
Towards Unifying Feature Interaction Models for
Click-Through Rate Prediction

Yu Kang1, Junwei Pan2, Jipeng Jin1, Shudong Huang2, Xiaofeng Gao1 (�),
and Lei Xiao2

1 Shanghai Key Laboratory of Scalable Computing and Systems,
School of Computer Science, Shanghai Jiao Tong University, China
{jerryykang,jinjipeng}@sjtu.edu.cn, gao-xf@cs.sjtu.edu.cn

2 Tencent, Shenzhen, China
{jonaspan,ericdhuang,shawn}@tencent.com

Abstract. Modeling feature interactions plays a crucial role in accu-
rately predicting Click-Through Rates (CTR) in advertising systems. To
capture the intricate interaction patterns, many existing models employ
matrix-factorization techniques to represent features as lower-dimensional
embedding vectors, enabling the modeling of interactions as products
between these embeddings. In this paper, we propose a general frame-
work called IPA to systematically unify these matrix-factorization-based
models. Our framework comprises three key components: the Interac-
tion Function, which facilitates feature interaction; the Layer Pooling,
which constructs higher-level interaction layers; and the Layer Aggrega-
tor, which combines the outputs of all interaction layers to serve as input
for the subsequent classifier. We demonstrate that most existing models
can be categorized within our framework by making specific choices for
these three components. Through extensive experiments and a Dimen-
sional Collapse analysis, we evaluate the performance of these choices.
Furthermore, by leveraging the most powerful components within our
framework, we introduce a novel model PFL that achieves competitive
results compared to state-of-the-art CTR models. PFL gets significant
GMV lift during online A/B test in Tencent’s advertising platform, and
has been deployed as the production model in several primary scenarios.

Keywords: CTR Prediction · Factorization Machine · Recommender
System.

This work was supported by the National Key R&D Program of China
[2024YFF0617700] and the National Natural Science Foundation of China
[U23A20309, 62272302, 62372296]. The authors are grateful to the support of Yim-
ing Liu and Xinyi Zhou for their contributions in preliminary works. They would
also thank Shifeng Wen, Zijun Liu and Xun Liu for their invaluable contributions of
online evaluation, and Weihua Zhu for supporting the collaboration between SJTU
and Tencent upon which this work is built. X. Gao is the corresponding author.



2 Y. Kang et al.

1 Introduction

Online advertising has become a billion-dollar business nowadays, with an an-
nual revenue of 225 billion US dollars between 2022 and 2023 (increasing 7.3%
YoY) [7]. One of the core problems in this field is to deliver the right ads to the
right audiences in a given context. Accurately predicting the click-through rate
(CTR) is crucial to solving this problem and has attracted significant attention
over the past decade [5, 15, 17, 19, 24, 25, 27–29, 31, 35, 37, 38, 40, 46, 52].

CTR prediction commonly involves the handling of multi-field categorical
data [28, 47], where all features are categorical and sparse. The primary chal-
lenge lies in effectively capturing interactions between these features, which is
particularly difficult due to the extreme sparsity of feature co-occurrence. To
address this challenge, numerous approaches [17, 19, 24, 28, 31, 35, 37, 40] have
been proposed to explicitly model feature interactions, using matrix factoriza-
tion techniques or hybrid methods that combine explicit modeling with implicit
method of deep neural networks (DNNs).

Explicit interaction models, particularly the 2nd-order ones, have well-defined
definitions and close-form formulations. These models originated from classic
Matrix Factorization (MF) [20, 34], followed by FM [5, 31], FFM [19], FwFM [28],
and FmFM [37].

In contrast, models like xDeepFM [24] and DCN V2 [40] employ a parameter
or weight matrix to model higher-order interactions, going beyond the 2nd-order
interactions captured by the aforementioned models. However, it is worth noting
that while some attempts have been made to discuss the connections between
explicit interaction models [11, 21, 40], these efforts have only covered a limited
number of models. As a result, the differences and relationships between various
explicit interaction models remain less well-understood.

Thus, we propose a simple framework, i.e., IPA, to unify existing low- and
high-order explicit interaction models for systematic comparisons between them.
The name of IPA corresponds to its three components: the Interaction Func-
tion which captures the interaction between two terms (or features), the Layer
Pooling which constructs explicit interaction layers based on the prior layers
and raw feature embeddings, and the Layer Aggregator which takes all layers as
input, and outputs a representation for the classifier. By combining these three
components within the IPA framework, we can represent various CTR models,
from 2nd-order interactions models like FM [5, 31], FwFM [28], FmFM [37] to
high-order interaction models like xDeepFM [24] and CIN [40].

Furthermore, the IPA framework enables more granular analysis of struc-
tural differences between these CTR models in their choices of the three compo-
nents, providing a better guidance for model design. For validation, we conduct
extensive experiments over public datasets and production dataset, comparing
between existing CTR models as well as models derived from our framework.
These experiments not only identify the key factors behind model performance,
supporting our derived models to be as robust as SOTA models, but also connect
component choices and performance from a novel perspective: the phenomenon
of Dimensional Collapse.



Towards Unifying Feature Interaction Models for CTR Prediction 3

The main contribution of the paper can be summarized as:

– We propose a general framework IPA for feature interaction models, consist-
ing of the Interaction Function, the Layer Pooling and the Layer Aggregator.
The framework supports structural analysis between models.

– We derive novel models by combinations of IPA components. Experiment
results demonstrate the effectiveness of these new models on both public
datasets and online testing, providing essential findings for model designing.

– We present a novel Dimensional Collapse perspective to understand the evo-
lution of Interaction Functions and analyze the potential to learn data orders.

2 The IPA Framework

In this section, we present the three modules in our framework: the Interaction
Functions, Layer Pooling and Layer Aggregator. The structure of framework is
illustrated in Fig. 1 below:

Categorical Feature

…

Classifier

Embedding Layer

① Interaction Function

② Layer Pooling

…

𝛼𝐿
…

𝛼3
𝛼2
𝛼1

③ Layer Aggregator

×

×
×

×

(a) The IPA framework.

× × × × × × ×× ×

Layer Agg. Term Agg. Element Agg.

1 0 0

0 1 0

0 0 1

𝑤 0 0

0 𝑤 0

0 0 𝑤

𝑤00 0 0

0 𝑤11 0

0 0 𝑤22

𝑤00 𝑤01 𝑤02

𝑤10 𝑤11 𝑤12

𝑤20 𝑤21 𝑤22

① Interaction Function

Naive Weighted Diagonal Projected

×③ Layer Aggregator

ℎ𝑙−1,1
Field

𝑣1 𝑣2 𝑣3

ℎ𝑙−1,2
Field ℎ𝑙−1,3

Field

ℎ𝑙,1
Field ℎ𝑙,2

Field ℎ𝑙,3
Field

Acquire the first term in the 𝑙-th layer

with Field Pooling

ℎ𝑙−1,1
Global

𝑣1 𝑣2 𝑣3

ℎ𝑙−1,2
Global ℎ𝑙−1,3

Global

ℎ𝑙,1
Global ℎ𝑙,2

Global ℎ𝑙,3
Global

② Layer Pooling

Acquire the first term in the 𝑙-th layer 

with Global Pooling

(b) Illustration of IPA components.

Fig. 1. Illustration of the IPA framework and common choices of its three components.

2.1 Interaction Function

Starting with a set of embedding vectors, the very first thing to determine is the
way to model interactions between these embedding vectors of different feature
fields. As the first IPA component, the Interaction Function extracts information
from explicit interaction of these embedding vectors and returns the result in
vector form. The input accepts both raw embeddings directly obtained from
features and calculated interaction terms, enabling explicit feature interaction
of any order.



4 Y. Kang et al.

Table 1. Formulation of Interaction Functions where diag() denotes diagonal matrix.

Type NotationMatrix Example

Naive WN I FM [5, 31], HOFM [6]
Weighted WW diag(w, . . . , w) FwFM [28], xDeepFM [24]
Diagonal WD diag(w1, . . . , wK)FvFM [37]
ProjectedW P full matrix FmFM [37], DCNV2 [40]

Definition 1. Interaction Function: For two input embeddings ti, tj ∈ RK ,
the Interaction Function f is defined as a function mapping ti, tj to the interac-
tion term of two these two embeddings:

ti,j = f(ti, tj) ∈ RK (1)

In our framework, illustrated in the middle part of Fig. 1(a), the Interaction
Function serves as the basic unit of feature interaction operations. Utilizing the
interaction terms generated by the Interaction Function, the whole CTR model
is able to model interaction patterns throughout the training progress.

From our observations, the Interaction Function in many existing models can
be formulated by an interaction matrix W ∈ RK×K :

f(ti, tj ,W ) = (t⊤i W )⊙ t⊤j (2)

We find most of them taking one of the four forms of Wi,j in Tab. 1 and
illustrated in the first part of Fig. 1(b), where blue elements are trainable.

Dimensional Collapse of Interactions Recent work [15] reveals that feature in-
teraction on recommendation models leads to the Dimensional Collapse of em-
beddings, that is, the embeddings may only be able to span a low-dimensional
space. Inspired by [18], which proves that the projection matrix alleviates the
Dimensional Collapse in contrastive learning, we study if the projection matrix
in the Interaction Functions can achieve the same goal. Refer to Sec. 3.3 for
details.

2.2 Layer Pooling

Existing works [24, 35, 41, 40] tend to build layers to capture explicit high-order
interactions. However, the skyrocketing number of combinations (

(
M
l

)
) requires

interaction terms to be explored systematically with tractable complexity.
A widely-employed method of traversal is to generate interaction terms layer

by layer corresponding to their order, starting from the first layer which is simply
a concatenation of embeddings of all fields. The embedding tn of field n is defined
as either the embedding of the active feature for a one-hot encoding field, or a
pooling over embeddings for all active features for a multi-hot field. Formally,

h1 = [t1, . . . , tn, . . . , tM ] (3)



Towards Unifying Feature Interaction Models for CTR Prediction 5

Definition 2. Layer Pooling: For the raw embeddings h1 = [t1, ..., tM ] and
the layer of all (l − 1)-order terms h(l−1) = [tl−1,1, ..., tl−1,M ], then the Layer
Pooling is defined as the way to generate interaction terms of order l from all
interactions between terms of h1 and h(l−1), that is:

tl,n =
∑M

m=1

∑M

n=1
αm,nf(tn, tl−1,m) (4)

αm,n are either 0 or 1 indicating presence of corresponding terms.
Illustrated in the middle bottom part of Fig. 1(a), to capture higher-order

interactions, an IPA model relies on its Layer Pooling to systematically generate
and combine new interaction terms, forming interaction layers of higher order.
Furthermore, to control the number of interactions, two widely employed meth-
ods build layers with a fixed number of terms, where each term is a pooling of
interactions between terms from prior layers and raw feature embeddings.

Field-wise Layer Pooling (Field Pooling) This Field Pooling will pool all
the interactions that correspond to a specific field. Specifically, the l-th layer
consists of M terms, with the n-th term tl,n defined as a pooling over all inter-
actions between the n-th term in the first layer, i.e., the embedding of the n-th
field tn, and all terms in the (l − 1)-th layer, i.e., tl−1,m.

hF
l = [tFl,1, . . . , t

F
l,n, . . . , t

F
l,M ], tField

l,n =
∑M

m=1
f(tn, t

F
l−1,m,W ) (5)

DCNV2 employs Field Pooling and Projected Product to build up layers,
i.e., hCrossNet

l,n =
∑M

m=1 f(tn, tl−1,m,W F
l,n,m).

Global-wise Layer Pooling (Global Pooling) This Field Pooling will glob-
ally pool all the interactions, regardless of fields. Specifically, the l-th layer con-
sists of Hl terms, with the n-th term defined as a pooling over all interactions
between all terms in the first layer, and all terms in the (l − 1)-th layer.

hG
l = [tGl,1, . . . , t

G
l,n, . . . , t

G
l,Hl

], tGl,n =
∑M

n=1

∑Hl−1

m=1
f(tn, t

G
l−1,m,W ) (6)

Global Pooling introduces symmetric interactions in each layer, thus more
redundant than Field Pooling. xDeepFM [24] employs AGT to construct layers,
i.e., hCIN

l,n =
∑M

n=1

∑M
m=1 f(tn, tl−1,m,W F

l,n,m). The second part of Fig. 1(b)
illustrates the details on acquiring terms in the l-th layer with both pooling.

2.3 Layer Aggregator

After constructing layers, complexity of input features requires model to learn
from interaction of all orders, combining terms from these layers into vector from
for following classifiers. So the last component of our framework is defined:



6 Y. Kang et al.

Definition 3. Layer Aggregator: Considering [h1, ..., hL] as interaction lay-
ers of model, then the Layer Aggregator LA is defined as a function aggregating
elements of layers into one output vector as input of classifier, that is:

r = LA([h1, ...,hL]) (7)

Illustrated in the middle-top part of Fig. 1(a), the Layer Aggregator compo-
nent takes the interaction layers as input, integrates terms within layers and then
aggregates all the layers to form the final output of feature interaction module,
serving as the input of following classifier in the model.

Here are some widely employed ways to aggregate layers:

– Direct Agg.: Directly link each layer, with No weights at all.
– Layer Agg.: Assign a Layer-wise weight αl for each layer.
– Term Agg.: Assign a Term-wise weight for each term in each layer, e.g.,

assign αl,n for the n-th term of the l-th layer.
– Element Agg.: Assign an Element-wise weight for elements in each layer,

e.g., assign αl,n,k for the k-th element in the n-th term of the l-th layer.

The third part of Fig. 1(b) illustrates how to assign weights to a term with
Layer, Term and Element Agg., respectively. Tab. 2 summarizes the formulation
and number of learnable parameters of different Layer Aggregators.

Table 2. Formulation of aggregators, where ∥{·} denotes the concatenation function.

Abbr. Weight# Param.Output

Direct 1 0 r =
∑L

l=1 ∥
M
n=1{tl,n}

Layer αl L r =
∑L

l=1 αl · ∥Mn=1{tl,n}
Term αl,n LM r =

∑L
l=1 ∥

M
n=1{αl,n · tl,n}

Elementαl,n,k LMK r =
∑L

l=1 ∥
M
n=1{∥Kk=1{αl,n,k · tl,n,k}}

2.4 The Framework

Now, combining the three components above, we propose our framework IPA
as a modularized transformation:

– First of all, IPA reads in the embedding vectors as the 0-th layer and prepares
the Interaction Function.

– Then, IPA constructs the interaction layers using its Interaction Function
on the built layers guided by its Layer Pooling.

– Finally, IPA aggregates all the layers by its Layer Aggregator, creating out-
put vector of desired length for following classifiers.



Towards Unifying Feature Interaction Models for CTR Prediction 7

Generalizing the structure of feature interaction module by the three com-
ponents, the IPA framework dives into the details of existing CTR models, ex-
ploring their similarity and differences on various aspects. We can compare how
models make basic interactions, how they build up high-order interaction terms,
and how they extract information from interaction layers. Besides, the frame-
work can help us control variables when analyzing the effect of one component
(like Interaction Function), by simply fixing the choices of other components.

2.5 Deriving New Models

While many existing CTR models can fit into IPA as a combination of three
components, there are several new models that can be derived from unexplored
combinations.

Specifically, we choose Projected Product to capture interactions between
terms, employ Field Pooling to build up layers and employ Layer Agg. to assign
layer-wise weight during layer aggregation.

We name it as PFL, which stands for Projected Product with Field Pooling
and Layer Agg.. Comparing PFL to DCN V2, there are two main differences
between them:

1. PFL employs Field Pooling without residual connections.
2. PFL employs Layer Agg. to aggregate layers instead of Direct Agg..

There are many other new models that can be derived in this way, and we
present some of the most effective ones in Tab. 3.

3 Evaluation

In this section, we aim to answer several research questions related to the per-
formance of components in the IPA framework.

– RQ1: How do the Interaction Functions perform? Does a more complicated
Interaction Function lead to better performance in the real-world scenario?

– RQ2: Regarding Dimensional Collapse, how does Interaction Function influ-
ence the extent of collapse?

– RQ3: How do the various Layer Poolings perform? What can we infer from
them about model design?

– RQ4: How do the various Layer Aggregators perform? What can we learn
from choices of this component?

– RQ5: How do existing CTR models evolve so far? How does our framework
offer a direction towards a better model?

– RQ6: Regarding the derived model PFL, to what extent has this model
performed in industrial applications?



8 Y. Kang et al.

3.1 Experiment Setup

Public Dataset We evaluate the models on two public datasets: Criteo-x1 and
Avazu. Both are divided into 8:1:1 for training, validation, and test set.

– Criteo-x1 [2]. It is the most popular benchmark dataset for CTR prediction,
consisting of 45 million click feedback records of display ads. The dataset
includes 13 numerical feature fields and 26 categorical feature fields.

– Avazu [1]. It includes 10 days of Avazu click-through data, with 13 feature
fields that have disclosed meanings and 9 anonymous categorical fields.

Synthetic Dataset We follow [40] to generate data with specified interaction
orders. Let x = [x1, . . . , xn] be a feature vector of length n, and the element
xi ∈ R denotes the i-th feature of x. xi is uniformly sampled from interval
[−1, 1]. The monomial x1 · · ·xO is called O-order cross-term, representing an O-
order interaction between features. Given x of length n and the data order O,
we generate a label as the sum of the cross-terms whose orders ≤ O, each with
an individual weight. Specifically, we define In = {i|i ≤ n, i ∈ N∗} as the set
of all positive integers ≤ n, and ΩO

n as the set of all combinations of O distinct
integers randomly sampled from In.

The label y is generated by the equation

y =

O∑
i=1

∑
(ω1,··· ,ωi)∈Ωi

n

wω1,··· ,ωi

i∏
j=1

xωj
+ ϵ (8)

where ωi is the i-th element in the combination, wω1,··· ,ωi ∼ N(0, 1) is the
individual weight of a specific interaction term, and ϵ ∼ N(0, 0.1) models the
label noise which is ignored in [40]. We define O, the order of a dataset, as
hyperparameter controlling the maximum order of cross-terms.

Baseline Models We choose the following CTR models as baselines: FM,
FwFM, FvFM, FmFM, DeepFM, FiBiNet, HOFM, xDeepFM and DCN V2.
Most of them fit in our IPA framework.

Implementation Details Our implementation is based on a public PyTorch li-
brary for recommendation models3. We set the embedding size to 16, the dropout
rate to 0.2, and launch early-stopping. We use the Adam optimizer with a learn-
ing rate of 0.001. The number of layers L of high-order models are set to 4 and
5 for Criteo-x1 and Avazu, based on the best performance. Our derived models
using PGT have 10 terms in each layer. All models are trained on a NVIDIA
V100 GPU with a batch size of 2048. We repeat all experiments 3 times and
report the average AUC performance in Tab. 3. The best performance and the
comparable performance are denoted in bold and underlined fonts, respectively.
3 https://github.com/rixwew/pytorch-fm



Towards Unifying Feature Interaction Models for CTR Prediction 9

Table 3. AUC of baselines and derived models on public datasets. O stands for orders.

Model
Interaction
Function

Layer
Pooling

Layer
Aggregator Criteo Avazu

L AUC O AUC

FM naive field/global direct 2 0.8009(2e-4) 2 0.7758(1e-4)
DeepFM naive field/global direct 2 0.8122(1e-4) 2 0.7899(5e-4)
HOFM naive field/global direct 4 0.8040(3e-4) 5 0.7781(8e-4)
FwFM weighted field/global direct 2 0.8095(2e-4) 2 0.7854(4e-4)
xDeepFM weighted global term 4 0.8119(2e-4) 5 0.7897(7e-4)
FvFM diagonal field/global direct 2 0.8103(2e-4) 2 0.7870(3e-4)
FmFM projected field/global direct 2 0.8115(3e-4) 2 0.7882(5e-4)
FiBiNet projected field/global direct 2 0.8113(2e-4) 2 0.7907(4e-4)
DCN V2 projected field’ direct 4 0.8137(3e-4) 5 0.7917(1e-4)

WFL weighted field layer 4 0.8124(2e-4) 5 0.7891(3e-4)
DFL diagonal field layer 4 0.8123(1e-4) 5 0.7903(9e-4)
PFL projected field layer 4 0.8138(3e-4) 5 0.7916(4e-4)

PFT projected field term 4 0.8138(3e-4) 5 0.7904(4e-4)
PFE projected field element 4 0.8138(3e-4) 5 0.7907(2e-4)
PFD projected field direct 4 0.8131(4e-4) 5 0.7912(5e-4)

3.2 RQ1: Evaluation of Interaction Function

We compare the models with various Interaction Functions in several settings
regarding the Layer Pooling, Layer Aggregator and classifier. First, among the
simplest 2nd-order explicit interaction models (Field/Global Pooling, direct ag-
gregator, no classifier), i.e., FM, FwFM, FvFM and FmFM, the more complicated
the Interaction Function, the better AUC on both datasets.

Then, we compare the derived IPA models using the same Layer Pooling (i.e.,
Field Pooling) and Layer Aggregator (i.e., Layer Agg.). The result is shown in
Fig. 2(a). Across all models (i.e., NFL, WFL, DFL and PFL), PFL achieves the
best AUC, with a strong trend: models with more complex Interaction Functions
(Projected > Diagonal > Weighted > Naive) generally achieve better AUC. This
indicates the importance of Interaction Function to model performance.

Finding 1. Under the same setting of Layer Pooling, aggregation, and clas-
sifier, the more complicated the projection matrix (i.e., from identity, scaled
identity, diagonal to full matrix) within the feature Interaction Function, the
better the results regarding AUC.

One possible reason of such trend is that Projected Product learns a pow-
erful matrix projection, i.e., W F for each field pair. In addition, the Projected
Product has the highest number of trainable parameters, further improving its
capability to fit training data, which connects closely with model performance.



10 Y. Kang et al.

NFL WFL DFL PFL
0.76

0.77

0.78

0.79

0.80

0.81

0.82

AU
C

Criteo
Avazu

(a) Interaction Functions.

PFL PGL(H=20)PGL(H=10) PGL(H=5)
0.76

0.77

0.78

0.79

0.80

0.81

0.82

AU
C

Criteo
Avazu

(b) Layer Poolings.

PFD PFL PFT PFE
0.76

0.77

0.78

0.79

0.80

0.81

0.82

AU
C

Criteo
Avazu

(c) Layer Aggregators.

Fig. 2. Performance of various choices within each component in the IPA framework.

3.3 RQ2: Dimensional Collapse of Interaction Functions

To explore the connection between Dimensional Collapse and Interaction Func-
tions, we analyze the singular value sums (SS) as well as the information abun-
dance (IA) [15] of feature fields, where the latter one is defined as the singular
value sum divided by the largest value. Different from [15], we evaluate these
metrics on embeddings in the sample distribution rather than the unique feature
ID distribution, as they reflects feature frequencies more accurately. All the fol-
lowing analysis is based on the Criteo-x1 dataset, since its features vary greatly
in cardinality to better illustrate the Dimensional Collapse phenomenon.

We run experiments on DCN V2 and three representational models: FM
with Naive Product, FwFM with Weighted Product and FmFM with Projected
Product, whose only difference lies in the Interaction Functions they take. In
Fig. 3(a) and 3(c), we present the singular value sums of sample embeddings
in the Criteo-x1 dataset, where feature fields are ordered by their cardinality
and average pair importance from the FwFM model. Comparing the three rep-
resentational models, we could observe that when the projection matrix of In-
teraction Function becomes more complex (FM’s identity matrix to FwFM’s
scaled identity matrix to FmFM’s full matrix), the singular values of the left-
most high-dimensional fields become higher and more balanced, obtaining larger
SS and larger IA; this indicates that FmFM spans the largest space in its high-
dimensional fields and thus experiencing less amount of Dimensional Collapse
on these fields. In this aspect, a complex Interaction Function could serve as a
buffer for the high-dimensional fields, alleviating Dimensional Collapse occurred
during the interaction process with other low-dimensional fields.

Now, we want to connect this observation to the model performances. In
Fig. 3(b) and 3(d), we derive field weights from the FwFM model and present
the SSs as well as IAs ordered by these weights. Here FmFM still obtains the
largest SS among the 10 most essential fields for prediction task, suggesting
that models with a complex Interaction Function indeed learn more robust em-
beddings against Dimensional Collapse, which contributes to a better model
performance.

To further analyze the robustness of embeddings, we pick the representative
fields of high cardinality and field importance, plotting their ordered singular



Towards Unifying Feature Interaction Models for CTR Prediction 11

0 5 10 15 20 25 30 35 40
Field Index

1

2

3

4

5

6

7

8

9

10

In
fo

rm
at

io
n 

Ab
un

da
nc

e

FM
FwFM
FmFM

(a) IA ordered by cardinality

0 5 10 15 20 25 30 35 40
Field Index

1

2

3

4

5

6

7

8

9

10

In
fo

rm
at

io
n 

Ab
un

da
nc

e

FM
FwFM
FmFM

(b) IA ordered by importance

0 5 10 15 20 25 30 35 40
Field Index

0

20

40

60

80

100

120

140

160

Si
ng

ul
ar

 V
al

ue
 S

um

FM
FwFM
FmFM

(c) SS ordered by cardinality

0 5 10 15 20 25 30 35 40
Field Index

0

20

40

60

80

100

120

140

160

Si
ng

ul
ar

 V
al

ue
 S

um

FM
FwFM
FmFM

(d) SS ordered by importance

Fig. 3. Comparison of Dimensional Collapse for 2nd-order interaction models on the
Criteo-x1 dataset. Both Singular Sum (SS) and Information Abundance (IA) are plot-
ted for fields aligned in two ways. While fields in (a) and (c) are ordered by field
cardinality, those in (b) and (d) are ordered by average feature pair importance in
FwFM model.

values in Fig. 4. From the figure, FmFM possesses the highest and most steady
level of singular values, for both high-dimensional and high-importance fields.
This indicates that models with a more complex Interaction Function suffers less
from Dimensional Collapse and learns a more robust set of embeddings.

Finding 2. Among 2nd-order interaction models, the more complicated pro-
jection matrix (i.e., from identity, scaled identity, diagonal to full matrix)
within the Interaction Function, the more robust (less collapsed) the learned
embeddings regarding both information abundance and singular value sum.

3.4 RQ3: Evaluation of Layer Pooling

To evaluate Layer Pooling, we compare the models with various Layer Poolings,
but the same Interaction Function (i.e., Weighted, Diagonal and Projected Prod-
uct) and the same Layer Aggregator (i.e., Layer Agg.) in Tab. 3. In addition,
we tune the hyper-parameter H, i.e., number of terms in each layer in global
agg., by training the PGL model with H = 5, 10, 20, and present the results
in Fig. 2(b). Field Pooling constantly outperforms Global Pooling in all com-
parisons, possibly due to that Global Pooling introduces too many redundant
interactions, leading to optimization issue caused by co-linearity.



12 Y. Kang et al.

0 2 4 6 8
Sorted Singular Index

1

2

3

4

5

Si
ng

ul
ar

 V
al

ue

High-Cardinality Field 15 (413423 values)
FM
FwFM
FmFM

0 2 4 6 8
Sorted Singular Index

1

2

3

4

5

6

Si
ng

ul
ar

 V
al

ue

High-Cardinality Field 28 (365810 values)
FM
FwFM
FmFM

(a) Spectrum of high-cardinality fields

0 2 4 6 8
Sorted Singular Index

2

4

6

8

10

Si
ng

ul
ar

 v
al

ue

High-Importance Field 22 (0.7670)
FM
FwFM
FmFM

0 2 4 6 8
Sorted Singular Index

2

3

4

5

6

7

8

9

10

Si
ng

ul
ar

 v
al

ue

High-Importance Field 19 (0.7621)
FM
FwFM
FmFM

(b) Spectrum of high-importance fields

Fig. 4. Field-wise singular value spectrum for 2nd-order interaction models on the
Criteo-x1 dataset. The singular values of representative fields (high-order fields in (a)
and high-importance fields in (b)) are ordered and displayed.

Finding 3. Under the same setting of Interaction Function and Layer Ag-
gregator, models with Field Pooling outperform those with Global Pooling.

3.5 RQ4: Evaluation of Layer Aggregator

To compare the Layer Aggregator choices, we equip PFL with each of the four
variants. Evaluations in Fig. 2(c) show comparable performance for these choices,
and PFL itself gets comparable performance with DCN V2 in Tab. 3 with a
fixed number of layers, i.e., L = 4 in Criteo-x1 and L = 5 in Avazu. However,
with fixed orders of public datasets, the flexibility of models remains unrevealed.
A good model should effectively capture the intrinsic order of data and value
interactions within such order to avoid overfitting, as Layer Aggregator does.

To explore such flexibility, we generate a synthetic dataset containing 1 mil-
lion samples with O = 4, and then train a PFL model with L = 10. Please
note that αl in PFL used to explicitly model the importance of layer l might be
absorbed by the order-wise Wl ∈ RMK×MK . Therefore, we analyze the effect of
αl and its joint influence with Wl. We present their Frobenius norm, i.e., ∥Wl∥F
and αl · ∥Wl−1∥F in Fig. 5(a) and Fig. 5(b), respectively.

From the figures, we observe that through the training epochs, α1 ∼ α4

corresponding to weights of the first four explicit interaction layers increase sig-
nificantly, while weights of higher orders, i.e., α5 ∼ α10, decrease. Besides, when
considering αl · ∥Wl−1∥F as a whole, the contribution of αl · ∥Wl−1∥F is small



Towards Unifying Feature Interaction Models for CTR Prediction 13

(a) layer weights αl (b) αl · ∥Wl−1∥F (c) RMSEs on O = 3

Fig. 5. Trends of αl, αl · ∥Wl−1∥F and model performances in the training process.
Our model learns low αl and ∥Wl−1∥F for extra layers (5-10), obtaining high-level and
robust performance even when over-estimating data order.

and can be ignored when l > 4, indicating that PFL mainly learns from the most
important layers and is capable of learning the order of the data.

Then, to establish connection of such capability to the choice of Layer Aggre-
gator, we generated synthetic dataset of order O = 3, training CIN (xDeepFM),
CrossNet (DCN V2) and PFL with layers in the range of [O, 10]. To make a clear
analysis, we remove the MLP classifier from all models and only use the repre-
sentation for prediction. The RMSE results are shown in Fig. 5(c). We do not
include models with l < 3 as their performances are defective, which is trivial.

Regarding the three models, CIN performs badly in all settings: on the one
hand, it performs the worst in all cases with a large margin; on the other hand,
it cannot always achieve the best performance when the model order matches
the data order. For example, while the data order is 3, CIN achieves the best
performance with a model order of 4. Then, compared to CrossNet, our derived
model PFL achieves the best performance when two orders match, and it man-
ages to make a larger relative lift as more redundant layers are added to the
model, while performance of CrossNet deteriorates. As PFL differs from DCN
V2 mainly in its introduction of αl, the performance gap indicates the success
of layer-wise aggregator in filtering redundant layers in PFL.

Finding 4. Under the same setting of feature Interaction Function and Layer
Pooling, models with layer-wise aggregator are capable of learning the order
of data, thus outperforming those with direct connections.

3.6 RQ5: Derived models and Evolution of Existing Models

Based on the above evaluations, the Projected Product, Field Pooling and Layer
Agg. outperform other choices for the three components. Combining these most
powerful choices together, we get the derived model PFL achieving comparative
performance with DCN V2 on both public datasets. Besides, many other derived



14 Y. Kang et al.

models obtain decent performance. For example, WFL achieves comparative
performance with xDeepFM, differing mainly in the Layer Pooling.

In a nutshell, through all these evaluations, we observe that CTR models
evolve mainly through: 1) Employing more powerful Interaction Functions, from
Naive Product (e.g., FM, HOFM, DeepFM), to Weighted Product (e.g., FwFM,
PNN, xDeepFM) and Diagonal Product (e.g., FvFM), and finally to Projected
Product (e.g., FmFM, FiBiNet, DCN V2 and PFL). 2) Employing more powerful
Layer Poolings, from Global Pooling (e.g., xDeepFM, WGL, DGL, PGL) to Field
Pooling (DCN V2 and PFL). 3) Employing layer-wise Layer Aggregator instead
of directly linking everything, in order to adapt to various orders of data.

3.7 RQ6: Online A/B Testing

We developed PFL in one of the world’s largest advertising platforms. The pro-
duction model employs Heterogeneous Experts with Multi-Embedding architec-
ture [15, 29, 36]. We replace the IPNN expert in the production model with the
PFL expert, which models the interactions between more than five hundred user-
side, ad-side, and context-side features. Multiple embedding tables are learned
for all features, each corresponding to one or several experts.

During the two-week 20% A/B testing, PFL demonstrated promising results,
achieving 0.9%, 3.7%, 1.2%, and 2.7% GMV lift on several vital scenarios, in-
cluding Moments pCTR, Content and Platform pCTR, and DSP pCTR. These
improvements were statistically significant according to t-tests. PFL has been
successfully deployed as the production model in the above-mentioned scenarios,
leading to a revenue lift by hundreds of millions of dollars per year.

We also study the singular values of the baseline IPNN model and the PFL
model. Specifically, we calculate a 95%-percentile dimension, that is, how many
top singular values can cover 95% of the total singular values of each feature. As
shown in Fig. 6, our proposed PFL gets a much higher 95%-percentile dimension
on almost all features, especially on those with high cardinalities. This validates
that PFL can mitigate the Dimensional Collapse.

0 2 4 6 8 10 12
Feature Index

0

10

20

30

40

50

60

Em
be

dd
in

g 
Di

m

2 3
6 7 7

25

48

42
46

41
44 43

34

2
6

10

30

60

7

60

10

60 60 59 59 60
IPNN vs PFL Embedding Dimensions

IPNN

PFL

Fig. 6. Dimensional Collapse of IPNN v.s. PFL in our system.



Towards Unifying Feature Interaction Models for CTR Prediction 15

4 Related Works

Many articles model the 2nd-order interactions after factorization machines.
Early works use Logistic Regression (LR) [9, 26, 33] or Polynomial-2 (Poly2) [8]
to learn interactions. Following matrix factorization [13, 20, 34], FM [5, 31] mod-
els interactions as dot product between embeddings. FFM [19] assigns field-wise
embeddings for field-pair interactions. Based on FM, FwFM [28], FvFM [37] and
FmFM [37] introduce field-pair wise weight, vector and matrix to better model
interactions respectively. AFM [43] learns an attentive weight for each field pair.

Many recent articles propose to capture explicit high-order interactions [6,
22, 24, 25, 31, 35, 39–41, 52]. For example, [31] discusses a d-way FM to model d-
order interactions in FM, and HOFM [6] presents an efficient algorithm to train
it. Similarly, xDeepFM [24], DCN [41], DCN V2 [40] and DCN V3 [22] also em-
ploy variants of matrix factorization techniques to model high-order interactions,
while AutoInt [35] resorts to a multi-head self-attentive network. Additionally,
EulerNet [39] learns feature interactions in a complex vector space. MaskNet [42]
introduces multiplicative operations block by block. FINAL [52] stacks multiple
FINAL blocks to capture various interaction patterns. DCN V3 [22] uses sub-
networks LCN and ECN to capture both low-order and high-order interactions.

Besides, it is also common to capture interactions both explicitly and implic-
itly (via deep neural networks). Wide & Deep [10], DeepFM [14] and ONN [45]
combine an explicit interaction module (as the wide part) and multiple feed-
forward layers (as the deep part) in parallel. NFM [16], IPNN [30], OPNN [30]
and FiBiNet [17] employ an explicit interaction component and then add MLPs
over it. FinalMLP [25] relies on MLPs and a two-stream structure, achieving
amazing performance. Also, there has been long-standing discussion and debate
on the role of MLPs in recommendations [3, 4, 12, 25, 32, 40, 50]. There are also
works to benchmark and summarize existing CTR models [21, 23, 40, 44, 48, 49,
51, 53]. For example, AOANet [21] decomposes the models into projection, in-
teraction, and fusion. DCN V2 [40] compares the explicit Interaction Functions.

5 Conclusion

In this paper, we present a unified framework, i.e., IPA, for explicit interaction
click-through rate models to systematically analyze and compare the existing
CTR models in Recommender Systems. Further, we conduct extensive experi-
ments on the effect of framework components and make several interesting dis-
coveries about model design. Inspired by these analysis, we successfully derived
a new model that achieves competitive performance with SOTA models and was
successfully deployed to Tencent’s advertising platform.

References

1. Avazu dataset. https://www.kaggle.com/competitions/avazu-ctr-prediction (2014)
2. Criteo dataset. https://www.kaggle.com/c/criteo-display-ad-challenge (2014)



16 Y. Kang et al.

3. Anelli, V.W., Bellogín, A., et al.: Reenvisioning the comparison between neural
collaborative filtering and matrix factorization. In: RecSys. pp. 521–529 (2021)

4. Beutel, A., Covington, P., et al.: Latent cross: Making use of context in recurrent
recommender systems. In: WSDM. pp. 46–54 (2018)

5. Blondel, M., Fujino, A., et al.: Convex factorization machines. In: ECML-PKDD.
vol. 9285, pp. 19–35 (2015)

6. Blondel, M., Fujino, A., et al.: Higher-order factorization machines. NeurIPS pp.
3351–3359 (2016)

7. Bureau, I.A.: Iab/pwc internet advertising revenue report 2024 (2024),
https://www.iab.com/insights/internet-advertising-revenue-report-2024/

8. Chang, Y.W., et al.: Training and testing low-degree polynomial data mappings
via linear svm. Journal of machine learning research 11(Apr), 1471–1490 (2010)

9. Chapelle, O., et al.: Simple and scalable response prediction for display advertising.
TIST 5(4), 61 (2015)

10. Cheng, H.T., Koc, L., et al.: Wide & deep learning for recommender systems. In:
The 1st workshop on deep learning for recommender systems. pp. 7–10 (2016)

11. Cheng, Y., Xue, Y.: Looking at ctr prediction again: Is attention all you need? In:
SIGIR. pp. 1279–1287 (2021)

12. Feng, N., Pan, J., et al.: Long-sequence recommendation models need decoupled
embeddings. arXiv preprint arXiv:2410.02604 (2024)

13. Flanagan, A., Oyomno, W., et al.: Federated multi-view matrix factorization for
personalized recommendations. In: ECML-PKDD. vol. 12458, pp. 324–347 (2020)

14. Guo, H., Tang, R., et al.: Deepfm: a factorization-machine based neural network
for ctr prediction. In: IJCAI. pp. 1725–1731 (2017)

15. Guo, X., Pan, J., et al.: On the embedding collapse when scaling up recommenda-
tion models. arXiv preprint arXiv:2310.04400 (2023)

16. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: SIGIR. pp. 355–364 (2017)

17. Huang, T., Zhang, Z., et al.: Fibinet: combining feature importance and bilinear
feature interaction for click-through rate prediction. In: RecSys. pp. 169–177 (2019)

18. Jing, L., Vincent, P., et al.: Understanding dimensional collapse in contrastive
self-supervised learning. In: ICLR (2022)

19. Juan, Y., Zhuang, Y., et al.: Field-aware factorization machines for ctr prediction.
In: RecSys. pp. 43–50 (2016)

20. Koren, Y., Bell, R., et al.: Matrix factorization techniques for recommender sys-
tems. Computer 42(8), 30–37 (2009)

21. Lang, L., Zhu, Z., et al.: Architecture and operation adaptive network for online
recommendations. In: SIGKDD. pp. 3139–3149 (2021)

22. Li, H., Zhang, Y., et al.: Dcnv3: Towards next generation deep cross network for
ctr prediction. arXiv preprint arXiv:2407.13349 (2024)

23. Li, J.L., et al.: Decompose, then reconstruct: A framework of network structures
for click-through rate prediction. In: ECML-PKDD. vol. 14169, pp. 422–437 (2023)

24. Lian, J., Zhou, X., et al.: xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In: SIGKDD. pp. 1754–1763 (2018)

25. Mao, K., Zhu, J., et al.: Finalmlp: An enhanced two-stream mlp model for ctr
prediction. In: AAAI. pp. 4552–4560 (2023)

26. McMahan, H.B., Holt, G., et al.: Ad click prediction: a view from the trenches. In:
SIGKDD. pp. 1222–1230 (2013)

27. Naumov, M., Mudigere, D., et al.: Deep learning recommendation model for per-
sonalization and recommendation systems. arXiv preprint arXiv:1906.00091 (2019)



Towards Unifying Feature Interaction Models for CTR Prediction 17

28. Pan, J., Xu, J., et al.: Field-weighted factorization machines for click-through rate
prediction in display advertising. In: WWW. pp. 1349–1357 (2018)

29. Pan, J., Xue, W., et al.: Ad recommendation in a collapsed and entangled world.
In: SIGKDD. pp. 5566–5577 (2024)

30. Qu, Y., Cai, H., et al.: Product-based neural networks for user response prediction.
In: ICDM. pp. 1149–1154 (2016)

31. Rendle, S.: Factorization machines. In: ICDM. pp. 995–1000 (2010)
32. Rendle, S., Krichene, W., et al.: Neural collaborative filtering vs. matrix factoriza-

tion revisited. In: RecSys. pp. 240–248 (2020)
33. Richardson, M., Dominowska, E., et al.: Predicting clicks: estimating the click-

through rate for new ads. In: WWW. pp. 521–530 (2007)
34. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using

markov chain monte carlo. In: ICML. pp. 880–887 (2008)
35. Song, W., Shi, C., et al.: Autoint: Automatic feature interaction learning via self-

attentive neural networks. In: CIKM. pp. 1161–1170 (2019)
36. Su, L., Pan, J., et al.: Stem: Unleashing the power of embeddings for multi-task

recommendation. In: AAAI. pp. 9002–9010 (2024)
37. Sun, Y., Pan, J., et al.: Fm2: Field-matrixed factorization machines for recom-

mender systems. In: WWW. pp. 2828–2837 (2021)
38. Tang, X., Qiao, Y., et al.: Optmsm: Optimizing multi-scenario modeling for click-

through rate prediction. In: ECML-PKDD. vol. 14174, pp. 567–584 (2023)
39. Tian, Z., Bai, T., et al.: Eulernet: adaptive feature interaction learning via euler’s

formula for ctr prediction. In: SIGIR. pp. 1376–1385 (2023)
40. Wang, R., et al.: Dcn-v2: Improved deep & cross network and practical lessons for

web-scale learning to rank systems. In: WWW. pp. 1785–1797 (2021)
41. Wang, R., Fu, B., et al.: Deep & cross network for ad click predictions. In: ADKDD.

pp. 1–7 (2017)
42. Wang, Z., She, Q., et al.: Masknet: Introducing feature-wise multiplication to ctr

ranking models by instance-guided mask. arXiv preprint arXiv:2102.07619 (2021)
43. Xiao, J., Ye, H., et al.: Attentional factorization machines: Learning the weight of

feature interactions via attention networks. arXiv preprint arXiv:1708.04617 (2017)
44. Xu, L., Tian, Z., et al.: Towards a more user-friendly and easy-to-use benchmark

library for recommender systems. In: SIGIR. pp. 2837–2847. (2023)
45. Yang, Y., Xu, B., et al.: Operation-aware neural networks for user response pre-

diction. Neural networks 121, 161–168 (2020)
46. Yue, Yunand Liu, Y., et al.: Adaptive optimizers with sparse group lasso for neural

networks in ctr prediction. In: ECML-PKDD. vol. 12977, pp. 314–329 (2021)
47. Zhang, W., Du, T., et al.: Deep learning over multi-field categorical data: A case

study on user response prediction. In: ECIR. pp. 45–57 (2016)
48. Zhao, W.X., Hou, Y., et al.: Recbole 2.0: Towards a more up-to-date recommen-

dation library. In: CIKM. pp. 4722–4726 (2022)
49. Zhao, W.X., Mu, S., et al.: Recbole: Towards a unified, comprehensive and efficient

framework for recommendation algorithms. In: CIKM. pp. 4653–4664 (2021)
50. Zhou, H., et al.: Temporal interest network for user response prediction. In: WWW.

pp. 413–422 (2024)
51. Zhu, J., Dai, Q., et al.: Bars: Towards open benchmarking for recommender sys-

tems. In: SIGIR. pp. 2912–2923 (2022)
52. Zhu, J., Jia, Q., et al.: Final: Factorized interaction layer for ctr prediction. In:

SIGIR. pp. 2006–2010 (2023)
53. Zhu, J., Liu, J., et al.: Fuxictr: An open benchmark for click-through rate predic-

tion. arXiv preprint arXiv:2009.05794 (2020)


