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Abstract. Large language models (LLMs) are increasingly deployed in
real-world applications that require careful balancing of multiple, often
conflicting, objectives, such as informativeness versus conciseness, or help-
fulness versus creativity. However, current alignment methods, primarily
based on reinforcement learning from human feedback (RLHF), opti-
mize LLMs toward a single reward function, resulting in rigid behavior
that fails to capture the complexity and diversity of human preferences.
This limitation hinders the adaptability of LLMs to practical scenarios,
making multi-objective alignment (MOA) a critical yet underexplored
area. To bridge this gap, we propose PAreto Multi-Objective Alignment
(PAMA), a principled and computationally efficient algorithm designed
explicitly for MOA in LLMs. In contrast to computationally prohibitive
gradient-based multi-objective optimization (MOO) methods, PAMA
transforms multi-objective RLHF into a convex optimization problem
with a closed-form solution, significantly enhancing scalability. Tradi-
tional gradient-based MOO approaches suffer from prohibitive O(n2d)
complexity, where d represents the number of model parameters, typically
in the billions for LLMs, rendering direct optimization infeasible. PAMA
reduces this complexity to O(n) where n is the number of objectives,
enabling optimization to be completed within milliseconds. We provide
theoretical guarantees that PAMA converges to a Pareto stationary point,
where no objective can be improved without degrading at least one other.
Extensive experiments across language models ranging from 125M to 7B
parameters demonstrate PAMA’s robust and effective multi-objective
alignment capabilities, consistently outperforming baseline methods, align-
ing with its theoretical advantages. PAMA provides a highly efficient
solution to the MOA problem that was previously considered intractable,
offering a practical and theoretically grounded approach to aligning LLMs
with diverse human values, paving the way for versatile and adaptable
real-world AI deployments.
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1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities across
diverse natural language tasks [5, 20, 28], receiving significant attention from
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academia and industry [18, 26]. However, a critical deployment challenge is
aligning LLMs with complex human values. Currently, reinforcement learning
from human feedback (RLHF) is the predominant alignment approach [2, 19],
fine-tuning models against a single reward function that approximates human
preferences practically [6, 9, 26]. While effective in producing coherent outputs,
this single-objective alignment severely restricts LLMs, resulting in homogeneous
behaviors that fail to reflect the diverse spectrum of human values.

Real-world scenarios increasingly demand models that simultaneously balance
multiple, often conflicting objectives, such as informativeness versus conciseness,
helpfulness versus creativity, and etc [9, 11, 26]. Therefore, aligning LLMs requires
moving beyond single-objective reward models towards multi-objective alignment
(MOA), which considers multiple and potentially conflicting reward signals [21,
30]. Despite recent interest, a theoretically grounded and practical method for
achieving MOA in LLMs has yet to be established.

A naive solution aggregates heterogeneous rewards into a single scalar objec-
tive [27], but this simplification neglects inherent reward conflicts, often leading
to biased or misaligned outcomes [3]. Existing gradient-based multi-objective opti-
mization (MOO) methods [4, 14, 25, 32] are also impractical for large-scale LLMs
due to prohibitively expensive gradient computations. For instance, MGDA [4]
involves min-norm operations with time complexity O(n2d), making it infeasible
for models with billions of parameters (e.g., d = 7 billion). Thus, developing a
scalable and principled MOA algorithm specifically for LLMs remains crucial.

In this work, we propose PAreto Multi-Objective Alignment (PAMA), a novel,
computationally efficient algorithm designed explicitly for multi-objective align-
ment in LLMs. PAMA converts multi-objective RLHF into a convex optimization
problem with a closed-form solution, eliminating expensive gradient calculations.
Remarkably, PAMA achieves computational costs comparable to standard single-
objective PPO algorithms, enabling efficient fine-tuning of 7-billion-parameter
models on a single NVIDIA A6000 GPU. Unlike traditional methods [4, 14]
with O(n2d) complexity, PAMA scales linearly with the number of objectives
O(n), drastically reducing computational demands and enabling practical use
with LLMs. For instance, when n = 10 and d = 1010, existing approaches would
require roughly 1012 computations, whereas PAMA completes the task in just
10 steps, demonstrating an exponential improvement in efficiency. In such an
LLM setting, methods like MGDA [4], PCGrad [32], and CAGrad [14] become
computationally infeasible, whereas PAMA remains tractable and scalable.

Furthermore, we provide theoretical guarantees of convergence to a Pareto
stationary point, ensuring no single objective can improve without degrading oth-
ers. To our knowledge, PAMA is the first theoretically grounded MOA algorithm
for LLMs.

The theoretical advantages of PAMA are also reflected in our empirical results.
Empirical evaluations validate PAMA across language models ranging from 125M
to 7B parameters. Our experiments comprehensively demonstrate PAMA’s robust
and consistent superiority, while other baselines fail with large performance gaps.
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The results highlight PAMA’s effectiveness, scalability, and robustness, aligned
with its theoretical properties.

Our contributions are summarized as follows:

– Pareto Multi-Objective Alignment: A novel and efficient multi-objective
alignment algorithm for LLMs, reducing computational complexity from
O(n2d) to O(n), enabling efficient large-scale training.

– Theoretical Guarantees: We prove convergence of PAMA to a Pareto station-
ary point.

– Empirical Validation: Extensive experiments demonstrate PAMA’s superior
performance across multiple settings.

2 Method

This section presents our approach to multi-objective alignment in the context
of LLMs. We begin by formulating the problem and introducing Noon PPO, a
variant of PPO [23]. We then propose PAMA, an algorithm designed to align
LLMs with multiple objectives while ensuring convergence to a Pareto stationary
point with theoretical guarantees.

2.1 Problem Formulation

RLHF consists of two main phases: reward modeling and policy optimization. In
reward modeling, a reward function is trained on preference data to maximize
the objective: LRM = E(x,yw,yl)∼D[log(σ(r(x, y

w)− r(x, yl)))], where, yw and yl

denote the preferred and less desirable responses, respectively, x represents the
prompt, and σ(·) is the sigmoid function. In policy optimization, RLHF typically
employs PPO to refine the policy by solving:

arg max
π(y|x;θ)

Ex∼D,y∼π(·|x)

[
r(x, y)− β log

π(y|x; θ)
πref (y|x)

]
where π(y|x; θ) is the current policy, πref (y|x) is the supervised fine-tuned (SFT)
policy, and β controls policy shifts.

Reward modeling requires extensive data labeling. In this paper, we focus on
policy optimization with pre-trained reward models, aiming to optimize multiple
reward objectives simultaneously.

Multi-Objective Optimization. Formally, the MOO problem is defined as:

max
θ

(J (1)(θ), J (2)(θ), . . . , J (N)(θ))⊤, (1)

where θ denotes the learnable parameters, J (i) represents the i-th optimization
objective, and the goal is to find a Pareto optimal solution.

Definition 1 (Pareto Optimality). A solution π∗ is Pareto optimal if no
other solution dominates it, i.e., there does not exist another policy π′ such that:
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– Ji(π
′) ≥ Ji(π

∗) for all i.
– Jj(π

′) > Jj(π
∗) for at least one j.

Since direct vector-form optimization is intractable, MOO is often scalarized into
a weighted sum:

min
θ

N∑
i=1

c(i)L(i)(θ), (2)

where c(i) denotes the weight assigned to each objective L(i).
Optimization Challenges. Solving Equation (2) presents several challenges:

i) Balancing conflicting objectives. LLMs often exhibit strong trade-offs between
objectives, making simple scalarization ineffective: it can bias solutions toward
certain objectives while neglecting others. ii) Weight sensitivity. The choice of
weights c(i) significantly impacts optimization and is often subjective. Poorly
chosen weights can lead to suboptimal or undesired solutions. iii) Computational
Complexity. Gradient-based multi-objective learning methods generally require
computing full gradients for all objectives across all parameters and operate on
the gradient with O(n2d) complexity (detailed in Appendix G). This becomes
infeasible at LLM scale due to the high parameter count.

To address these challenges, we introduce PAMA, a scalable optimization
algorithm that ensures convergence to a Pareto stationary point.

2.2 Noon PPO

We introduce Noon PPO, a variant of PPO [23], designed to improve stability in
MOA. Noon stands for “No Negative”, as it modifies the advantage to disregard
negative values, thereby restricting policy updates to actions with non-negative
advantages. Let A′

t denote the estimated advantage at time step t. In Noon PPO,
we define the advantage as:

At = max
(
A′

t, 0
)
. (3)

This adjustment ensures that only actions with a positive advantage contribute
to the policy gradient update, effectively ignoring updates that would reduce the
probability of suboptimal actions. As in standard PPO, let πθ be the current
policy parameterized by θ, and let πθref represent the SFT policy. The probability
ratio is defined as:

ut(θ) =
πθ(at | st)
πθref(at | st)

. (4)

The clipped surrogate objective in Noon PPO is then given by:

LNOON(θ) = Et

[
min

(
ut(θ)At, clip

(
ut(θ), 1− ϵ, 1 + ϵ

)
At

)]
, (5)

where At is defined in Equation 3, and ϵ is a clipping hyperparameter that limits
the deviation between πθ and πθref .

By clipping negative advantages to zero, Noon PPO eliminates unstable
gradient fluctuations caused by error-prone or ambiguous training examples. This
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leads to more predictable convergence, which is particularly beneficial when
aligning LLMs with multiple objectives. As we will discuss in Section 2.4, this
design plays a crucial role in ensuring the theoretical convergence of PAMA.

2.3 Solving Multi-Objective Optimization at LLM scale

Optimizing multiple conflicting objectives in LLMs is a challenging task, es-
pecially when relying on gradient-based MOO methods [4, 14, 25, 32]. These
methods require solving complex gradient aggregation problems, which become
computationally infeasible at the scale of modern LLMs. For example, MGDA [4]
formulates the gradient balancing problem as a min-norm optimization, which
has a computational cost of O(n2d), where d is the model’s parameter dimension.
Given that d often reaches billions in large-scale models (e.g., 7B parameters),
these approaches are prohibitively expensive in both computation and memory,
as further discussed in Appendix F.

Motivation for PAMA. To overcome these limitations, an efficient and
scalable optimization strategy is required. Ideally, such a method should:

1. Avoid costly gradient-based operations that scale poorly with model size.
2. Provide a computationally tractable formulation that remains efficient as the

number of objectives grows.
3. Ensure convergence to a well-defined Pareto stationary point, effectively

balancing multiple objectives.

We introduce Pareto Multi-Objective Alignment (PAMA), a novel algorithm
specifically designed for large-scale LLM alignment. Instead of directly solving
the expensive min-norm optimization, PAMA reformulates the problem into a
convex optimization framework with a closed-form solution. This transformation
reduces the computational complexity from O(n2d) to O(n), where n is the
number of objectives, significantly lowering the computational burden compared
to traditional methods.

A key challenge in MOO is determining an appropriate convex combination
of gradient directions that balances competing objectives. The conventional
approach [4] relies on solving the min-norm optimization problem:

min
c(1),...,c(N)


∥∥∥∥∥

N∑
i=1

c(i)∇θL(i)(θ)

∥∥∥∥∥
2

2

s.t.
N∑
i=1

c(i) = 1, c(i) ≥ 0 ∀i

}
(6)

where L(i) represents the loss for the i-th objective, and c(i) is the weight assigned
to its gradient contribution. Recent advances [4] showed that this optimization
either results in a KKT stationary point (indicating a Pareto stationary solution)
or finds a direction that improves all objectives. However, solving this problem at
LLM scale remains intractable due to the high dimensionality of the parameter
space.
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To mitigate this issue, we derive an upper bound for the min-norm formulation
with Noon PPO objectives, which leads to a more efficient optimization approach.
Specifically, we show that:∥∥∥∥∥

N∑
i=1

c(i)∇θL(i)(θ)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
N∑
i=1

c(i)∇πL(i)(θ)∇θπ(θ)

∥∥∥∥∥
2

2

=

∥∥∥∥∥
N∑
i=1

c(i)
1

πref
I(A(i))∇θπ(θ)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥
N∑
i=1

c(i)I(A(i))

∥∥∥∥∥
2

2

∥∥∥∥ 1

πref
∇θπ(θ)

∥∥∥∥2
2

,

(7)
where

I(A) =

{
0, u > 1 + ϵ

A, u ≤ 1 + ϵ
, (8)

N∑
i=1

c(i) = 1, c(i) ≥ 0 ∀i, (9)

and u = π
πref

. For simplicity, we omit the expectation notation, which does not
affect the theoretical derivation. The second equation follows from the Noon PPO
loss Equation (5), while the final inequality is derived from the Cauchy–Schwarz
inequality. This upper bound allows us to reformulate the problem as a more
efficient surrogate optimization:

min
c(1),...,c(N)


∥∥∥∥∥

N∑
i=1

c(i)I(A(i))

∥∥∥∥∥
2

2

s.t.
N∑
i=1

c(i) = 1, c(N) ≥ 0 ∀i

}
. (10)

This formulation admits a closed-form solution, which we derive next.

Theorem 1 (Optimal Convex Combination for the Min-Norm Prob-
lem). Let A(1), A(2), . . . , A(N) ∈ R be given, and consider the optimization
problem

min
c(1),...,c(N)

(
N∑
i=1

c(i)A(i)

)2

,

subject to
N∑
i=1

c(i) = 1,

c(i) ≥ 0 for i = 1, 2, . . . , N.

(11)

Then the optimal value of the convex combination,

s∗ =

N∑
i=1

c(i)A(i), (12)
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is given by

s∗ =


0, if min1≤i≤N A(i) ≤ 0 ≤ max1≤i≤N A(i),

min1≤i≤N A(i), if A(i) > 0 for all i,

max1≤i≤N A(i), if A(i) < 0 for all i.

(13)

In other words, s∗ is the projection of 0 onto the interval[
min

1≤i≤N
A(i), max

1≤i≤N
A(i)

]
, (14)

and the minimum objective value is (s∗)2.

The proof is provided in Appendix A.
Advantages of PAMA’s Reformulation. Compared to the intractable

original optimization problem (Equation (6)), our reformulation provides two key
benefits:

1. Drastic reduction in computational cost: The term I(A(i)) is computed via a
simple forward pass, eliminating costly backpropagation.

2. Analytically solvable optimization: The surrogate problem admits a closed-
form solution (Theorem 1), ensuring efficiency..

By incorporating this approach with the Noon PPO, we obtain a practical
and scalable algorithm for MOA. We summarize PAMA in Appendix E. To
illustrate the computational efficiency of our method, consider the magnitude of
operations required. Traditional approaches with a complexity of O(n2d) result
in a computational load of approximately 1012 operations when d ≈ 1010 and
n ≈ 101. In contrast, our method, operating with O(n) complexity, requires
10 operations, a very small number. Our approach remains practical even for
extremely large-scale problems.

2.4 Theoretical Guarantee

With the reformulated optimization problem in Equation (10), an important
question arises: does our approach retain theoretical guarantees? In this section, we
establish that under mild conditions, our method converges to a Pareto stationary
point, ensuring that no objective can be improved without deteriorating at least
one other objective.

First, we formally define the notion of a Pareto stationary point, which serves
as a necessary condition for Pareto optimality.

Definition 2 (Pareto Stationary Point). A parameter vector θ is said to be
satisfying Pareto stationary if there exists a set of weights {c(i)}Ni=1 satisfying

N∑
i=1

c(i) = 1, c(i) ≥ 0, ∀i ∈ {1, 2, · · · , N}, and
N∑
i=1

c(i)∇θL(i)(θ) = 0.

(15)
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Pareto stationary point ensures that no descent direction exists that simulta-
neously improves all objectives, indicating that the optimization has reached
a balanced trade-off among competing objectives. To establish convergence re-
sults, we assume that the loss function exhibits smoothness properties, which
are commonly satisfied in deep learning due to gradient-based optimization and
regularization.

Definition 3 (κ-Lipschitz Continuity). Let (X, dX) and (Y, dY ) be metric
spaces. A function f : X → Y is said to be κ-Lipschitz continuous if there exists
a constant κ ≥ 0 such that for all x, y ∈ X,

dY
(
f(x), f(y)

)
≤ κdX(x, y). (16)

This property ensures that the function does not change too rapidly, contributing
to stability in gradient-based optimization.

Assumption 1 (Lipschitz Smoothness of the Gradient) The loss function
L(θ) has a κ-Lipschitz continuous gradient, meaning there exists a constant κ > 0
such that for all θ, θ′

∥∇θL(θ)−∇θL(θ′)∥2 ≤ κ∥θ − θ′∥2. (17)

This assumption guarantees that the landscape does not contain abrupt changes,
which is critical for convergence guarantees and is empirically observed in RL [13].

Assumption 2 (Bounded Learning Rate) The learning rate η satisfies

0 ≤ η ≤ 2

κ
. (18)

This condition ensures stable updates, preventing divergence due to excessively
large steps, aligning with standard practices in convex and non-convex optimiza-
tion.

Assumption 3 (Bounded Reward) Rewards in RL are typically finite due
to practical constraints. Formally, there exists a constant Rmax > 0 such that

|r(x, y)| ≤ Rmax, ∀(x, y) ∈ X × Y. (19)

See Appendix C for more discussion.
We now establish the convergence of PAMA.

Lemma 1 (General Descent Lemma). Let f : RN → R be continuously
differentiable on an open set containing x ∈ RN , and suppose that ∇f is κ-
Lipschitz continuous, i.e., for all u, v in that set,

∥∇f(u)−∇f(v)∥ ≤ κ∥u− v∥. (20)

Then, for any update direction g ∈ RN , one has

f(x+ g) ≤ f(x) +∇f(x)⊤g +
κ

2
∥g∥2. (21)
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The proof is in Appendix B. Using this result, we analyze the gradient descent
dynamics of PAMA and show that PAMA converges to a Pareto stationary point.

Theorem 2 (Convergence of PAMA). Let L(i)(θ) be the loss function for
task i, where policy is π(θ). Define the PAMA gradient aggregation:

g(k)o =

N∑
i=1

c(i)∇πL(i)(θk), (22)

where c(i) is the solution to

min
c(1),...,c(N)

∥∥∥go∥∥∥2
2
, s.t.

N∑
i=1

c(i) = 1, c(i) ≥ 0. (23)

Under assumptions 1 to 3, the gradient descent update at timestep k:

θk+1 = θk − g(k)o ηJ (24)

ensures
lim
k→∞

∥∇θL(θk)∥2 = 0, (25)

where J = ∇θkπ(θk) and J ∈ R|θ|×1. This shows the update converges to a Pareto
stationary point.

The proof is provided in Appendix D. Theorem 2 establishes that:

– If the optimal value of Equation (10) is zero, the aggregated gradient vanishes,
indicating that the process has reached a Pareto stationary point.

– If the optimal value is nonzero, the gradient provides a valid descent direction
for all objectives, ensuring continual improvement toward a Pareto stationary
solution.

Thus, PAMA guarantees convergence to a balanced trade-off among conflicting
objectives, offering a provably convergent and computationally efficient approach
to multi-objective alignment for LLMs.

3 Experiments

In this section, we aim to empirically validate whether the theoretical advantages
of PAMA are reflected in practical experiments. To this end, we conduct system-
atic evaluations across different model scales and diverse, potentially conflicting
objectives to assess PAMA’s effectiveness in multi-objective alignment.

We conduct experiments on three progressively larger language models: GPT-
2 (125M), GPT-2 XL (1.5B), and LLaMA-2 (7B), and evaluate PAMA using a
range of reward models, including harmlessness, humor, sentiment, and response
length. Our implementation is based on the open-source TRL framework [29]. All
experiments are conducted on a workstation equipped with an Intel i9-14900K
CPU and a single NVIDIA RTX A6000 GPU. Further experimental details are
provided in Appendix H, with additional results included in Appendix I.
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Fig. 1: Comparison of sentiment and length rewards during training on the
IMDb dataset using GPT-2 (125M parameters). PAMA consistently achieves
superior performance across both objectives, demonstrating stable optimization.
In contrast, MORLHF struggles to balance sentiment and length due to the
limitations of the fixed weighted sum approach, while MGDA-UB does not show
any advantage over MORLHF. The shaded area represents the standard deviation
over eight trials, highlighting the robustness of PAMA.

3.1 Normal Model: GPT-2 (125M Parameters)

In this experiment, we evaluate PAMA on a normal-scale language model, GPT-2
(125M parameters), to assess its effectiveness in optimizing multiple objectives.
Specifically, we aim to generate film reviews that are both positive and long,
requiring the model to balance sentiment and length objectives.

Setup. We use GPT-2 [20] as the base model and train it on the IMDb
dataset1. The objective consists of two reward functions: i) a pretrained sen-
timent analysis model2, where the logit output serves as the reward signal to
encourage positive reviews, and ii) a length-based reward that promotes longer
responses. Both reward values are structured such that higher scores indicate
better performance.

Baselines. We compare PAMA against two widely used baselines: MORLHF,
which applies a fixed weighted sum of the objectives, a common but often
suboptimal approach for balancing conflicting goals; and MGDA-UB [24], which
leverages the min-norm algorithm to compute gradients that balance multiple
objectives dynamically. Further discussion is provided in Appendix F.

Results. The training curves in Figure 1 illustrate the performance of different
methods over time. Figure 1a shows that PAMA significantly outperforms both
baselines in optimizing the length reward. While MORLHF and MGDA-UB

1 https://huggingface.co/datasets/stanfordnlp/imdb
2 https://huggingface.co/lvwerra/distilbert-imdb

https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/lvwerra/distilbert-imdb
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exhibit slow and marginal improvements, PAMA achieves a much higher final
reward with a stable convergence pattern. Figure 1b further highlights PAMA’s
advantage in optimizing sentiment, where it reaches a substantially higher reward
than the baselines. In contrast, MORLHF stagnates at a lower level, and MGDA-
UB shows negative improvement over MORLHF.

3.2 Scaling Up: GPT-2 XL (1.5B Parameters)
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Fig. 2: Comparison of humor and length rewards during training on the HH-RLHF
dataset using GPT-2 XL (1.5B parameters). PAMA consistently outperforms the
baselines in both objectives, demonstrating stable optimization. While MORLHF
fails to significantly improve humor. MGDA-UB struggles in both objectives,
showing severe performance degradation. These results highlight the effectiveness
of PAMA in multi-objective alignment for LLMs.

To evaluate PAMA’s scalability and adaptability, we extend our experiments
to GPT-2 XL (1.5B parameters), optimizing for both humor and text length.

We train GPT-2 XL on the HH-RLHF dataset [2] while optimizing two
distinct reward signals: i) a humor classifier3, which assigns higher rewards to
funnier outputs, and ii) a length-based reward that promotes longer responses.
Higher reward values correspond to better performance in both objectives. We
compare PAMA against MORLHF and MGDA-UB.

Results. The evaluation results, shown in Figure 2, illustrate the performance
on the test set for humor and length rewards over training timesteps. Figure 2a
demonstrates that PAMA effectively optimizes humor, steadily increasing its
reward and maintaining a high final value. In contrast, MORLHF shows only
marginal improvement before plateauing at a lower level, while MGDA-UB fails
3 https://huggingface.co/mohameddhiab/humor-no-humor

https://huggingface.co/mohameddhiab/humor-no-humor
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entirely, with its humor reward even decreasing over time. Figure 2b shows that
both PAMA and MORLHF successfully optimize length, though MORLHF only
optimizes length, ignoring humor. MGDA-UB, on the other hand, completely
collapses in this setting, with its length reward deteriorating throughout train-
ing. These findings reinforce PAMA’s robustness in multi-objective alignment,
particularly in balancing competing rewards while ensuring stable convergence.

3.3 Towards Large Language Models: LLaMA-2 7B
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Fig. 3: Comparison of harmlessness and length rewards during training on the
HH-RLHF dataset using LLaMA-2 (7B parameters). PAMA consistently opti-
mizes both objectives while maintaining a stable learning process. In contrast,
MGDA-UB and MORLHF struggle with harmlessness optimization, exhibit-
ing significant fluctuations and instability. MGDA-UB, in particular, exhibits
pronounced oscillations during training. While MORLHF converges to a lower
performance level. These results highlight the robustness of PAMA in aligning
large-scale LLMs with multiple objectives.

To assess the scalability of PAMA, we extend our evaluation to a large
language model setting using LLaMA-2 [26] with 7B parameters. This experiment
focuses on aligning the model to generate responses that are both harmless and
as long as possible. We utilize the HH-RLHF dataset and measure harmlessness
using an open-source reward model4.

Results. The results in Figure 3 demonstrate PAMA’s effectiveness in large-
scale multi-objective alignment. As shown in Figure 3a, PAMA achieves a stable
increase in harmlessness reward, while MORLHF and MGDA-UB suffer from

4 https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model

https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model
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instability and fluctuations. MGDA-UB, in particular, exhibits pronounced train-
ing oscillations, failing to maintain a high harmlessness score, whereas MORLHF
stabilizes at a lower reward level. Similarly, Figure 3b illustrates that PAMA
maintains strong performance in length optimization, achieving stable conver-
gence. In contrast, MGDA-UB experiences erratic fluctuations, and MORLHF
fails to sustain meaningful progress. These findings reinforce PAMA’s theoretical
advantages, demonstrating its ability to effectively balance competing objectives
in large-scale LLM alignment.

3.4 Discussion

Our experimental results confirm that the theoretical advantages of PAMA
are consistently realized in practice. Across various model size (ranging from
125M to 7B) and objective settings, PAMA demonstrates superior stability and
optimization performance, significantly outperforming existing baseline methods.
MORLHF, which relies on a weighted sum of objectives, struggles to balance
competing rewards due to its fixed weight assignments, often leading to suboptimal
trade-offs. MGDA-UB, while employing dynamic gradient balancing, can exhibit
training instability and, in some cases, underperform compared to MORLHF.
These findings highlight PAMA’s robustness in achieving stable and well-balanced
optimization across different model scales and reward settings, making it a reliable
and scalable solution for multi-objective alignment in large language models.

4 Related Work

Multi-Objective Optimization is a fundamental problem in RL and deep
learning, where multiple conflicting objectives must be simultaneously optimized,
because improving one often leads to the degradation of another. Classical
MOO techniques aim to find Pareto-optimal solutions. Among them, simple
linearization methods with fixed weights often fail to effectively balance competing
objectives [3]. A more general approach is Pareto-based optimization, which
seeks to optimize all objectives simultaneously while maintaining trade-offs.
Gradient-based MOO methods, e.g. MGDA [4], formulate a common descent
direction for all objectives, ensuring simultaneous progress. However, despite their
theoretical appeal, these approaches, along with related methods like PCGrad [32]
and CAGrad [14], suffer from computational inefficiencies in high-dimensional
parameter spaces, particularly in deep learning. The prohibitive cost of computing
and aggregating gradients at LLM scale motivate the development of scalable
alternatives, such as our proposed method, PAMA.

MORL extends RL to settings where an agent must learn policies that
balance multiple reward functions. Standard MORL approaches include linear
scalarization [27], Envelope Q-Learning [31], and Pareto Q-learning [17], as well
as several recent extensions [1, 8, 10, 12, 15, 22]. These methods are widely used
in applications that require trade-offs between competing objectives [7]. However,
their extension to large-scale neural networks, particularly LLMs, remains an
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open challenge due to computational constraints and the difficulty of balancing
conflicting reward signals. A further discussion is provided in Appendices F and
G.

MOO for LLMs. Applying MOO to LLMs presents additional challenges
due to their high-dimensional parameter space and the inherent conflicts between
objectives such as fluency, factual accuracy, and safety. Existing MOO techniques
often become impractical for LLMs due to the prohibitive cost of computing
gradients for each objective. For example, MGDA-UB [24] is proposed as an
efficient approximation method, though its behavior on large-scale models can
be unstable in practice, as observed in our experiments. Independent Component
Alignment (ICA) [25] has been explored in multi-task learning for vision models,
but its reliance on singular value decomposition introduces numerical instability,
particularly when applied to float16 or bfloat16 formats used in LLM training.
A notable recent approach is MOC [11], which trains an LLM as a meta-policy
to generate responses aligned with user-defined preferences along the Pareto
front. While promising, such approaches still face scalability and optimization
challenges when applied to billion-parameter models.

Our approach, PAMA, distinguishes itself from previous methods by: i)
Achieving computational efficiency comparable to single-objective RLHF meth-
ods, making it scalable to large models. ii) Providing theoretical guarantees of
convergence, ensuring stable and reliable optimization. iii) Directly enabling
multi-objective alignment in LLMs without relying on computationally expensive
gradient manipulation techniques. By addressing both theoretical and practical
limitations of existing methods, PAMA establishes a scalable and principled
solution for aligning LLMs with multiple human values.

5 Conclusion

In this paper, we introduced Pareto Multi-Objective Alignment, a computa-
tionally efficient and theoretically grounded algorithm designed to align large
language models across multiple, potentially conflicting objectives. By transform-
ing the inherently complex multi-objective reinforcement learning from human
feedback problem into a convex optimization framework, PAMA significantly
reduces computational complexity, from an impractical O(n2d) to O(n), where
d is the number of parameters (billions for LLMs) and n is the number of ob-
jectives. This efficiency enables practical multi-objective optimization even for
billion-parameter models, expanding the applicability of LLMs across diverse
real-world tasks. From a theoretical perspective, we provided rigorous proofs
demonstrating that PAMA converges to Pareto stationary points. The empirical
results further substantiate that PAMA not only exhibits theoretical superiority
but also achieves stable and efficient multi-objective alignment in real-world ap-
plications. By successfully translating its methodological advantages into tangible
performance improvements, PAMA provides a computationally efficient and the-
oretically grounded solution for multi-objective alignment for LLMs. In summary,
PAMA not only addresses a critical gap in current multi-objective alignment
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methodologies but also offers a scalable, principled, and computationally viable
solution for aligning LLMs with multiple human values. By establishing a strong
foundation for efficient multi-objective optimization, PAMA paves the way for
more adaptable, responsive, and socially aligned AI systems.
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