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Abstract. In this study, we address the challenge of learning generalizable poli-
cies for compositional tasks defined by logical specifications. These tasks consist
of multiple temporally extended sub-tasks. Due to the sub-task inter-dependencies
and sparse reward issue in long-horizon tasks, existing reinforcement learning
(RL) approaches, such as task-conditioned and goal-conditioned policies, continue
to struggle with slow convergence and sub-optimal performance in the general-
ization of compositional tasks. To overcome these limitations, by decomposing
the given task into reach-avoid sub-tasks, we introduce a new hierarchical RL
framework that trains a high-level planner to select optimal sub-tasks and zero-shot
generalizes to other tasks in the sub-task level, which enhances the efficiency and
optimality of task generalization. At the high level, we present an implicit planner
specifically designed for generalizing compositional tasks. This planner selects the
next sub-task and estimates the multi-step return for completing the remaining task
from the current state. It learns a latent transition model and performs planning
in the latent space to select sub-tasks based on a graph neural network (GNN).
Subsequently, the sub-task assigned by the high level guides the low-level module
to effectively handle long-horizon tasks, while the estimated return encourages
the low-level policy to account for future sub-task dependencies, enhancing its
optimality and densifying the sparse rewards. We conduct comprehensive experi-
ments to demonstrate the framework’s advantages over previous methods in terms
of both efficiency and optimality.

1 Introduction

In real-world applications, such as robotics and control system, task completion often
involves achieving multiple subgoals that are spread over time and must follow user-
specified temporal order constraints. For instance, a service robot on a factory floor may
need to gather components in specific sequences based on the product being assembled,
all while avoiding unsafe conditions. These complex tasks are defined through logic-
based compositional languages, which have long been essential for objective specification
in sequential decision-making [7].

Using domain-specific properties as propositional variables, formal languages like
Linear Temporal Logic (LTL) [28] and SPECTRL [13] encode intricate temporal patterns
by combining these variables with temporal operators and logical connectives. These
languages provide clear semantics and support semantics-preserving transformations



into deterministic finite-state automata (DFA), which reveal the discrete structure of
an objective to a decision-making agent. Generalizing across multiple tasks is crucial
for deploying autonomous agents in various real-world scenarios [33]. In this work, we
tackle the problem of generalizing compositional tasks where, at test time, the trained
agent is given a DFA description of an unseen task and is expected to accomplish the
task without further training.

While reinforcement learning (RL) algorithms have achieved remarkable success
across numerous fields [26, 27, 29, 38], they still face challenges in generalizing to
compositional tasks, which differ significantly from typical problems addressed by
conventional RL methods. Previous works on compositional task generalization [17, 2,
35, 8, 24] trained generalizable agents with satisfying success rate. Some approaches [2,
8, 24] tackle unseen compositional tasks by leveraging trained reusable skills or options.
However, these methods train each option to achieve a specific subgoal independently,
thereby risking the loss of global optimality in task completion when sub-tasks are
dependent on each other. Additionally, methods that train policies directly conditioned
on task formulas [17, 35] proposed an effective framework for temporal logic task
generalization, which can reach the global optimality in generalization. However, these
methods tend to exhibit slow convergence in complex tasks or environments, as they lack
task decomposition and miss out on the compositional structure of such tasks. Another
recent paper [40] pre-trains embeddings for reach-avoid DFAs of the task, which enables
the zero-shot generalization of goal-conditioned RL agent to other tasks. However, this
work still treated the given compositional task as a whole and does not address the
spare reward issue specifically. Before introducing the proposed framework, we will
first present two motivating examples to show the importance of considering sub-task
dependencies.
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Fig. 1: Motivating example 1. Task: first go to red ball, and then blue ball. Red: reaching red ball.
Blue: reaching blue ball.
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Fig. 2: Motivating example 2. Left: map. Right:
task automaton with self loops omitted.

Motivating Examples. The first example,
shown in Figure 1, involves a robot start-
ing in room 1 with a locked door between
rooms 2 and 3. This door can only be
opened using the key located in room 1.
The task is to visit the red ball first, then
the blue ball. Previous option-based meth-
ods train options for reaching each ball in-
dependently, disregarding dependencies be-
tween subgoals. This approach results in the
myopic solution illustrated in Figure 1(a),



where the robot wastes additional steps retrieving the key compared to the optimal
solution shown in Figure 1(b).

The second example, illustrated in Figure 2 with the task automaton on the right,
assigns rewards of 1 and 10 for reaching areas "a" and "c", respectively, while other areas
yield no rewards. The optimal solution for completing the task with maximal rewards
is to reach "b" first, then "c", while avoiding "a" and "d". However, if task-conditioned
policies are trained using previous methods [17, 35, 40], the agent often ends up reaching
"a" and avoiding "d" since it is easier and still completes the task, producing sub-optimal
solution for the given task. This occurs because the task-conditioned policy is not
explicitly trained to avoid "a" while reaching "b" at the initial automaton state 0. The
resulting sub-optimality arises from overlooking dependencies of sub-tasks in different
branches (i.e. paths to task completion): reaching "a" from the state 0 can directly
accomplish the task, making "b" and "c" inaccessible and hence getting sub-optimal
rewards for completing the task. In addition, the rewards of achieving some sub-tasks
may also be dependent on each other. For example, if the agent first completes the
sub-task "b" and then achieves "a", it will get a higher reward than directly achieving "a".
This is because the user may prefer some patterns to others in the task specifications.

In this work, in order to address the sub-task dependencies and sparse reward issue
in the generalization of compositional tasks, we introduce a hierarchical RL framework
which trains a high-level planner to select the optimal reach-avoid sub-task for the
low-level module to complete, achieving zero-shot generalization to other tasks in the
sub-task level. Unlike previous methods which treat any given compositional task as a
whole, our approach decomposes the given task into reach-avoid sub-tasks to resolve the
sparse reward issue, and trains a novel implicit planner to select optimal target sub-task
for the low-level module to complete by taking sub-task dependencies into consideration.
In addition to selecting target sub-tasks, the high-level module also estimates the multi-
step return of completing the remaining task for the low-level module, which can guide
the low-level module while accounting for dependencies among future sub-tasks. The
low-level module is responsible for choosing primitive actions to accomplish the assigned
sub-task, with its decisions conditioned on both the current and upcoming sub-tasks
required to complete the remaining task.

Specifically, in the high-level module, the implicit planner learns a latent transition
model for sub-task transitions, which encodes environmental observations into latent
states and predicts the latent state when the input sub-task is complete. By decomposing
any given task into sub-tasks and applying a graph neural network (GNN) over predicted
latent states of completing sub-tasks, the high-level module generates an embedding vec-
tor representing the future situations of completing the remaining task. This embedding
vector serves as input to the implicit planner, guiding it to predict the next sub-task and
estimate the return for the low-level module. The low-level module is a variant of the
agent module in [35], which is conditioned on any sub-task assigned by the high-level
module and future sub-tasks to complete.

In experiments, we demonstrate the advantages of the proposed framework over
baselines in three environments, including both discrete and continuous state and ac-
tion spaces. Based on comprehensive experiments, we show the proposed framework
outperforms baselines in terms of both optimality and learning efficiency.



2 Preliminary

2.1 Task Specification Language

A compositional task considered in this work is described by a logic specification formula
ϕ, a Boolean function that determines whether the objective formula is satisfied by the
given trajectory or not [28]. In this work, we adopt the specification language SPECTRL
[13] to express the logic and temporal relationships of subgoals in tasks. A specification
ϕ in SPECTRL is a logic formula applied to trajectories, determining whether a given
trajectory ζ = (s0, s1, . . .) successfully accomplishes the task specified by ϕ. For rigor
of math, ϕ can be described as a function ϕ : Z → {0, 1} producing binary outputs,
where Z is the set of all the trajectories.

Specifically, a specification is defined based on a set of atomic propositions P0.
For each proposition p ∈ P0, the MDP state s of the agent satisfies p (denoted as
s |= p) when p ∈ L(s) and L is labeling function. The set of symbols P is composed by
conjunctions of atomic propositions in P0.

Based on definitions above, the grammar for formulating SPECTRL specifications
can be written as:

ϕ ::= achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2 (1)

where b ∈ P . Here "achieve" and "ensuring" correspond to "eventually" and "always"
operators in LTL [28, 2]. Given any finite trajectory ζ with length h, the satisfaction of a
SPECTRL specification are defined as:

1. ζ |= achieve b if ∃i ≤ h, si |= b (or b ∈ L(si))
2. ζ |= ϕ ensuring b if ζ |= ϕ and ∀i ≤ h, si |= b
3. ζ |= ϕ1;ϕ2 if ∃i < h, ζ0:i |= ϕ1 and ζi+1;h |= ϕ2

4. ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2

Specifically, the statement 1) signifies that the trajectory should eventually reach a
state where the symbol b holds true. The statement 2) means that the trajectory should
satisfy specification ϕ while always remaining in states where b is true. The statement 3)
signifies that the trajectory should sequentially satisfy ϕ1 and then ϕ2. The statement
4) says that the trajectory should satisfy either ϕ1 or ϕ2. We say a trajectory ζ satisfies
specification ϕ if there is a time step h such that the prefix ζ0:h satisfies ϕ.

In addition, every SPECTRL specification ϕ is guaranteed to have an equivalent
directed acyclic graph (DAG), termed as abstract graph [13]. An abstract graph G is
defined as G ::= (Q,E, q0, F, κ), where Q is the set of nodes, E ⊆ Q × Q is the
set of directed edges, q0 ∈ Q denotes the initial node, F ⊆ Q denotes the accepting
nodes, subgoal region mapping β : Q → 2S which denotes the subgoal region for
every node in Q, and safe trajectories Zsafe = ∩e∈EZe

safe where Ze
safe denotes the safe

trajectories for any edge e ∈ E. Note that the environmental MDP M is connected
with task specification ϕ and Gϕ by β and Ze

safe which may change for different tasks.
Furthermore, the function κ labels each edge e := q → q′ with the symbol be (labeled
edge denoted as e := q

be−→ q′). Given κ, the agent transits from node q to q′ when the
states si and si+l of trajectory ζ satisfy si ∈ β(q) and be ⊆ L(si+l) for some l ≥ 0.



Given a task specification ϕ, the corresponding abstract graph Gϕ can be constructed
based on its definition, such that, for any trajectory ζ ∈ Z , we have ζ |= ϕ if and only if
ζ |= Gϕ. Hence, the RL problem for task ϕ can be equivalent to the reachability problem
for Gϕ. It is obvious that every task DAG has a single initial node in SPECTRL language,
which can be converted into a tree.

Sub-task Definition Given the DAG Gϕ corresponding to task specification ϕ, we can
define sub-tasks based on edges of the DAG. Formally, an edge from node q to p ∈ Q
can define a reach-avoid sub-task specified by the following SPECTRL formula:

Sub-Task(q, p) := achieve(b(q,p)) ensuring
( ∧

r∈N (q),r ̸=p

¬b(q,r)
)

(2)

where b(q,p) is the propositional formula labeled over the edge (q, p) in the DAG, and
N (q) is the set of neighboring nodes to which the out-going edges of q point in the
DAG. For instance, in Figure 2, the propositional formula over the edge (q0, q2) is
b(q0,q2) = ¬d ∧ a. When e = (q, p), the notation Sub-Task(e) is same as Sub-Task(q, p)
defined in (2), e.g., Sub-Task(q0, q2) := achieve(a)ensuring(¬b ∧ ¬d) in Figure 2 after
some algebra.

For each Sub-Task(q, p) and any MDP state s0 ∈ S, there is a policy π(q,p) which
can guide the agent to produce a trajectory s0s1 . . . sn in MDP. It induces the path
qqq . . . qp in the DAG, meaning that the agent’s DAG state remains at q until it transits
to p, i.e., sn ∈ β(p) and si /∈ β(p) for i < n. In this work, since we consider the
dependencies of sub-tasks, the policy π(q,p) is also dependent on the future sub-tasks to
complete.

Given the environmental MDP M , for any SPECTRL task specification ϕ, the agent
first transforms ϕ to its corresponding DAG (abstract graph) Gϕ = (Q,E, q0, F, β,Zsafe, κ).
Then, the sub-tasks of all the edges can be obtained from Gϕ based on (2). In this work,
we assume that for every edge sub-task of the DAG, the achieve part only has con-
junction of propositions (denoted as p+ for reaching) and the ensuring part only has
conjunctions of negated propositions (denoted as p− for avoidance). The propositions in
p+ of sub-task η are regarded as subgoals of η. This is because achieving any negated
propositions in the safety condition is assumed infeasible. For example, for the sub-task
achieve(b)ensuring(¬a ∧ ¬d) (i.e., b ∧ ¬a ∧ ¬d), we have p+ = {b} and p− = {a, d}.
Whenever the achieve part in (2) contains disjunction, this sub-task will decomposed
further into sub-tasks in parallel edges, until every sub-task only achieves conjunction of
propositions.
Remark. For example, based on our assumptions, if the DFA in Figure 2 has bq0,q1 =
b∧¬d and bq0,q2 = a∧¬f , then Sub-Task(q0, q1) :=achieve(b)ensuring¬a∧¬d∧¬f .
Although (2) could yield f in the ensuring part, our assumption ignores the achievement
of any propositions which are negated in the safety condition, hence discarding f .

2.2 Problem Formulation

We introduce the labeled MDP as the working environment in Appendix , where propo-
sitions and labeling function are defined. Given the labeled MDP M with unknown state



transition dynamics and reward function, a SPECTRL specification ϕ represents the
logic compositional task consisting of temporally extended sub-tasks, and Gϕ is the DAG
(abstract graph) corresponding to the task ϕ.

The target of this work is to train an reinforcement learning (RL) agent in a data-
efficient manner which can be generalized to complete any unseen SPECTRL task ϕ
without further training. In addition to task completion, we also consider the optimality
of the found solution for the unseen task ϕ, maximizing the discounted accumulated
environmental rewards, i.e. return, during task completion. Specifically, the reward
function of MDPM is unknown to the agent, and the reward of any state s is available
to the agent only whenever s is visited.
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Fig. 3: Diagram of implicit planner as the high-level agent. The DAG (abstract graph) of the task
is shown in the Figure 4. The latent tree is spanned by the encoder Eθ and latent transition model
Tθ in the forward pass, while the feature of future sub-tasks (h̃0) is extracted by GNN (Mθ,Uθ)
in the backward pass. The sub-task η and estimated return V are predicted by policy πh

θ and value
networks V h

θ , respectively, which are realized by MLPs with feature h̃0 as input. Note that in
GNN, every edge is labeled by a corresponding sub-task derived from the task DAG, and the
feature of a edge is the binary encoding of positive (p+) and negative (p−) propositions of the
corresponding sub-task.

3 Methodology

In the following sections, we first detail the modules and operational mechanisms of the
proposed framework. Next, we outline the training algorithm, describing the training
processes for both low-level and high-level modules. We also propose specific training
techniques aimed at enhancing robustness and data efficiency throughout the learning
process, including curriculum, experience relabeling and proposition avoidance, which
are introduced in Appendix.

3.1 Architecture

The proposed framework consists of high-level and low-level modules. The high-level
module is essentially an implicit planner which selects the next sub-task for the low-level



agent to complete. Based on the feature of future sub-tasks, the implicit planner is
directly trained to predict the best selection of next sub-task and also estimate the return
for completing the rest of task, which are passed to the low-level agent for guidance.
The low-level module is trained to achieve the assigned sub-task together with the
estimated return which makes the low-level policy look into the future sub-tasks. This
approach fastens the training of the low-level module, improving the learning efficiency
in long-horizon tasks.

High-level Module When the dependencies among sub-tasks are accounted for, the plan-
ning problem of selecting the next high-level sub-task no longer adheres to the Markovian
property. This limitation prevents the use of the commonly applied value iteration (VI)
method for sub-task selection, as VI relies on Bellman equations [32] to compute the
value function and is effective only when the Markovian property holds. To address this,
we introduce an implicit planner that directly predicts the optimal next sub-task and
estimates the expected return for completing the remaining task based on an embedding
that represents future sub-tasks and observations. This embedding is generated by a graph
neural network (GNN) [30, 41] and a latent transition model [16, 36], described below.
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Fig. 4: Task DAG of Figure 3.

As shown in Figure 3, the proposed implicit planner
consists of an encoder Eθ, a latent state transition
model Tθ, a GNN (Mθ,Uθ), a policy network πh

θ

and a value network V h
θ . All components of the im-

plicit planner are trained together end-to-end, so their
trainable parameters are collectively represented as θ.
The implicit planner operates through both forward
and backward passes. The task DAG corresponding
to Figure 3 is shown in Figure 4.
Forward Pass. In the forward pass, the planner gen-
erates latent representations of the current and future
states by using the encoder Eθ and the latent dynamic
model Tθ, iteratively constructing a tree Ψ whose node features are predicted latent rep-
resentations of states. Given the current environmental state st, the encoder first derives
its latent representation, denoted as h0 := Eθ(st), which serves as the root of the latent
tree Ψ . Following the structure of the task directed acyclic graph (DAG) Gϕ, the tree Ψ
is expanded from h0 until every accepting node in F of the DAG Gϕ is included in Ψ .

Expanding Ψ from a node n entails adding all nodes in Gϕ connected through edges
that originate from n. Specifically, the latent state of node n (i.e., hn) and the subgoals
associated with its outgoing edges in Gϕ are input to the latent transition dynamics model
Tθ, which then predicts the subsequent latent states. These predicted states serve as
features for new nodes, which are added to Ψ as the children of node n. This expansion
process iterates until all subgoals in Gϕ are incorporated into Ψ . An example is illustrated
in Figure 3. It is worth noting that Ψ is built based on the subgoals (positive propositions
of sub-tasks) associated with edges in Gϕ, rather than directly from sub-tasks.
Backward Pass. In the backward pass, the GNN component operates over a graph
modified from the latent tree Ψ to extract an embedding vector, h̃0, which represents
the completion of the remaining task, encoding future sub-tasks and predicted states.



Specifically, the direction of each edge in the latent tree Ψ is reversed and labeled with the
sub-task which is derived from related edges in the task DAG Gϕ based on its definition
in (2), resulting in a new graph. A multi-layer GNN is then applied to this new graph
to extract an embedding vector that encapsulates future sub-tasks and predicted states
in the remaining task, denoted by the node feature h̃0. An example of this process is
illustrated in Figure 3. Finally, based on h̃0, the policy and value function determine the
selection of the next sub-task and estimate the return for the low-level agent.

It’s important to note that, in the backward pass, the sub-task on each edge of the
graph is derived based on (2) and differs from the sub-task in the task DAG Gϕ. This
distinction is because the derived sub-task explicitly incorporates conditions to avoid
accidentally completing any neighboring sub-tasks, which is not explicitly addressed in
the original task DAG Gϕ, as shown in the example of Figure 2.
Encoder. The encoder function, Eθ : S → Rd, takes an environmental state as input
and outputs its latent representation. The encoder’s neural architecture is tailored to the
environment: a CNN is employed for pixel-based environments, while an MLP is used
for environments with continuous observations.
Latent Transition Model. The latent transition function, Tθ : Rd ×P → Rd, predicts
the next latent state by using the latent of the current state and the subgoals (positive
propositions of the sub-task). Given the current state s and sub-task η, the next latent
state is predicted as Eθ(s) + Tθ(Eθ(s), p+η ), where p+η is the binary encoding of the
subgoals of sub-task η. This function models the changes in the latent state caused by
completing a sub-task. In implementation, Tθ is typically realized using an MLP.
Graph Neural Network. The GNN is employed to generate an embedding that repre-
sents the progress toward completing the remaining tasks. For each node k in the GNN,
it first gathers a set of incoming messages from each connected node j with an edge
(j, k) directed from j to k. This is achieved using the message-passing functionMθ,
which takes as input the features of nodes k and j (h̃k and h̃j) along with the edge
feature e(j, k). The initial feature of each node is its latent state hk, predicted by Tθ
during the forward pass, and it is subsequently updated with the incoming messages
using the update function Uθ.

The edge feature e(j,k) is a binary encoding of the sub-task b(k,j) associated with the
edge (j, k). Specifically, this feature is created by concatenating two binary vectors that
separately represent the positive and negative propositions of the sub-task.

In every layer of GNN, the incoming messages of node k are first aggregated by
summation as below,

mk =
⊕

j∈N (h̃)

Mθ(h̃j , h̃k, e(j,k)) (3)

Then, the node feature h̃k is updated with incoming message, i.e., h̃k ← Uθ(h̃k,mk). In
implementation, bothMθ and Uθ are realized by MLPs.

Since the direction of each edge in Ψ is reversed in the graph used for the backward
pass, multiple iterations of applying the functions Mθ and Uθ in the GNN enable
information from each future sub-task to back-propagate to the root node. Consequently,
the root node feature, denoted as h̃0, encapsulates the status of completing future sub-
tasks within the remaining task.



Policy and value function. The policy function πh
θ : Rd → [0, 1]|P| maps the embedding

h̃0 extracted by GNN to a distribution of feasible next sub-tasks. The next sub-task
assigned to the low-level agent is sampled from this output distribution. The value
function V h

θ : Rd → R maps the embedding h̃0 to the estimated return for completing
the remaining task starting from the current state.
Remark. Previous approaches to planning for logic-based compositional tasks have
utilized value iteration [3, 2], Dijkstra’s algorithm [10], and heuristic-based search
algorithms [15, 9]. These methods rely on the assumption that the cumulative rewards
for completing each sub-task are independent of others, meaning the Markovian property
must hold. However, as illustrated in the examples in Section 1, this work considers
dependencies between sub-tasks, where the cumulative rewards for completing one
sub-task depend on future sub-tasks, breaking the Markovian property and making
standard planning algorithms inapplicable. To address this, we leverage the generalization
capabilities of GNNs to train a value function for sub-tasks and states through supervised
learning, enabling the high-level policy to be trained using the PPO algorithm [31].

Low-level Module The target of low-level module is to complete the sub-task η specified
by the high-level module, considering the dependencies of future sub-tasks. As discussed
in the Sub-task Definition of Section 2.1, every sub-task in SPECTRL language is a
reach-avoid task, and can be decomposed into positive proposition (to achieve) and
negative propositions (to avoid), stored in the sets p+ and p−, respectively. Hence, the
low-level policy and value functions, denoted as πl

ω and V l
ω , are conditioned on p+ and

p− encoded into binary vectors. The diagram of processing inputs to the low-level agent
is in Figure 5.

progression
ηst
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GNN

Gϕ′
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Fig. 5: Diagram of processing inputs to the low-level policy πl
ω and value function V l

ω . η is the
sub-task assigned by the high-level module. ϕ is the target task to complete. ϕ′ is the progression of
ϕ with η. The embedding is the representation of ϕ′ produced by the GNN. st is the environmental
observation. "enc" is the encoder mapping the raw observation into a latent vector.

Remark. This low-level module is essentially a variant, where the agent model in [35] is
made conditioned on the target sub-task η. Since the high-level module gives an estimate
return V upon the completion of every sub-task, the training of the low-level module in
this work should be much more efficient than that in [35]. The original model in [35]
only has outcome-based reward signals about the whole task.

To account for dependencies of future sub-tasks, both πl
ω and V l

ω are conditioned on
the DAG of the remaining task ϕ′, denoted as Gϕ′ . Here, ϕ′ represents the remainder of
the task ϕ after completing sub-task η. Essentially, ϕ′ is the progression [19, 35] of task



ϕ once sub-task η is achieved. For example, in the task shown in Figure 2, if sub-task
b ∧ ¬a ∧ ¬d (on the edge from state 0 to 1) is completed, the progression of the task
becomes c ∧ ¬d, indicating the remaining part of the task to be accomplished.
DAG Processing. However, the functions πl

ω and V l
ω cannot directly process a DAG. To

address this, similar as LTL2Action [35], we use a GNN to generate an embedding from
the tree representation of the DAG Gϕ′ , which can be directly used as input to πl

ω and
V l
ω . Since any DAG with a single source node can be equivalently converted into a tree,

we first convert the DAG of ϕ′, denoted Gϕ′ , into its corresponding tree Tϕ′ .
This tree Tϕ′ differs from the high-level latent tree Ψ . Given that the low-level policy

operates at every time step, it’s essential to keep the low-level module as streamlined
as possible. Thus, the latent transition model is omitted, and each node’s initial feature
is set to an all-zero vector. Additionally, we ignore the negative propositions of future
sub-tasks, using only the binary encoding of the positive propositions (i.e. subgoals) as
the edge feature. However, the negative propositions of the current sub-task η are still
encoded as a binary vector p−, as shown in Figure 5.

With these defining node and edge features, a multi-layer GNN is applied to Tϕ′ ,
with the direction of each edge reversed. The embedding at the root node then represents
the characteristics of all future subgoals to accomplish. The process of obtaining p+, p−,
and the embedding for future subgoals is illustrated in Figure 5. Note that this low-level
GNN differs from the one used at the high level and is trained alongside other low-level
components only.

3.2 Algorithm

The high-level and low-level modules are trained independently. In the high level, all
components are trained end-to-end to predict the optimal selection of the next sub-task
to complete and to estimate the return for completing the remainder of the task. In the
low level, the module is trained to accomplish the assigned sub-task while accounting
for dependencies from future sub-tasks. To enhance the sample efficiency of the learning
process, several training techniques are introduced, including a training curriculum,
experience replay, and proposition avoidance. The training of low-level module is
introduced in Appendix.
High-level Transition Data. We define a high-level transition tuple as (s, ϕ, η,R, s′, ϕ′),
which indicates that starting from state s, the agent completes the sub-task η and reaches
state s′. Here, ϕ′ is the progression of task ϕ after sub-task η is completed, repre-
senting the remaining part of the task, and R is the accumulated discounted reward
earned while completing η. The high-level transition buffer Γh stores these transi-
tion tuples collected from all trajectories, but only includes transitions where com-
pleting the sub-task η resulted in progression over ϕ (i.e., ϕ′ ̸= ϕ). For a trajectory
ζ = (sl, al, rl)

H−1
l=0 , where Kζ sub-tasks are completed sequentially, we denote these

sub-tasks as η0, η1, . . . , ηKζ−1, with the time steps at which they are completed as
t0, t1, . . . , tKζ−1. The accumulated rewards obtained for completing each sub-task ηi
are defined as Ri :=

∑ti
τ=ti−1

γτ−ti−1rτ , where rτ represents the environmental reward
at time step τ .



High-level Training The effectiveness of the high-level module depends on the embed-
ding vector that represents the remaining task, which is extracted by the latent transition
model and GNN. Therefore, it is essential to train the encoder, latent transition model,
and GNN effectively. Drawing inspiration from previous work on learning latent dy-
namic spaces [4, 16], we utilize the TransE [16] loss to train the encoder Eθ and the
latent transition function Tθ together. For any high-level transition data (s, ϕ, η,R, s′, ϕ′)
and a negatively sampled state s̃, the TransE loss can be expressed as below:

LTransE((s, η, s
′), s̃; θ) = d(Eθ(s) + Tθ(Eθ(s), η), Eθ(s′))

+max(0, ξ − d(Eθ(s), Eθ(s̃))) (4)

where θ are the trainable parameters, d is the distance function which is chosen as the
Euclidean distance in this work, and ξ is a positive hyper-parameter. The tasks ϕ, ϕ′ and
reward R are not used in the training loss of Eθ and Tθ.

For the GNN part, modelsMθ and Uθ are trained together with policy πh
θ and value

networks V h
θ in an end-to-end manner. Since the training curriculum is designed to start

from simple tasks, there is no need to pre-train the GNN part.
The components of the high-level module are jointly trained using the PPO algorithm

[31] with a set of feasible sub-tasks serving as the action space. Based on the high-level
transition buffer Γh, the PPO loss is calculated by evaluating the outputs of the policy
and value networks through the forward and backward passes, as detailed in Section
3.1. One iteration of training the high-level module can be summarized as the following
steps:

1. Sample trajectories ζ from the replay buffer B which forms the high-level transition
dataset Γh;

2. Based on transition tuples in Γh, compute the PPO [31] and TransE (4) losses,
where the negative samples s̃ in (4) are randomly sampled from states in Γh;

3. Update parameters θ of all the components in the high-level module together, with
gradients of the following loss function:

L(Γh; θ) = LPPO(Γ
h; θ) + λ

∑
i

LTransE((sti , ηi, sti+1), s̃i; θ) (5)

where λ is a hyper-parameter to balance two loss terms, chosen as 0.01 in this work.

Note that since V h
θ is trained with Ri in the value loss of PPO, where Ri is a discounted

accumulated rewards in multiple steps and hence V h
θ is essentially updated by a multi-

step Bellman operator (BO) [32].

4 Experiments

Our experiments aim to evaluate the performance of a multi-task RL agent trained using
the proposed framework, focusing on learning efficiency, optimality, and generalization.
Specifically, the section on overall performance examines whether the proposed frame-
work outperforms baselines in terms of optimality and learning efficiency when sub-task
dependencies are present. Next, ablation studies in Appendix investigate the impact of



considering future sub-tasks within the low-level module, the contribution of experience
relabeling to learning efficiency and the effect of latent transition model.

Before presenting the experiment results, we will first introduce the environments.
Finally, the experiments about overall performance comparison will be demonstrated.
The training setup and baselines are introduced in Appendix. Other experiment results
and algorithmic details are deferred to Appendix.
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Fig. 6: Environments. The details of environments are introduced in Appendix.

4.1 Environments and Setup

We conducted experiments in various environments featuring both discrete and continu-
ous action and state spaces. Each environment is procedurally generated, with object
layouts and positions randomized upon reset. The agent does not know the positions
or properties of objects in advance, making it impossible to solve these environments
using simple tabular-based methods. Each task is defined by a SPECTRL specification,
expressed through symbolic propositions given by the labeling function. The agent’s
goal is to complete the specified task while maximizing accumulated rewards. The
example screen shots of environments are shown in Figure 6. The detailed introduction
of environments are in Appendix.
Sub-task Dependencies. In our experiments, sub-task dependencies can arise from
various factors, including avoidance requirements, aliasing states, and subgoal reward
functions. First, successfully completing one sub-task may necessitate avoiding the
subgoals of another, thereby introducing dependencies between them. (Note that here,
“sub-task” is defined by (2), which may not be explicitly represented in the task DAG.)
Second, multiple states in the environment may be mapped to a single symbol through
the labeling function, leading to aliasing states (e.g., multiple cells labeled with the same
letter in Figure 6(a) and example in Figure 1). Because the agent must choose which
state to visit conditioned on a particular subgoal symbol, these aliasing states cause the
low-level policy of one sub-task to depend on future sub-tasks, thereby creating sub-task
dependencies. Third, subgoal reward functions can induce dependencies if certain task
specifications are more favorable to the user; for instance, in the Walk domain depicted
in Figure 6(b), visiting “b” before “c” may yield a higher reward than going directly to
“c,” correlating the “b” and “c” sub-tasks. Additional experiments illustrating a wider
range of sub-task dependencies are provided in the Appendix.

Note that the sub-task dependencies are unknown to the agent initially and the agent
has to learn to adapt to these dependencies via interacting with the environment. The
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Fig. 7: Performance Comparisons. The x-axis is the environmental step, and the y-axis is the
average episodic return. In the first set of experiments, the reward is only given at the completion
of the given task. In the second set, the reward of achieving a subgoal is dependent other subgoals
achieved previously.

first two types of dependencies are at the low level, while the third type operates at a
higher (subgoal) level.

4.2 Overall Performance

In this section, we present the overall performance comparisons in terms of average
return for completing testing tasks. Other experiment results are included in Appendix.
In each plot, the evaluation is conducted in every 10K training samples drawn from the
environment. In each evaluation, 10 testing tasks are randomly generated and the average
return of these tasks is used as the y-axis of the plot. The details of task generation for
both training and testing are presented in Appendix.

In Figure 7, the proposed method is compared with two baselines introduced in
Appendix. In the first set of experiments, the trained agent is evaluated on completing
testing tasks with the minimum number of steps. Here, the reward is only provided
upon completion of the task, and the agent must avoid any propositions specified in the
safety condition. This set of experiments focuses on low-level sub-task dependencies,
specifically requiring the agent to avoid subgoals of other sub-tasks and to reach desig-
nated subgoals while accounting for future subgoals. In the second set of experiments,
in addition to task completion, rewards are also granted for achieving some subgoals
under ordering constraints. Specifically, the reward for certain subgoals depends on
previously achieved subgoals within the same episode, introducing sequential sub-task
dependencies. Detailed information on rewards of sub-task dependencies is provided in
the Appendix. In addition, we conduct the third set of experiments with parallel sub-task
dependencies, which is presented in Appendix.

In Figure 7, we observe that the proposed framework outperforms Baseline-1
(LTL2Action [35]) in terms of learning efficiency. Unlike the proposed method, Baseline-
1 relies solely on a task-conditioned policy and does not decompose the task to leverage



its compositional structure, which hinders its learning efficiency. The faster convergence
of the proposed framework results from the multi-step return estimation performed by the
high-level module, which backpropagates rewards for each sub-task and provides return
estimates to the low-level module upon the completion of each sub-task. In contrast,
Baseline-1 propagates rewards step-by-step, resulting in slower learning convergence of
its value function.

As shown in Figure 7, the proposed method outperforms Baseline-2 (Logic Option
Framework [2]) in terms of both average return and learning efficiency. In Baseline-2,
the low-level policy is specifically trained for each assigned sub-task, aiming to reach
positive propositions and avoid negative propositions relevant to that sub-task, without
regard to other sub-tasks. This lack of awareness of dependencies compromises global
optimality in low-level behavior. Additionally, when subgoal rewards depend on one
another, Baseline-2’s high-level planning can only myopically select next sub-tasks to
complete the rest of the task. This is because conventional planning methods, which is
value iteration (VI) [2] in Baseline-2, cannot handle non-Markovian rewards of sub-tasks.
These limitations explain Baseline-2’s lower average return in both first and second sets
of experiments.

5 Related Work

Applying the RL paradigm to solve logic compositional tasks has been explored in
numerous prior studies. These methods typically start by converting the compositional
task formula into an equivalent automaton representation and then create a product
MDP by combining the environmental MDP with the task automaton [37]. Prominent
approaches utilizing product MDPs include Q-learning for reward machines (Q-RM)
[5, 11, 12], LPOPL [34], and geometric LTL (G-LTL) [23]. Additionally, [14] introduced
the DiRL framework, which uses hierarchical RL to accomplish LTL tasks by integrat-
ing graph-based planning on the automaton to guide exploration for task satisfaction.
However, these approaches are tailored to specific task formulas, requiring policies to be
retrained from scratch for each new task. Thus, they lack zero-shot generalization.

Previous approaches have sought to train reusable skills or options to facilitate
generalization in compositional task settings [1, 2, 20, 21]. In these methods, agents
fulfill unseen tasks by sequentially combining pre-trained option policies through value
iteration over potential subgoal choices, achieving satisfying success rate. However,
they overlook inter-dependencies between subgoals, which can lead to suboptimal
solutions when sub-tasks are dependent on each other, as demonstrated in Figures 1
and 2. Although [19] considers causal dependencies among sub-tasks, it requires these
dependencies to be explicitly provided. In contrast, our framework does not require the
agent to know sub-task dependencies beforehand, making it applicable to scenarios with
general and implicit sub-task dependencies.

In [17, 35, 40], the authors propose task-conditioned policies to enable zero-shot
generalization in compositional tasks by conditioning the policy on task embeddings
extracted through recurrent graph neural networks [17] or graph neural networks [35, 40].
These methods can learn optimal policies for generalization with sufficient training.
However, they did not address sparse reward and long horizon issues of DFA tasks



specifically, so their learning efficiency was still not satisfying. This arises because they
did not decompose tasks into sub-tasks or leverage the inherent compositional structure
of these tasks. In this work, we introduce a hierarchical RL framework for zero-shot
generalization that decomposes DFA task into reach-avoid sub-tasks and train the RL
agent to generalize across different sub-tasks, addressing the issues of sparse reward and
long horizon specifically.

In addition, authors in [18] proposed to compute successor features of propositional
symbols as policy bias to guide the generalization of unseen LTL tasks. However, the
successor features are only about the achievement of next symbols and do not encode any
dependencies of sub-tasks to be completed in the future. So, their approach still ignores
the sub-task dependencies and cannot achieve the optimality in zero-shot generalization.

Goal-conditioned reinforcement learning (GCRL) has long focused on training a
unified policy for reaching arbitrary single goals within a specified goal space [25].
However, GCRL typically addresses scenarios where agents need to reach only a single
goal per episode. In contrast, the compositional tasks in our work require achieving mul-
tiple subgoals under specific temporal order constraints. While some GCRL approaches
introduce hierarchical frameworks that generate multiple subgoals within an episode
[22, 6], these frameworks primarily aid exploration, with subgoals achieved in any order.
This lack of temporal constraints makes these GCRL methods incompatible with our
setting, so that these methods are not compared against the proposed framework.

There is a recent work [39] proposing to use future-dependent options to improve
the optimality and learning efficiency of the generalization of compositional tasks. It is a
similar work, but it does not consider safety issue and avoiding negative propositions of
sub-tasks. This work proposes a new architecture and trains the agent to avoid negative
propositions for the safety guarantee.

6 Conclusion

In this work, we propose a new hierarchical framework for generalizing compositional
tasks in the SPECTRL language to address the sub-task dependencies and sparse reward
issue. In the high level, we propose to use an implicit planner to select next sub-task
optimally for the low-level module to complete. In the low level, the module is trained
to complete the assigned sub-task, conditioned on the remaining task to complete.
By transforming the given task into a DAG of reach-avoid sub-tasks, the sub-task
dependencies are considered in the sub-task selection via an embedding of future sub-
tasks extracted by a GNN, and the spare reward issue is resolved by the estimated
return passed to the low-level module upon the completion of every sub-task. With
comprehensive experiments, we demonstrate the advantages of the proposed framework
over baselines in terms of optimality and learning efficiency. In the future, we plan to
investigate the generalization of tasks specified by probabilistic logic language.
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