the entropy of y after splitting on feature xj for instances with ci.
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Essentially, a positive value of MFG(D,xj , ci) indicates a reduction in uncer-
tainty (i.e., information gain), reflecting potential fairness implications across multi-
dimensional demographic subgroups. Although Information Gain (IG) [34] focuses on
the overall reduction in uncertainty about Y , MFI extends this concept by highlight-
ing differences in these reductions across various combinations of sensitive attributes.
Specifically, MFI measures the gap in uncertainty reductions among different groups
defined by ci that emerge from selecting a feature xj for splitting. For example, con-
sider two sensitive attribute combinations, such as white males and Black females. MFI
would identify whether a split on xj leads to significantly different information gains
for these two groups, revealing potential inequities that would remain hidden when only
examining aggregate performance. In this way, MFI goes beyond merely assessing over-
all utility improvements, capturing changes in predictive performance across different
demographic subgroups. While both IG and MFI reward reductions in uncertainty, they
differ in perspective: IG prioritizes maximizing accuracy, while MFI concentrates on
fairness disparities between all possible combinations of sensitive attributes, highlight-
ing where discrimination may occur.

Fig. 1: An illustration of the Pareto Front for balancing utility and fairness.

iii) Balance of Multi-dimensional Fairness and Performance. Another challenge in
constructing decision trees is balancing the performance and fairness of each split. To
address this, we introduce the concept of the Pareto Frontier [11] into the splitting pro-
cess of decision trees. In multi-objective optimization scenarios, the Pareto frontier rep-
resents the set of all possible optimal solutions that can be obtained without sacrificing
any objective. In our model, the objectives are IG and MFI. By incorporating the Pareto
frontier, we can better balance performance and fairness during tree construction.

Consider the splitting process for a given node in the decision tree. We have a set of
possible splitting attributes for each node that can serve as candidates. Each candidate
attribute yields specific IG and MFI values when selected as the split point. Thus, we
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can view each candidate attribute as a solution characterized by its IG and MFI scores.
Drawing on the concept of the Pareto frontier, we identify all Pareto-optimal solutions.
A solution is Pareto-optimal only if no other solution is superior to it on all objectives. In
other words, if a solution is considered Pareto-optimal, then we cannot find an improved
solution that enhances one objective without deteriorating the score of other objectives.
For instance, as Figure 1 shows, attributes X1, X6, and X9 are Pareto-optimal solutions,
as X1 achieves better performance than X6 and X9 but has lower fairness. Conversely,
X9 achieves better fairness than X1 and X6 but with lower performance. X6 maintains
a balance between these two objectives.

After identifying the Pareto-optimal solutions, the Fair Intersectional Information
Gain (FIIG) is proposed to select the optimal multi-dimensional fair and accurate split-
ting as formulated below:

FIIG(D,X,C) = (1− α) · IG(D,X)− α ·MFI(D,X,C) (4)

where α ∈ [0, 1] is a trade-off parameter to balance the relative importance of utility
and fairness in the splitting decision. By optimizing for FIIG rather than just IG, we
ensure that the resulting decision tree not only makes accurate predictions but also
maintains fairness across intersectional demographic groups. Intuitively, FIIG balances
the trade-off between classification performance and fairness: when α = 0, FIIG equals
IG, prioritizing only classification performance; when α = 1, FIIG equals negative
MFI, prioritizing only fairness. For values between 0 and 1, FIIG provides a weighted
combination of both objectives. This parameter provides flexibility to adjust the model
according to specific application requirements, allowing practitioners to appropriately
balance utility and fairness based on their domain needs.
Tree Construction. Building upon our multi-objective framework that considers both
IG and MFI, we construct the Multi-dimensional Fair Decision Tree (MFDT) by inte-
grating the FIIG into a traditional decision tree workflow. In conventional decision trees
(e.g., C4.5 [33]), each node is split by selecting the feature that yields the highest IG.
By contrast, we evaluate each candidate feature in our approach using both IG and MFI,
generate a Pareto frontier to identify the most balanced solutions, and then apply FIIG
(Equation 4) to select the feature that provides the best trade-off between utility and fair-
ness. Specifically, we first compute IG and MFG (and thereby MFI) for all candidate
features at a node. We then form the Pareto frontier to filter out any feature dominated
by both IG and MFI. From this frontier, we choose the feature that maximizes FIIG,
balancing accuracy and fairness through the parameter α. This procedure is repeated at
each node until stopping criteria are reached (e.g., purity, feature exhaustion, or mini-
mal node size). Once the splits are determined, the tree is pruned to prevent overfitting,
similarly to how pruning is performed in C4.5. However, while conventional pruning
only aims to preserve or improve accuracy, our tree structure already incorporates fair-
ness considerations at each node via FIIG. Consequently, even after pruning, MFDT is
designed to remain sensitive to disparities across multi-dimensional sensitive attributes.

4.2 Multi-Fairness Bonded Utility

Existing approaches evaluate fairness models by presenting predictive performance and
fairness metrics separately through tables, bar charts, or visual comparisons [23,29].



Redefining Fairness: A Multi-dimensional Perspective Framework 9

This separation makes it difficult to intuitively assess the trade-off between the two.
Moreover, in settings with multi-dimensional sensitive attributes, the fairness metric
generates multiple outcomes for distinct sensitive attributes, complicating analysis even
further.

To address these challenges, we propose the Multi-dimensional Fairness Bonded
Utility (MFBU), which enables the simultaneous evaluation of model performance and
fairness through a single consolidated result. Specifically, the MFBU framework con-
sists of three conceptual components that address fundamental challenges in fairness
evaluation: i) Creating a trade-off baseline: To properly evaluate fairness techniques,
we need a standard reference point that reflects inherent trade-offs between performance
and fairness. This baseline serves as the foundation for all comparative analyses. ii)
Five effectiveness levels: Complex numerical metrics alone are difficult to interpret.
By categorizing techniques into meaningful effectiveness levels, we enable practition-
ers to quickly understand the qualitative impact of different approaches without re-
quiring deep statistical knowledge. iii) Quantitative evaluation of trade-offs: Beyond
categories, precise measurement of trade-offs is necessary for rigorous scientific com-
parison and optimization. This component allows researchers to quantify the difference
between each method. Together, these three components form a comprehensive evalu-
ation framework that bridges the gap between theoretical fairness metrics and practical
decision-making. Detailed implementations for each of these components are provided
below.

i) Creating a Trade-off Baseline. The foundation of MFBU’s trade-off baseline is
motivated by the zero-normalization principle proposed by Speicher et al. [37], stat-
ing that a model’s bias is determined by its discriminatory predictions: a model is
non-discriminatory if it gives up its predictive power. In other words, a model is not
discriminatory if it makes random guesses for each individual, as the predictive perfor-
mance becomes equally poor across different demographic groups. We use this concept
to generate multiple pseudo-models, with a stricter baseline assuming the model makes
a single guess that matches the majority label in the dataset. Thus, the model tries to
maximize performance while achieving the best fairness. For example, in a loans dataset
where 60% of applicants receive a loan and 40% are rejected, the model would be 60%
accurate if it predicts everyone will receive a loan.

We visualize this concept by establishing a two-variable coordinate system as shown
in Figure 2(a), where the x-axis represents model fairness and the y-axis shows model
performance. In this figure, the brown curve tracks how fairness varies across pseudo-
models, while the yellow curve depicts corresponding changes in performance. MFBU
evaluates models in this two-variable coordinate space, capturing variations across fair-
ness techniques and establishing a trade-off baseline. This approach simplifies decision-
making by providing a single consolidated metric that quantifies both performance and
fairness, enabling direct comparison across techniques. Within this coordinate system,
any combination of metrics can be used: the performance axis can utilize metrics such
as Accuracy or F1-score, while the fairness axis can incorporate metrics like Statistical
Parity Difference or Equal Opportunity Difference. This flexibility allows MFBU to be
tailored to specific application contexts and fairness definitions.
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Fig. 2: The MFBU fairness-accuracy trade-off baseline is depicted by the original trade-off point
(Mori) and the points generated by the pseudo models (M10,. . . , M100). A bias reduction method
is considered effective if it shows a superior trade-off compared to the MFBU baseline, i.e., it lies
above the red line.

Specifically, MFBU analyze the original model by generating a set of 10 pseudo-
models, denoted as Mp, each created by replacing varying percentages (p) of the origi-
nal model’s predictions with consistent output labels to systematically explore fairness
improvements. We consider percentages ranging from 10% to 100%. For example, in
M10, 10% of the original predictions are randomly selected and replaced with the ma-
jority class labels from the input dataset, while in 100%, all predicted labels are replaced
with these majority class labels. As illustrated in Figure 2(a), increasing the proportion
of replaced predictions leads to improved fairness but simultaneously reduces model
accuracy. These pseudo-models provide distinct points along the fairness-performance
spectrum, forming the basis for our trade-off baseline analysis. To construct this base-
line, we first plot the (performance, fairness) coordinates of the original unadjusted
model, labeled as Mori in Figure 2(b). Subsequently, we plot the corresponding coordi-
nates of each pseudo-model (e.g., M10, M90, M100, etc.). By connecting these points,
we establish the trade-off baseline, depicted as the red line in Figure 2(b), clearly illus-
trating the relationship between fairness improvements and performance trade-offs.

For fairness measures designed for a single sensitive attribute, we can directly ap-
ply the fairness metric results on the x-axis. However, this is infeasible with multi-
dimensional sensitive attributes, as existing fairness metrics generate multiple values
for different sensitive attributes. To address this challenge while maintaining a two-
dimensional visualization, we need to project these multiple values onto a single axis.
Specifically, a model produces only one performance result (such as accuracy or F1-
score) regardless of how many sensitive attributes are considered, but generates mul-
tiple fairness metrics—one for each sensitive attribute or their combinations—so we
project these fairness values for different sensitive attributes onto the space while keep-
ing the performance metric constant. As shown in Figure 3, each dimension represents
the fairness value based on a sensitive attribute. We then apply the Euclidean distance
vector to calculate a combined fairness result from the various fairness values across
multi-dimensional sensitive attributes, effectively representing the multi-dimensional
distribution of fairness metrics. This method transforms diverse fairness outcomes into
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Fig. 3: The MFBU Measure Multi-dimensional Sensitive Attribute

a single indicator, improving the clarity of the trade-off analysis between model perfor-
mance and fairness. Mathematically, this can be expressed as:

Fmulti =

√
ω1 ∗ F1

2 + ω2 ∗ F2
2 + · · ·+ ωn ∗ Fn

2 (5)

where Fi are the single-sensitive-attribute fairness values and ωi are the corresponding
weight parameters with n representing the number of sensitive attributes. These weights
adjust the relative importance of different sensitive attributes and can be customized for
various application scenarios.
ii) Five Effectiveness Levels. The trade-off baseline provides a framework for cate-
gorizing bias mitigation techniques into five distinct effectiveness levels. As shown in
Figure 2 (b), Region 1 represents an Optimal scenario where a technique improves both
model performance and fairness compared to the baseline. Region 2 represents the Par-
tial Win scenario where techniques show improved performance or fairness compared
to the baseline. Region 3 in Figure 2 (b) represents the Inverse scenario, where a tech-
nique improves model performance but reduces fairness. The Partial Loss scenario is
represented by Region 4, where techniques reduce either performance or fairness rela-
tive to the baseline. Finally, Region 5 signifies a Regression scenario where a technique
reduces both performance and fairness compared to the baseline.
iii) Quantitative Evaluation of Trade-offs. The Optimal, Partial Loss, and Regres-
sion regions provide clear insights into effectiveness. For a more detailed comparison,
we focus on the Partial Win category (Region 2). We evaluate different bias mitiga-
tion techniques by calculating the area enclosed by the bias-performance points and
the baseline. This region, which we call the “Beneficial Balance” region, is shown in
Figure 2 (b). Techniques with larger areas are considered better, as they offer more fa-
vorable bias-performance balances. We use the area as a metric rather than the distance
from the baseline to ensure fair comparison when the baseline curves.

Finally, MFBU produces five percentages for each technique, one for each region,
showing the proportion of cases in that region. The total number of cases is calculated
as: Total Cases = nr × nt × nf × pm, where nr is the number of run times, nt is the
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number of techniques being compared, nf is the number of fairness metrics used, and
pm is the number of performance metrics employed.

5 Experiments

Datasets. We conduct experiments on three real-world datasets: i) The Adult
dataset [18], derived from US census data, is used to predict whether an individual’s
income exceeds $50K per year based on demographic attributes. Each entry in the
dataset corresponds to an individual with information such as education, work class,
marital status, and occupation. Race and gender are sensitive attributes. ii) The COM-
PAS dataset [2] is used to predict likelihood of criminal recidivism. Each record corre-
sponds to a criminal defendant with data points such as age, charge degree, and number
of priors. The sensitive attributes are the defendant’s race and age. iii) The German
credit dataset [3], used to predict credit risk status, contains credit information from
clients of a German bank. Each entry corresponds to an individual with their credit risk
categorized as ‘good’ or ‘bad.’ The sensitive attributes are age and gender.
Baselines. We compare against four state-of-the-art fairness methods. The first, Mini-
Max [28], takes a game-theoretic approach to multi-discrimination, formulating it as a
mini-max game and aiming for a Pareto efficient solution within a multi-objective prob-
lem context. The second, pre-processing method Fair-SMOTE [58], enhances model
fairness without requiring direct observation of sensitive attributes. It leverages syn-
thetic minority over-sampling to balance subgroup distribution to improve future pre-
dictions’ fairness. FairLearn [1], the third baseline, imposes a set of linear fairness con-
straints on an exponentiated-gradient reduction technique for multi-discrimination. The
last baseline, Kamiransum [22], incorporates discrimination awareness directly into the
learning process.
Evaluation Metrics. We use accuracy, F1-Score, and the Matthews Correlation Co-
efficient (MCC)[5] to assess our model. All three can be calculated from a confusion
matrix (TP, FP, TN, FN) [25]. Higher accuracy, F1-Score, and MCC values indicate
better performance. For fairness evaluation, we measure Statistical Parity Difference
(SPD) and Equal Opportunity Difference (EOD), which are widely used metrics [29].
Larger values of SPD and EOD indicate higher levels of bias.

5.1 Experiment Results

RQ1: Does the proposed MFDT help in reducing bias? We compare the
performance-fairness trade-off of our proposed method, MFDT, against the five base-
lines. The results are demonstrated in Table 1. Dark and light blue denote the best and
second-best performance, respectively. MFDT achieves superior performance on the
Adult dataset in terms of F1-score, and SPD for both race and gender, and EOD for
race, showcasing its balanced performance between precision and recall, and lower dis-
parate impact and equality of opportunity difference, thereby reducing bias. It is also
successful on the COMPAS dataset, outperforming other models in the F1-score, as
well as SPD and EOD for both race and gender. Lastly, on the German credit dataset,
MFDT excels in accuracy, MCC, SPD, and EOD for both age and gender, highlighting
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Table 1: Performance and fairness comparison of various classification models on real-world
datasets - Adult, COMPAS, and Credit. (Dark blue cells denote best and light blue cells denote
second-best results.)

Dataset Methods Accuracy F1-Score MCC SPD-Race SPD-Gender EOD-Race EOD-Gender

Adult

MiniMax 0.86 0.79 0.56 0.05 0.09 0.06 0.08
Fair-SMOTE 0.84 0.78 0.57 0.09 0.15 0.05 0.09

FairLearn 0.83 0.75 0.52 0.08 0.11 0.10 0.09
Kamiransum − Race 0.78 0.61 0.52 0.17 0.24 0.15 0.19

Kamiransum −Gender 0.77 0.62 0.54 0.22 0.16 0.17 0.13
MFDT 0.84 0.79 0.55 0.04 0.08 0.04 0.08

COMPAS

MiniMax 0.82 0.75 0.46 0.10 0.13 0.03 0.02
Fair-SMOTE 0.66 0.66 0.33 0.12 0.10 0.05 0.02

FairLearn 0.79 0.71 0.44 0.09 0.10 0.02 0.01
Kamiransum − Race 0.54 0.48 0.26 0.13 0.16 0.8 0.12

Kamiransum −Gender 0.51 0.43 0.23 0.13 0.15 0.06 0.11
MFDT 0.80 0.78 0.45 0.08 0.08 0.02 0.01

German

MiniMax 0.75 0.69 0.41 0.11 0.08 0.03 0.05
Fair-SMOTE 0.77 0.71 0.43 0.09 0.07 0.05 0.03

FairLearn 0.75 0.70 0.42 0.05 0.06 0.03 0.04
Kamiransum −Age 0.73 0.67 0.40 0.15 0.18 0.17 0.22

Kamiransum −Gender 0.70 0.64 0.41 0.16 0.14 0.18 0.20
MFDT 0.78 0.70 0.43 0.04 0.06 0.02 0.02

its ability to balance fairness and accuracy across diverse datasets. These results sub-
stantiate that our proposed MFDT model effectively reduces bias, as evidenced by its
top-ranking performance in terms of SPD and EOD across different protected attributes
in diverse datasets. Simultaneously, it maintains competitive accuracy, F1-score, and
MCC scores compared to existing methods, indicating a favorable trade-off between
fairness and performance. Therefore, we affirm that MFDT is indeed helpful in reduc-
ing bias in classification tasks.
RQ2: What is the trade-off of effectiveness between MFDT and other state-of-the-
art methods? With the proposed MFBU, we can evaluate the trade-off between Multi-
fairness and performance with one illustrative metric. As shown in Figure 4, MFDT
consistently outperforms existing methods. MFDT frequently facilitates improvements
in both model performance and fairness, as demonstrated with 28% of all cases in the
‘Optimal’ category, noticeably outperforming other methods. In the ‘Partial Win’ sce-
nario, which embodies instances where either performance or fairness improved, MFDT
accounts for 57% of the cases, outperforming the baseline. It also performs exception-
ally well in preventing the ‘Regression’ trade-off scenario, making up just 1% of cases.
Overall, MFDT is a robust and effective approach for managing trade-offs between per-
formance and fairness, especially for multiple sensitive attributes in real-world fairness
problems. Further, these findings echo results from RQ1, reaffirming the validity of the
MFBU framework. This alignment strengthens our assertion that MFBU is an effective
metric for evaluating and comparing performance-fairness trade-offs for multiple bias
mitigation methods, proving its effectiveness in real-world applications.
RQ3: How does hyperparameter α impact the balance between classification per-
formance and fairness in MFDT? We answer this based on Figure 5. As α varies
between 0 and 1, it significantly changes the model’s performance. Specifically, the
model’s accuracy generally increases as α increases, indicating that the model’s perfor-
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Fig. 4: Different methods’ effectiveness distribution in benchmark tasks.

Fig. 5: Effect of α on performance and fairness metrics.

mance improves with larger α. Similarly, the F1 score and MCC exhibit an upward trend
with increasing α, implying an enhancement in the model’s balance between precision
and recall, and its correlation between the observed and predicted binary classifications.
The fairness metrics also exhibit an increasing trend with higher α values, indicating a
decline in model fairness. However, EOD-Race displays a unique pattern, forming an
inverse bell curve, peaking around α = 0.5 before declining. This pattern highlights the
complex interplay between fairness and accuracy across different α values. In conclu-
sion, there is a trade-off between performance and fairness as α increases. The value of
α can be adjusted dynamically to satisfy task-specific requirements.
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6 Conclusion

This paper examined multi-dimensional sensitive attributes in fair ML research, a com-
plex challenge that cannot be solved by simply extending single-attribute approaches.
We introduced Multi-Fairness Bonded Utility, the first unified metric for evaluating
performance-fairness trade-offs among multi-source bias mitigation methods. We pro-
posed Fair Intersectional Information Gain, a novel splitting criterion for fairness-aware
decision trees that incorporates Pareto optimality. Our Multi-dimensional Fair Decision
Tree provides tunable performance-fairness trade-offs with practical flexibility. Exper-
imental results on real-world datasets validate the effectiveness of our framework with
respect to both utility and fairness.
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