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Abstract. The high global mortality from cardiovascular diseases un-
derscores the need for efficient diagnostic tools such as electrocardio-
grams (ECGs). Recent deep learning advances have greatly improved
ECG analysis by capturing complex and informative patterns from the
signals. CNNs remain the dominant architecture for this task, while
transformers—despite their success in other domains—have yet to be-
come the leading approach in ECG analysis. A key limitation is their
difficulty in capturing local morphological features essential for accurate
interpretation. In this regard, we propose a novel Local-Global Attention
ECG model (LGA-ECG), which integrates convolutional inductive biases
with global self-attention mechanisms. Our approach extracts queries by
averaging embeddings obtained from overlapping convolutional windows,
enabling fine-grained morphological analysis, while simultaneously mod-
eling global context through attention to keys and values derived from
the entire sequence. Experiments conducted on the CODE-15 dataset
demonstrate that LGA-ECG outperforms state-of-the-art models and
ablation studies validate the effectiveness of the local-global attention
strategy. By capturing the hierarchical temporal dependencies and mor-
phological patterns in ECG signals, this new design showcases its poten-
tial for clinical deployment with robust automated ECG classification.
1
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1 Introduction

Cardiovascular diseases (CVDs) remain the leading cause of death globally, re-
sponsible for 17.9 million deaths in 2019, which corresponds to 32% of all deaths
* Equal contribution
1 PyTorch Implementation: https://github.com/pedroroblesduten/LGA-ECG
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worldwide, as reported by the World Health Organization (WHO) [19]. In light
of this, electrocardiograms (ECGs), which are non-invasive and easy-to-perform
examinations, are fundamental tools in the detection and monitoring of heart-
related conditions. Their importance has only grown with the rise of digital
health technologies [10]. In this context, artificial intelligence has become a valu-
able resource for automating ECG analysis, supporting clinical decision-making,
reducing backlogs in telemedicine services, and enabling automated tasks such
as disease classification [3], age estimation [9], and wave segmentation [5].

The rise of deep learning has transformed ECG signal analysis, with deep neu-
ral networks (DNNs) excelling in automatic feature extraction from raw ECG
data, eliminating the need for manual engineering. Convolutional neural net-
works (CNNs) are particularly suited for this task, leveraging inductive biases
such as spatial locality and translation equivariance [15, 14]. These properties
enable CNNs to capture hierarchical temporal structures in ECG signals, from
localized morphological features within heartbeats to global rhythm patterns.
Moreover, translation equivariance ensures robust detection of clinically relevant
features, regardless of their temporal positions.

Transformer architectures have shown significant success across various do-
mains. However, the direct application of Vision Transformer (ViT)-based mod-
els to ECG data faces limitations due to their global attention mechanisms,
which fail to adequately capture localized morphological features essential for ac-
curate ECG interpretation. To address this limitation, hierarchical transformer
models integrating local self-attention mechanisms have been proposed, demon-
strating superior performance in ECG classification tasks [8, 2]. These models
leverage the strengths of transformers in modeling temporal relationships while
preserving locality bias, crucial for ECG signal interpretation. Building on these
developments, this paper introduces a novel transformer architecture specifically
tailored for ECG data.

Cardiology experts emphasize that effective ECG models must encompass
multiple levels of temporal and contextual information, from individual wave-
form morphology to the overall rhythm structure [2]. Consequently, combining
local feature extraction with global attention mechanisms emerges as a promising
strategy for ECG analysis. Motivated by that, we propose a novel hierarchical
transformer architecture that leverages overlapping convolutional projections to
derive queries from local temporal segments. Specifically, each query vector is
computed by averaging convolutional features within overlapping windows, in-
herently embedding convolutional inductive biases into the self-attention mech-
anism. These locally informed queries then attend to globally computed key
and value vectors, allowing the model to simultaneously capture detailed mor-
phological characteristics (such as waveform shapes and intervals) and broader
contextual dependencies (such as inter-beat relationships) within ECG signals.

Our proposed Local-Global Attention ECG model (LGA-ECG) applies lo-
cal convolutional inductive biases with global self-attention mechanisms, sig-
nificantly improving ECG classification. Experimental results demonstrate that
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this hybrid approach outperforms state-of-the-art baseline methods, achieving
superior performance in classification tasks.

2 Related Works

In this section, we review prior work on deep learning methods for ECG analysis,
focusing on CNN-based approaches, hybrid CNN-transformer architectures, and
local attention mechanisms; bridging the gap between local feature extraction
and global sequence modeling.

2.1 Neural Networks for ECG

Automatic analysis of ECG signals has been extensively studied, with recent
literature emphasizing deep learning methods, particularly Convolutional Neu-
ral Networks (CNNs), due to their inherent capacity for autonomously extract-
ing morphological and temporal ECG features from raw data. Rajpurkar et
al. [14] pioneered a deep CNN approach trained end-to-end on a large-scale
dataset, achieving cardiologist-level accuracy in arrhythmia classification. Sim-
ilarly, Ribeiro et al. [15] introduced deep neural networks with stacked convo-
lutions, demonstrating strong generalization capabilities across multi-lead ECG
data and surpassing cardiologist-level performance. Wang et al. [18] proposed a
CNN-BiLSTM model for atrial fibrillation classification, using CNNs for mor-
phology and BiLSTMs for temporal dependencies in ECG signals.

Recently, transformer-based architectures have increasingly been applied to
ECG analysis, motivated by their success in sequence modeling tasks. Both Hu
et al. [7] and El et al. [4] proposed hybrid CNN-Transformer approaches, where
convolutional layers initially extract local morphological features, followed by
transformer-based self-attention layers that model global temporal interactions.
Building on [11], Liu et al.[8] proposed BaT, a beat-aligned framework leverag-
ing local attention to process ECG signals progressively. BaT segments ECGs
into beats, applying self-attention locally before merging representations to cap-
ture hierarchical features. However, it depends on complex preprocessing, where
inaccuracies in beat segmentation may introduce biases or errors. Additionally,
Dutenhefner et al. [2] proposed an approach that interleaves CNN and trans-
former blocks to create a hierarchical, multi-scale feature extraction pipeline.

2.2 Local Attention

Local attention mechanisms combine the modeling capabilities of self-attention
with the structured inductive biases of convolution, benefiting tasks with spatial
and sequential dependencies. Liu et al. [11] introduced the Swin Transformer,
which improves efficiency through hierarchical local attention with shifting win-
dows. However, its non-overlapping windows limit direct global context model-
ing, which is crucial for ECG analysis.
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CoAtNet [1] addresses this problem by integrating convolutional inductive
biases with global transformers via multi-scale relative attention. While effective,
its predefined branches reduce flexibility and increase computational complexity.
Similarly, Zhou et al. [20] introduced ELSA, enhancing local feature extraction
with Hadamard attention and a ghost head module.

Building upon these strengths and addressing the limitations identified in
previous works, the approach we propose introduces a novel local-global atten-
tion mechanism designed for ECG signals. Our method efficiently captures both
local morphological variations and long-range dependencies while mitigating the
computational burden. By leveraging adaptive attention windows and progres-
sive feature aggregation, our approach also enhances ECG feature representation.

3 Methods

ECG analysis requires capturing information across multiple temporal scales:
wave morphology (P, QRS, T), intra-heartbeat intervals (PR, QT), and inter-
beat distances essential for rhythm analysis. We propose a novel self-attention
mechanism tailored for ECG signals, which effectively balances fine-grained mor-
phological details with global heartbeat patterns.

The proposed model first uses convolutional layers to project the ECG into
an embedding space. Its core comprises layers of a novel windowed self-attention
and feed-forward blocks with residual connections. Unlike traditional global self-
attention, our method extracts queries (Q) from small overlapping windows to
preserve local detail, while keys (K) and values (V) are computed globally, cap-
turing long-range dependencies. Additionally, each self-attention block progres-
sively reduces the sequence length, similar to convolutional pooling, allowing hi-
erarchical abstraction from local waveform characteristics toward global rhythm
and beat-to-beat features.

3.1 Local-Global Self-Attention

The core innovation of our proposed transformer-based architecture lies in its
novel local-global self-attention mechanism. Traditional self-attention mecha-
nisms compute interactions uniformly across all tokens, which may overlook
crucial local patterns in biomedical signals. In contrast, our method balances
fine-grained local feature extraction and broader temporal context modeling.

Let us formally define the input tensor to this attention mechanism as X,
with dimensions:

X ∈ RB×N×D, (1)

where B is the batch size, N the sequence length, and D the embedding dimen-
sion.

Step 1: Normalization. First, we apply a standard layer normalization
along the embedding dimension to stabilize and normalize the input:

X̃ = LayerNorm(X), X̃ ∈ RB×N×D. (2)
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Step 2: Local Windowed Query Generation. To effectively capture
precise wave-level morphological details from ECG signals, we introduce a local
window-based query generation strategy. Starting from the normalized input
tensor X̃ ∈ RB×N×D, we extract a series of overlapping windows along the
temporal dimension to form localized queries (Q).

Formally, given a window length l and stride s, we extract M overlapping
windows from the sequence, where:

M =

⌊
N − l

s

⌋
+ 1. (3)

For each window indexed by i ∈ {0, 1, . . . ,M − 1}, we select a contiguous
subset of the input sequence:

X̃(i) = X̃ [:, (i · s) : (i · s+ l), :] , X̃(i) ∈ RB×l×D. (4)

Next, each extracted window X̃(i) undergoes a convolutional projection along
the temporal dimension. Specifically, we apply a 1D convolution with kernel size
kq, stride 1, padding pq, and D output channels, obtaining:

Q(i)
conv = Conv1DQ

(
X̃(i)

)
, Q(i)

conv ∈ RB×D×l. (5)

The output Q
(i)
conv represents an enhanced embedding of the original local

window, where each temporal position within the window has been projected
into a new feature space through convolution.

To summarize this detailed local information into a single representative
query vector per window, we then average these embeddings along the temporal
dimension of length l. For each window i, the averaged query vector is calculated
as:

Q(i) =
1

l

l∑
t=1

Q(i)
conv[:, :, t], Q(i) ∈ RB×D. (6)

Finally, stacking all the averaged queries across the M extracted windows
results in the complete query tensor for attention:

Q =
[
Q(0), Q(1), . . . , Q(M−1)

]
, Q ∈ RB×M×D. (7)

To enhance stability and facilitate residual connections in deeper layers, we
retain a copy of the query tensor as a residual term. This preserves local morpho-
logical details captured by convolution, ensuring stable gradients and improved
convergence.

This process can be implemented in a simple and effective manner using a
combination of a 1D convolutional layer that preserves the input shape, followed
by an average pooling layer. The kernel size of the pooling operation determines
the temporal compression factor. This approach is illustrated in Figure 1.

Step 3: Global Key and Value Generation. In contrast to the local-
ized queries, keys (K) and values (V) are computed from the entire normalized
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Fig. 1: Mean query extraction process for each ECG window.

sequence, enabling each local query to attend globally. We define these global
projections using convolutional layers to retain a locality inductive bias while
still allowing global context modeling:

Kconv = Conv1DK(X̃), Vconv = Conv1DV (X̃), (8)

both producing tensors of shape:

Kconv,Vconv ∈ RB×D×N . (9)

We permute them back to match the original embedding format:

K = K⊤
conv ∈ RB×N×D, V = V⊤

conv ∈ RB×N×D. (10)

Step 4: Multi-Head Local-Global (LG) Attention Computation. We
now apply a multi-head attention mechanism. For H attention heads, we split
the embedding dimension D into H sub-dimensions of size Dh = D/H:

Qh ∈ RB×M×Dh , Kh,Vh ∈ RB×N×Dh , h = 1, . . . ,H. (11)

For each head h, the scaled dot-product attention scores are computed as:

Ah = softmax
(
QhK

⊤
h√

Dh

)
∈ RB×M×N . (12)

Subsequently, we calculate the features as a weighted sum of values:

Oh = AhVh ∈ RB×M×Dh . (13)

Concatenating across all heads, we get the combined multi-head attention
output:

O = concat(O1, . . . ,OH) ∈ RB×M×D. (14)
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Step 5: Residual Connection and Sequence Reduction. Finally, we
reintroduce the residual query information by adding back the previously stored
queries Qres, maintaining strong local fidelity:

Y = O+Qres, Y ∈ RB×M×D. (15)

The sequence length is effectively reduced from N to M by selecting a stride s =
2, ensuring M = N/2. This hierarchical summarization progressively condenses
ECG features, capturing local and global information.

Our LG self-attention combines standard self-attention, convolution, and hi-
erarchical transformers while overcoming their limitations. Unlike traditional
self-attention, which lacks locality and scales quadratically, or convolutions,
which struggle with long-range dependencies, our method extracts locally-informed
queries via overlapping convolutional projections while maintaining global atten-
tion through sequence-wide keys and values. Additionally, convolutional projec-
tions inherently encode positional information, removing the need for explicit
positional encodings. The local-global attentions is illustrated in Figure 2

X X

MEAN

...
......

Q

VK T TALL 
EMBEDDINGS

WINDOW  
EMBEDDINGS

V_CONV

K_CONV

Q_CONV

i Q   K (Q   KT)  V T
i i

i

Fig. 2: Local-global self-attention operation for one ECG embedding window.

3.2 Transformer Block with Local-Global Self-Attention

The Transformer Block integrates the local-global self-attention mechanism within
a standard transformer architecture. It consists of two sub-layers: LGA and a
feed-forward network, both with layer normalization and residual connections
for stable training.

Given an input tensor X ∈ RB×N×D, where B is the batch size, N is the
sequence length, and D is the embedding dimension, the Transformer Block
initially applies layer normalization along the embedding dimension:

X̃ = LayerNorm(X), X̃ ∈ RB×N×D. (16)

Subsequently, the normalized sequence is processed by the local-global self-
attention layer. Due to the windowed attention design, the spatial dimension N
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is effectively reduced approximately by half, from N to M = N/2, resulting in
an output tensor Yattn:

Yattn = LocalGlobalAttention(X̃), Yattn ∈ RB×M×D. (17)

To maintain a consistent residual connection despite the reduction in se-
quence length, we apply a pooling operation followed by a 1× 1 convolution to
the normalized input X̃, ensuring dimensional compatibility:

Xres = Conv1D
(
MaxPool1D

(
X̃
))

, Xres ∈ RB×M×D. (18)

Here, the max pooling operation reduces the temporal dimension by half,
from N to M , while the 1 × 1 convolution adjusts embedding dimensions and
reinforces the residual pathway. The resulting residual tensor Xres is added to
the self-attention output, stabilizing training and enhancing gradient flow:

Z = Yattn +Xres, Z ∈ RB×M×D. (19)

Next, we apply a second-layer normalization followed by a feed-forward neural
network, often called the Multi-Layer Perceptron (MLP). This MLP consists of
two linear layers with an intermediate non-linearity (ReLU). The dimensionality
of the intermediate MLP layer, denoted as DMLP, dynamically increases at each
transformer block stage i, defined explicitly as DMLP = Dbase×2×i. Specifically,
the MLP initially projects each embedding vector from the input dimension D
to this expanded dimension DMLP:

Z
(i)
MLP = ReLU

(
Z(i)W

(i)
1 + b

(i)
1

)
, Z

(i)
MLP ∈ RB×M×(Dbase×2×i), (20)

and subsequently project it back to the original embedding dimension D:

Z
(i)
out = Z

(i)
MLPW

(i)
2 + b

(i)
2 , Z

(i)
out ∈ RB×M×D. (21)

This incremental expansion of the MLP dimensionality at successive trans-
former stages allows the model to progressively capture more complex and ab-
stract features. A second residual connection then integrates the MLP output
back into the main pathway, resulting in the final output tensor of each trans-
former block:

X
(i)
final = Z(i) + Z

(i)
out, X

(i)
final ∈ RB×M×D. (22)

This staged expansion of the MLP dimension allows deeper layers to en-
code increasingly complex and abstract features, naturally aligning with the
progressive shift from fine-grained morphological details to broader, long-range
inter-beat relationships.

Each Transformer Block hierarchically condenses and enriches representa-
tions, aligning with clinical ECG analysis. Early layers capture fine-grained wave
morphology, intermediate layers focus on intra-heartbeat intervals, and deeper
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layers model long-range dependencies across heartbeats, effectively identifying
rhythm abnormalities. This structured progression inherently encodes clinically
relevant inductive biases.

3.3 Overall Model Architecture

The overall architecture of the proposed model is illustrated in Figure 3. It
comprises two main components: a convolutional fron-tend and a sequence of
transformer blocks equipped with the LGA mechanism. Initially, the multi-scale
convolutional front-end transforms the raw ECG signals into a sequence of fea-
ture embeddings, capturing localized waveform details while reducing temporal
dimensions. Subsequently, these embeddings are processed by a cascade of trans-
former blocks featuring the proposed local-global self-attention. These blocks
hierarchically aggregate ECG features at progressively coarser temporal scales,
effectively encoding wave-level morphologies, intra-beat intervals, and inter-beat
rhythm relationships into comprehensive representations suitable for ECG anal-
ysis.

Channel 1
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Channel 64

CONV1
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...

Channel 12

320 X 64

Input

   Conv1D 
BatchNorm1D 
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Dropout
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+
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...

Max
Pool

Conv1x1

+

Fig. 3: Overall architecture of the proposed LGA network, integrating the con-
volutional front-end, composed of four repeated ResBlocks (right), with trans-
former blocks utilizing local-global self-attention (left).

4 Experiment setup

4.1 Datasets

Our model was trained and evaluated using CODE-15, a publicly available 15%
subset of the CODE (Clinical Outcomes in Digital Electrocardiography ) dataset
[16]. CODE contains over 2 million ECGs from Minas Gerais, Brazil, anno-
tated by cardiologists for six cardiac abnormalities: first-degree atrioventricular
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block (1st AVB), right bundle branch block (RBBB), left bundle branch block
(LBBB), sinus bradycardia (SB), atrial fibrillation (AF), and sinus tachycar-
dia (ST). These conditions indicate an increased risk for cardiovascular events,
including stroke, heart failure, and sudden death, and require targeted clini-
cal interventions. CODE-15 comprises 345,779 exams from 233,770 patients and
has been widely adopted in ECG research, serving as a benchmark dataset for
developing and evaluating deep learning models [15] [17].

We evaluated our model using the publicly available CODE-TEST dataset,
also collected by the Telehealth Network of Minas Gerais (TNMG). CODE-
TEST comprises 827 ECGs labeled by consensus among two or three cardiol-
ogists, covering the same six cardiac abnormalities. The high-quality, expert-
consensus labels provide a robust benchmark for performance assessment.

For developing and validating the LGA-ECG model, the dataset is divided
into four subsets by patient IDs: 90% of CODE-15 is used as the training set
to train the model, while 5% of CODE-15 serves as the validation set for early
stopping. An additional 5% of CODE-15 is designated as the development set,
which is utilized for hyperparameter tuning and ablation studies. Finally, the
entire CODE-TEST dataset is used as the test set to evaluate the final model
performance against baseline methods.

4.2 Implementation details and Benchmarks

For comparison, we assessed LGA-ECG against a suite of baseline models span-
ning diverse architectural families, including traditional CNN and transformer-
based architectures. This selection ensured a rigorous and comprehensive evalu-
ation across distinct modeling paradigms. The baselines were implemented using
their original authors’ codebases, with training settings configured according to
their recommendations. All models were trained on the same Training Set and
evaluated on the Test Set to ensure consistent comparisons. We employed stan-
dard classification metrics to evaluate the models: accuracy, F1-score, precision,
and recall. These metrics were computed for each cardiac condition individu-
ally to provide a detailed understanding of model performance across different
diseases, as well as averaged (macro).

The training process utilized the AdamW optimizer [12] and employed a
cosine annealing learning rate schedule [13]. The initial learning rate was set
to 0.0001 and was decreased cosine-wise to 0.00001 throughout the training.
Additionally, early stopping was implemented, which terminates training if the
validation error does not decrease for seven consecutive epochs. The training was
conducted in parallel using 4 NVIDIA V100 GPUs.

5 Results

In this section, we analyze our model by comparing its performance to state-of-
the-art models in ECG abnormality classification.
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Table 1: Average performance of LGA-ECG when compared to other SOTA
methods.
Metrics | ResNet-1 | ResNet-2 | ECG-Transform | BAT | ECG-DETR | HiT | LGA-ECG

Accuracy 0.991 0.989 0.981 0.991 0.9842 0.991 0.994
Precision 0.875 0.908 0.711 0.918 0.7768 0.909 0.907
Recall 0.778 0.743 0.687 0.799 0.6614 0.798 0.872
F1-Score 0.814 0.811 0.677 0.848 0.699 0.841 0.885

We first compare our model, LGA-ECG, with state-of-the-art methods for
classifying six ECG abnormalities: AVB, RBBB, LBBB, SB, AF, and ST. The
evaluated models include ResNet-1 [15], ResNet-2 [6], BAT [8], ECG-DETR
[7], and HiT [2]. Due to class imbalance, accuracy may be inflated; thus, recall,
precision, and particularly the F1-score will be our primary comparison metrics.

Analyzing recall first, LGA-ECG achieves 0.862, surpassing BAT (0.799) and
becoming the first to exceed the 0.8 threshold. This marks a significant im-
provement in identifying positive cases, which is particularly critical in medical
applications, where missing a diagnosis due to low recall (high false negatives)
can lead to delayed treatments and severe consequences for patients. However,
despite this substantial increase in recall, our model maintains a competitive
precision of 0.907 – only slightly lower than BAT’s 0.918. This demonstrates
that the boost in recall did not come at the cost of a drastic drop in precision,
ensuring a balanced performance that enhances overall reliability. This balance
underscores its robustness for practical deployment in high-stakes scenarios.

Table 2: Per class F1-score of LGA-ECG and baseline methods in the test set.
Abnormality | ResNet-1 | ResNet-2 | ECG-Transform | BAT | ECG-DETR | HiT | LGA-ECG

1st AVB 0.661 0.719 0.489 0.689 0.631 0.682 0.8
RBBB 0.924 0.890 0.909 0.922 0.747 0.886 0.923
LBBB 0.927 0.843 0.886 0.945 0.826 0.909 0.983
SB 0.767 0.821 0.535 0.836 0.588 0.824 0.778
AF 0.703 0.758 0.478 0.818 0.563 0.833 0.880
ST 0.897 0.833 0.763 0.870 0.838 0.914 0.946

Avg. F1 0.814 0.811 0.677 0.848 0.699 0.841 0.885

Beyond recall and precision, F1-score provides a comprehensive measure of
performance by balancing both metrics. LGA-ECG achieves a new record F1-
score of 0.885, surpassing BAT, which reached 0.848, ensuring robust classifica-
tion across all ECG abnormalities. Despite the class imbalance, our model also
achieves a higher accuracy, scoring 0.994 compared to 0.991 from the closest
competitor (BAT). By outperforming all baseline methods in all metrics, our
approach demonstrates superior overall performance in distinguishing abnormal
ECG patterns. All comparisons can be seen in Table 1.
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Now, focusing solely on the F1-score, we can directly compare performance
across different abnormalities. As shown in Table 2, LGA-ECG outperforms the
baselines in four categories: ST, LBBB, AF, and 1st AVB. For RBBB, although
the F1-score is slightly lower, it remains virtually equivalent to that of ResNet-1.
The only class in which our model underperforms is SB. We hypothesize that
this occurs due to the model’s difficulty in accurately detecting longer intervals
between consecutive R peaks (the prominent upward deflections in the ECG that
indicate ventricular contractions). Further evaluation is necessary to confirm this
limitation and guide appropriate improvements.
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Fig. 4: Comparison of the average Precision, Recall, and F1 Score between the
proposed LGA-ECG model and human performance.

The CODE-TEST dataset includes labels provided by cardiologists at dif-
ferent levels of training: (i) 4th-year cardiology residents (cardio.), (ii) 3rd-year
emergency residents (emerg.), and (iii) 5th-year medical students (stud.). The
reference labels used for calculating the evaluation metrics were determined by
consensus among three experienced specialist cardiologists, who were excluded
from the analysis. Using this expert consensus as the ground truth, we compared
the labels assigned by professionals at different training levels with the predic-
tions generated by the proposed LGA-ECG model. The results, presented in
Figure 4, show that the model outperformed all groups of cardiologists across all
key metrics, demonstrating superior performance compared to individuals with
varying levels of cardiology expertise.

6 Ablations

To assess the effectiveness of our proposed local-global attention mechanism,
we perform a series of ablation studies to isolate its contributions and better
understand its impact on ECG feature extraction.
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6.1 Alternative Attention Mechanisms

First, we compare the proposed LGA against alternative attention strategies.
Our goal is to evaluate how different query, key, and value configurations in-
fluence the model’s ability to capture fine-grained ECG morphology and global
contextual dependencies.

ViT-like: We begin by examining a standard ViT-like approach, which ap-
plies global self-attention across the entire sequence using linear projections for
queries, keys, and values. While this method captures the global context effec-
tively, it lacks local inductive biases.

Swin-like: Next, we compare our method with a local attention mecha-
nism inspired by Swin Transformer [11], where self-attention is restricted to
non-overlapping windows. This approach captures local features while progres-
sively integrating global context through stacked local attention and inter-block
pooling.

Global Q, K, V: We also analyze a global attention variant, which follows
the standard attention mechanism but replaces linear projections with convolu-
tional and average pooling layers. In this configuration, queries are computed in
the same manner as keys and values, ensuring that all positions attend to each
other globally. Although this setup preserves global context awareness, it may
fail to efficiently encode localized waveform structures.

Local Q, K, V: Finally, we examine a fully localized variant, where the
query Q is the mean of the embeddings within a window, while the keys K and
values V correspond only to the embeddings of that window, without global con-
text. We extract overlapping windows, ensuring that each window is condensed
into a single embedding after the attention operation. This progressively reduces
the data by half at each stage, establishing a hierarchical processing framework.

Table 3: Per class F1-score comparison between different attention mechanisms.
Abnormality | ViT-like | Swin-like | Global Q, K, V | Local Q, K, V | LGA-ECG
1st AVB 0.653 0.682 0.809 0.782 0.800
RBBB 0.862 0.886 0.925 0.955 0.923
LBBB 0.875 0.909 0.909 0.982 0.983
SB 0.768 0.824 0.733 0.750 0.778
AF 0.792 0.833 0.833 0.782 0.880
ST 0.887 0.914 0.870 0.885 0.946
Avg. F1 0.806 0.841 0.847 0.856 0.885

The results in Table 3 show that LGA-ECG achieves the highest F1-score (0.885),
outperforming all alternative attention mechanisms. By integrating local con-
volutional inductive biases with global context, LGA-ECG surpasses both fully
global (ViT-like, global QKV) and fully local (Swin-like, local QKV) approaches,
demonstrating superior feature extraction for ECG classification.
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6.2 Positional Encoding

We further evaluate whether convolutional biases introduced by the adapted
projections sufficiently capture positional information, which is crucial in ECG
analysis due to the diagnostic relevance of intervals between waves and heart-
beats. Specifically, we investigate three positional encoding strategies:

Absolute sinusoidal positional encoding: Predefined sinusoidal func-
tions of varying frequencies are computed based on absolute positions and di-
rectly summed to the embeddings after the convolutional projection, explicitly
embedding absolute positional information into each token.

Absolute learnable positional encoding: A trainable embedding vec-
tor for each absolute position is learned during training and summed to the
embeddings immediately after convolutional projection, enabling the model to
adaptively capture position-specific patterns.

Relative positional encoding: A learnable relative position matrix, match-
ing the attention matrix dimensions, is added directly to the attention scores
before the softmax operation. This matrix encodes pairwise relative distances
between token positions, allowing the model to flexibly emphasize or suppress
interactions based on relative position.

Table 4: Per class F1-score comparison between positional encoding strategies.
Abnormality | Sinusoidal APE | Learnable APE | RPE | Without PE
1st AVB 0.681 0.526 0.667 0.800
RBBB 0.857 0.844 0.928 0.923
LBBB 0.966 0.947 0.909 0.983
SB 0.743 0.643 0.800 0.778
AF 0.769 0.667 0.621 0.880
ST 0.873 0.899 0.853 0.946
Avg. F1 0.815 0.754 0.796 0.885

The results in Table 4 indicate that LGA-ECG achieves the highest performance
without explicit positional encoding, suggesting that the convolutional projec-
tions effectively encode spatial dependencies inherent in ECG signals. While
relative positional encoding improves certain classes, neither absolute nor rela-
tive positional encodings consistently enhance performance, reinforcing the ef-
fectiveness of the learned convolutional inductive biases in capturing diagnostic
temporal structures. Notably, relative positional encoding (RPE) improved SB
detection, likely aiding R-R interval analysis for bradycardia and rhythm ab-
normalities. A similar trend in the Swin-like attention, which also uses RPE,
highlights its role in enhancing rhythm irregularity detection.

6.3 Window Size Analysis

We investigate the impact of varying the window size on the proposed LGA-ECG
architecture. This hyperparameter controls both the kernel size of convolutional
projections and the temporal length of local segments used to compute the local
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queries. By testing different window sizes, we aim to evaluate the sensitivity
of the model’s performance to the temporal scale at which local morphological
features are captured.

10 20 32 64 80
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Fig. 5: F1-score comparison across different window sizes.

As shown in Figure 5, the best performance was achieved with a window size of
64. This setting provides a trade-off between capturing fine-grained waveform de-
tails and maintaining sufficient temporal context for effective local-global feature
integration.

7 Conclusion and Future Work

This study introduced LGA-ECG, a novel deep learning model for ECG clas-
sification that integrates local convolutional inductive biases with global self-
attention mechanisms. Our approach effectively captures both fine-grained mor-
phological features and broader temporal dependencies, leading to significant
improvements over state-of-the-art methods. LGA-ECG achieved the highest
F1-score among all evaluated models, demonstrating the benefits of local-global
attention in medical signal analysis.

A promising and important future direction is extending LGA-ECG with self-
supervised learning techniques to pretrain the model on large unlabeled ECG
datasets before fine-tuning it for classification. This approach could enhance
generalization and robustness, particularly for rare abnormalities with limited
labeled data. Additionally, exploring domain adaptation methods may further
improve model performance across diverse populations and recording settings,
increasing its clinical applicability.

8 Ethical Considerations

While LGA-ECG demonstrates superior classification performance, its deploy-
ment in clinical settings must be approached with caution. AI-driven models
should support, rather than replace, expert decision-making, ensuring that au-
tomated predictions are interpreted in the context of a professional medical
evaluation. Additionally, to mitigate ethical concerns related to data privacy
and patient confidentiality, all datasets used in this study are publicly available,
properly anonymized, and handled following ethical guidelines. No personally
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identifiable information was accessible or used, ensuring compliance with data
protection regulations while promoting responsible AI research in healthcare.
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