Bkd-FedGNN: A Benchmark for Classification
Backdoor Attacks on Federated Graph Neural
Network

Fan Liu', Siqi Lai', Yansong Ning!, and Hao Liu!»?(B<])

1" AI Thrust, The Hong Kong University of Science and Technology (Guangzhou),
China
{f1iu236, slail25, yansongning@hkust-gz.edu.cn}@connect.hkust-gz.edu.cn
2 CSE, The Hong Kong University of Science and Technology, China
liuhQ@ust.hk

Abstract. Federated Graph Neural Network (FedGNN) has recently
emerged as a rapidly growing research topic, as it integrates the strengths
of graph neural networks and federated learning to enable advanced ma-
chine learning applications without direct access to sensitive data. Despite
its advantages, the distributed nature of FedGNN introduces additional
vulnerabilities, particularly backdoor attacks stemming from malicious
participants. Although graph backdoor attacks have been explored, the
compounded complexity introduced by the combination of GNNs and
federated learning has hindered a comprehensive understanding of these
attacks, as existing research lacks extensive benchmark coverage and
in-depth analysis of critical factors. To address these limitations, we
propose Bkd-FedGNN, a benchmark for backdoor attacks on FedGNN.
Specifically, Bkd-FedGNN decomposes the graph backdoor attack into
trigger generation and injection steps, and extending the attack to the
node-level federated setting, resulting in a unified framework that cov-
ers both node-level and graph-level classification tasks. Moreover, we
thoroughly investigate the impact of multiple critical factors in backdoor
attacks on FedGNN. These factors are categorized into global-level and
local-level factors, including data distribution, the number of malicious
attackers, attack time, overlapping rate, trigger size, trigger type, trigger
position, and poisoning rate. Finally, we conduct comprehensive evalua-
tions on 13 benchmark datasets and 13 critical factors, comprising 1,725
experimental configurations for node-level and graph-level tasks from
six domains. These experiments encompass over 8,000 individual tests,
allowing us to provide a thorough evaluation and insightful observations
that advance our understanding of backdoor attacks on FedGNN. Our
code is available at https://github.com/usail-hkust/BkdFedGCN
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1 Introduction

The Federated Graph Neural Network (FedGNN) has emerged as a fast-evolving
research area that combines the capabilities of graph neural networks and feder-
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ated learning. Such integration allows for advanced machine learning applications
without requiring direct access to sensitive data [26/T7IT6I25/T5]. However, de-
spite its numerous advantages, the distributed nature of FedGNN introduces
additional vulnerabilities, particularly related to backdoor attacks originating
from malicious participants. In particular, these adversaries have the ability to
inject graph backdoor triggers into their training data, thereby undermining the
overall trustworthiness of the system [4212T129124].

Although considerable research efforts have explored graph backdoor attacks
on FedGNN [544T2l[46], a comprehensive understanding of these attacks is
hindered by the compounded complexity introduced by the combination of Graph
Neural Networks (GNNs) and Federated Learning (FL). Existing studies suffer
from a lack of extensive benchmark coverage and in-depth analysis of critical
factors. (1) Lack of Extensive Benchmark Coverage. Specifically, the lack
of extensive benchmark coverage poses challenges in fairly and comprehensively
comparing graph backdoor attacks on FedGNN across different settings. These
settings can be categorized into two levels: the graph backdoor attack level and
the FedGNN task level. At the graph backdoor attack level, trigger generation
and injection steps are involved. Additionally, the classification tasks in FedGNN
encompass both node and graph classification tasks. However, there is still a
dearth of comprehensive exploration of graph backdoor attacks on FedGNN under
these various settings. (2) Insufficient Exploration of Multiple Factors.
Furthermore, there has been the insufficient exploration of multiple factors
that impact FedGNN. The combination of GNN with FL introduces various
factors that affect backdoor attacks, such as trigger type, trigger size, and data
distribution. The insufficient exploration and analysis of these multiple factors
make it difficult to understand the influence of key factors on the behavior of
Fed GNN.

To address these limitations, we propose a benchmark for graph backdoor
attacks on FedGNN, called Bkd-FedGNN. As far as we are aware, our work is the
first comprehensive investigation of graph backdoor attacks on FedGNN. Our con-
tributions can be summarized as follows. (1) Unified Framework: We propose a
unified framework for classification backdoor attacks on FedGNN. Bkd-FedGNN
decomposes the graph backdoor attack into trigger generation and injection steps
and extends the attack to the node-level federated setting, resulting in a unified
framework that covers both node-level and graph-level classification tasks. (2)
Exploration of Multiple Critical Factors: We thoroughly investigate the
impact of multiple critical factors on graph backdoor attacks in FedGNN. We
systematically categorize these factors into two levels: global level and local level.
At the global level, factors such as data distribution, the number of malicious
attackers, the start time of backdoor attacks, and the overlapping rate play
significant roles. In addition, the local level factors involve factors such as trigger
size, trigger type, trigger position, and poisoning rate. (3) Comprehensive
Experiments and Analysis: We conduct comprehensive experiments on both
benchmark experiments and critical factor analysis. For the benchmark experi-
ments, we consider combinations of trigger types, trigger positions, datasets, and
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models, resulting in 315 configurations for the node level and 270 configurations
for the graph-level tasks. Regarding the critical factors, we consider combinations
of factors, datasets, and models, resulting in 672 configurations for the node-level
tasks and 468 configurations for the graph-level tasks. Each configuration is
tested five times, resulting in approximately 8,000 individual experiments in total.
Based on these experiments, we thoroughly evaluate the presented comprehensive
analysis and provide insightful observations that advance the field.

2 Federated Graph Neural Network

In this section, we provide an introduction to the preliminary aspects of FedGNN.
Currently, FedGNN primarily focuses on exploring common classification tasks,
which involve both node-level and graph-level classification. The FedGNN consists
of two levels: client-level local training and server-level federated optimization.
We will begin by providing an overview of the notations used, followed by a
detailed explanation of the client-level local training, which encompasses message
passing and readout techniques. Lastly, we will introduce server-level federated
optimization.

2.1 Notations

Assume that there exist K clients denoted as C = {c¢x}i,. Each client, ¢,
possesses a private dataset denoted as D' = {(G, Y;)};Vz’l, wherein GI = (Vi, £7)
is the graph, where V¢ = {u;}}; (n; denotes the number of nodes) is the set
of nodes, and €' = {e }+x is the set of edges (for simplicity, we exclude the
subscript j that indicates the index of the j-th dataset in the dataset D).
N; = |DZ| denotes the total number of data samples in the private dataset of
client ¢;. We employ the notation Aj to denote the adjacency matrix of graph g
belonging to client ¢; within the set of clients C. Xj represents the node feature

set , and Y; corresponds to the label sets.

2.2 Client-level Local Training

To ensure versatility and inclusiveness, we employ the message passing neural
network (MPNN) framework [932/14], which encompasses a diverse range of
spectral-based GNNs, such as GCN [I9], as well as spatial-based GNNs including
GAT [37] and GraphSage [13], etc. Each client possesses a GNN model that
collaboratively trains a global model. The local graph learning process can be
divided into two stages: message passing and readout.

Message Passing. For each client ¢;, the I-th layer in MPNN can be formu-
lated as follows,

b = o (w - (b5, Agg({hy

v € N(v;)}))), (1)

where hél (l=0,---,L —1) represents the hidden feature of node v; in client ¢;

and hg’i = x; denotes the node v;’s raw feature. The o represents the activation
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function (e.g., ReLU, sigmoid). The parameter w" corresponds to the I-th
learnable parameter. The aggregation operation Agg (e.g., mean pooling) combines
the hidden features h?l’i of neighboring nodes v, € N (v;) for node v;, where
N (v;) represents the set of neighbors of node v;. Assume that the w’ = {wh}/ !
is the set of learn able parameters for client ¢;.

Readout. Following the propagation of information through L layers of
MPNN;, the final hidden feature is computed using a readout function for subse-

quent tasks. _ L _
J1 = Ro: ({h;""[v; € V1)), (2)

where ¢! represents the prediction for a node or graph. Specifically, I serves
as an indicator, where I = v; denotes the prediction for node v;, and I = G°
denotes the prediction for the graph G. The readout function Rg:(-) encompasses
methods such as mean pooling or sum pooling etc., where §° is the parameter for
readout function.

2.3 Server-level Federated Optimization

Let us consider that w’ = {w"?} 7! represents the set of trainable parameters
within the MPNN framework associated with client ¢;. Consequently, we define
the overall model parameters as W¢ = {w* 0} for each client ¢; € C. The GNNs,
which constitute a part of this framework, can be represented as fi(X;:, Aé; Wi).
The objective of FL is to optimize the global objective function while preserving
the privacy of local data on each individual local model. The overall objective
function can be formulated as follows,

N , 4 1 o . ,
min Y L F(W, F(WH=— S £((f(XE AL W), Y, (3
B 2 OV ROV = 7 3 LA WD X), 9

where F;(-) denotes the local objective function, and £(-) denote the loss
function (e.g., cross-entropy etc.), and N = Zfil N; represent the total number
of data samples encompassing all clients.

We illustrate the process of federated optimization, aimed at achieving a gen-
eralized model while ensuring privacy preservation, by utilizing a representative
federated algorithm, FedAvg [28]. Specifically, in each round denoted by ¢, the
central server transmits the global model parameter W; to a subset of clients that
have been selected for local training. Subsequently, each chosen client ¢; refines
the received parameter W, using an optimizer operating on its private dataset
D!. Following this, the selected clients upload the updated model parameter
Wi, and the central server aggregates the local model parameters to obtain the
enhanced global model parameter W, 1.

In FedGNN setting, there exist diverse scenarios involving distributed graphs
that are motivated by real-world applications. In these scenarios, classification
tasks can be classified into two distinct settings based on how graphs are dis-
tributed across clients. Node-level FedGNN. Each client is equipped with
a subgraph, and the prevalent tasks involve node classification. Real-world ap-
plications, such as social networks, demonstrate situations where relationships
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Fig.1: A unified framework for classification backdoor attack on FedGNN.

between nodes can span across different clients, and each node possesses a unique
label. Graph-level FedGNN. Each client possesses a set of graphs, and the
primary focus lies on graph classification tasks. Real-world applications, such
as protein discovery, exemplify instances where each institution holds a limited
graph along with associated labels.

3 A Unified Framework for Classification Backdoor Attack
on FedGNN

This section presents a unified framework for classification backdoor attacks
on federated GNNs. Our primary focus is on graph-based backdoor attacks,
where malicious entities strategically insert triggers into graphs or subgraphs to
compromise the trustworthiness of FedGNN. A comprehensive illustration of our
unified framework for classification backdoor attacks on FedGNN can be found
in Figure[l] In detail, we first introduce the dataset and models and then give
the evaluation metric, then introduce the threat model. Next, we introduce the
federated graph backdoor attack, which involves the formulation of the attack goal
and a two-step attack process: trigger generation and trigger injection. Finally,
we explore various critical factors at both global and local levels.

3.1 Datasets and Models

In this study, we have considered six distinct domains comprising a total of
thirteen datasets, along with three widely used GNNs. Node-level Datasets: For
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node-level analysis, we have included three extensively studied citation graphs,
such as Cora, CiteSeer, and PubMed. Additionally, we have incorporated the Co-
authorship graphs (CS and Physics), along with the Amazon Co-purchase graphs
(Photo and Computers). Graph-level Datasets: For graph-level analysis, we have
utilized molecular graphs such as AIDS and NCI1. Furthermore, bioinformatics
graphs, including PROTEINS-full, DD, and ENZYMES, have been incorporated.
Lastly, a synthetic graph, COLORS-3, has also been employed. Models: We have
employed three widely adopted GNNs: GCN, GAT, and GraphSage, which have
been demonstrated effective in various graph-based tasks. For detailed statistical
information about the graphs used, please refer to Appendix

3.2 Evaluation Metrics

To assess the effectiveness of the graph backdoor attack on FedGNN, three metrics
are employed: the average clean accuracy (ACC) across all clients, the average
attack success rate (ASR) on malicious clients, and the transferred attack success
rate (TAST) on normal clients. The ACC metric evaluates the performance of
federated GNNs when exposed to clean examples from all clients. The ASR
metric measures the performance of the graph backdoor attack specifically on
the malicious clients. Lastly, the TAST metric gauges the vulnerability of normal
clients to the graph backdoor attack. For the detailed equations corresponding
to these metrics, please refer to Appendix [A22]

3.3 Threat Model

Attack Objective. Assuming there are a total of K clients, with M (M < K)
of them being malicious, each malicious attacker independently conducts the
backdoor attack on their own models. The primary goal of a backdoor attack is to
manipulate the model in such a way that it misclassifies specific pre-defined labels
(known as target labels) only within the poisoned data samples. It is important
to ensure that the model’s accuracy remains unaffected when processing clean
data. Attack Knowledge. In this setting, we assume that the malicious attacker
has complete knowledge of their own training data. They have the capability to
generate triggers. It should be noted that this scenario is quite practical since
the clients have full control over their own data. Attacker Capability. The
malicious client has the ability to inject triggers into the training datasets, but
this capability is limited within predetermined constraints such as trigger size
and poisoned data rate. The intention is to contaminate the training datasets.
However, the malicious client lacks the ability to manipulate the server-side
aggregation process or interfere with other clients’ training processes and models.

3.4 Federated Graph Backdoor Attack

Mathematically, the formal attack objective for each malicious client ¢; during
round t can be defined as follows,

wit :argr‘%’il}% S LK g0 AW ) 7) + S0 LK AL W), YD) |
v Len; jeDi (4)

L D}
Vj €Dy, N =g, <Ly and p= |D’j‘ <Ay,
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where D;) refers to the set of poisoned data and DY corresponds to the clean
dataset. Noted that D; U D! = D! and D; MD: = ¢, indicating the union and
intersection of the poisoned and clean data sets, respectively. gToA§ represents the
poisoned graph resulting from an attack. g, represents the trigger generated by
the attacker, which is then embedded into the clean graph, thereby contaminating
the datasets. Additionally, 7 denotes the target label. N, = |g,| denotes the
trigger size and A, represents the constrain to ensures that the trigger size
remains within the specified limit. p = ‘I%j"lll represents the poisoned rate, and
Ap denotes the budget allocated for poisoned data.

In the federated graph backdoor attack, to generate the trigger and poisoned
data sets, the graph backdoor attack can be divided into two steps: trigger
generation and trigger injection. The term "trigger" (a specific pattern) has been
formally defined as a subgraph in the work by Zhang et al. (2021), providing a
clear and established framework for its characterization [50].

Trigger Generation. The process of trigger generation can be defined as the
function go(X;, A;), which yields the generated trigger g, through (p(Xé», A;) =
gr.

Trigger Injection. The process of trigger injection can be defined as the func-
tion a(g-, Aé), which generates the final poisoned graph g, o A; by incorporating
the trigger g, into the pristine graph A;

3.5 Factors in Federated Graph Backdoor

The graph backdoor attack framework in FedGNN encompasses various critical
factors that warrant exploration. These factors can be categorized into two
levels: the global level and the local level. At the global level, factors such as
data distribution, the number of malicious attackers, the start time of backdoor
attacks, and overlapping rate play significant roles. On the other hand, the local
level involves parameters like trigger size, trigger type, trigger position, and
poisoning rate. Notably, the overlapping rate holds particular importance in
node-level FedGNN; as it involves cross-nodes across multiple clients.

Global Level Factors: Data Distribution. The data distribution encom-
passes two distinct types: independent and identically distributed (IID) and
non-independent and identically distributed (Non-IID). In detail, IID refers
to data distribution among clients remaining constant, while Non-1ID (L-Non-
IID [39/49], PD-Non-IID [7], N-Non-IID [22]) refers that the data distribution
among clients exhibiting variations. Number of Malicious Attackers. The
concept of the number of malicious attackers, denoted as M, can be defined in the
following manner. Let us assume that the set of malicious clients is denoted as C,,,
and the set of normal clients is denoted as C,,. It can be inferred that C,, LUC,, = C
and C,, MC, = ¢. Attack Time. In the context of FL, the attack time denotes
the precise moment when a malicious attack is launched. The attack time can
be denoted by t*. Overlapping Rate (specific to Node-level FedGNN).
The overlapping rate, represented by the variable «, pertains to the proportion
of additional samples of overlapping data that across clients. This phenomenon
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Table 1: Critical factors in federated graph backdoor.

Factors Symbol Node Level ‘ Graph Level

Data Distribution - {IID*, L-Non-IID} [{IID*, PD-Non-IID, N-Non-IID }

# of Malicious Attackers M 1%,2,3,4,5
Global Level oo 1 Time t" T {vo*{, 01,02, 03} 04,057

Overlapping Rate a {0.17,0.2,0.3,0.4,0.5} -

Trigger Size N, {3,4,5,6,7,8,9, 10} Na#{0.17,0.2,0.3,0.4,0.5]
Local Level Trigger Type g |{Renyi*, WS, BA, GTA, UGBA }| { Renyi*, WS, BA, RR, GTA }

’ " Trigger Position - {Random®, Degree, Cluster }
Poisoning Rate p {0.17,0.2,0.3,0.4,0.5}

arises in node-level FedGNN, where cross-client nodes exist, resulting in the
sharing of common data samples between different clients.

Local Level Factors: Trigger Size. The size of the trigger can be quantified
by counting the number of nodes within the corresponding graph. The trigger
size is denoted by N.. Trigger Type. Based on the methods used to generate
triggers(e.g., Renyi [50], WS [40], BA [1], RR [35], GTA [41], and UGBA [6]
etc.), the categorization of trigger types can be refined into two categories:
universal triggers and adaptive triggers. Universal triggers are pre-generated
through graph generation techniques, such as the Erdés-Rényi (ER) model [§],
which are agnostic to the underlying graph datasets. On the other hand, adaptive
triggers are specifically designed for individual graphs using optimization methods.
Trigger Position. The trigger position refers to the specific location within a
graph or sub-graph where the trigger is injected. Typically, the trigger position
can be categorized into two types: random position and important indicator
position. In the case of the random position, the trigger is injected into the
graph in a random manner without any specific consideration. Conversely, the
important indicator position entails injecting the trigger based on certain crucial
centrality values, such as the degree or cluster-based scores, that indicate the
significance of specific nodes within the graph. Poisoning Rate. The concept of
poisoning rate, denoted as p, can be defined as the ratio of the cardinality of the
set of poisoned data samples, C;, to the total number of data samples, denoted

as D'. Mathematically, this can be expressed as p = %, where V¢; € C signifies

that the cardinality calculations are performed for every client ¢; belonging to
the set C.

4 Experimental Studies

In this section, we present the experimental studies conducted to investigate
classification backdoor attacks on FedGNN. Our main objective is to evaluate the
impact of graph backdoor attacks on FedGNN covering both the node and graph
level tasks. Additionally, we aim to explore the critical factors that influence the
effectiveness of graph backdoor attacks on FedGNN, considering aspects from
both the global and local levels.

4.1 Experimental Settings

Factors Settings. We present the detailed factors setup considered in our study.
It is important to note that the first value presented represents the default setting.
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Fig. 2: Graph backdoor attack on both node and graph level tasks for GCN.
(Color intensity corresponds to value magnitude)

To assess the individual impact of each factor, we keep the remaining factors
fixed while systematically varying the corresponding values in our experiments.
The factors range is shown in Table [I] For the detailed setting for factor, please
refer to Appendix [A-3]

Federated Graph Backdoor Attack. The federated graph backdoor at-
tack can be characterized by the combination of trigger generation techniques
(Renyi [50], WS [40], BA [1], RR [35], GTA [4I], and UGBA [0]) and trigger
position strategies (Random, Degree, and Cluster). For instance, the attack
method Renyi-Random refers to the utilization of the ER model to generate the
trigger, which is then randomly injected into the graph.

Implementation Details. Our implementation of the backdoor attack on
FedGNN is based on the PyTorch framework. The experiments were carried
out on two server configurations: three Linux Centos Servers, each with 4 RTX
3090 GPUs, and two Linux Ubuntu Servers, each with 2 V100 GPUs. In both
node-level and graph-level tasks, we adopt the inductive learning settings as
outlined in [44J6]. For each dataset, we ensure consistent experimental conditions
by employing the same training and attack settings. We set the total number
of clients to 5, and all clients participate in the training process at each round.
Each experiment is repeated five times. For a detailed description of the training
and attack settings, please refer to Appendix [A-4]

4.2 Benchmark Results of Graph Backdoor Attack on FedGNN

The results of the benchmark for the graph backdoor attack on FedGNN are
presented in Figure [2l The observations are summarized as follows. (1) The
node-level task exhibits higher vulnerability to attacks compared to the graph-
level task at a relatively small trigger size. Specifically, a significant majority of
graph backdoor attacks achieve an ASR (Attack Success Rate) exceeding 90%,
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while the highest ASR recorded at the graph level is 82.24%. (2) Despite not
being intentionally poisoned by malicious attackers, the normal clients are still
susceptible to graph backdoor attacks. For instance, in the node-level task, there
is a TASR (Transfered Attack Success Rate) of 24.52%, while the graph-level
task exhibits even higher vulnerability with a TASR of 61.86%. This observation
suggests that the weights uploaded by the malicious clients can inadvertently
influence the normal clients when they download the global model’s weights.
3). The combination of trigger size and trigger position significantly influences
the attack performance on the graph-level task compared to the node-level task.
For instance, the attack WS-Cluster achieves an ASR of approximately 82.24%,
while the GTA-Random achieves only about 13.87%. Due to the page limit, the
benchmark results on other datasets and models please refer to Appendix

4.3 Factors in Federated GINN

The overall results of factors can be shown in Figures B4l Global Level Factors:
Data Distribution (DD). For node-level tasks, there models trained on IID
data are more vulnerable than models trained on Non-IID data. For graph-level
tasks, the GCN trained on IID data are more vulnerable than models trained on
Non-IID data (PD-Non-IID and N-Non-IID), while GAT and GraphSagr trained
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on Non-IID data are more vulnerable than models trained on IID data. Number
of Malicious Attackers (NMA). For node-level tasks, an increase in NMA
leads to an increase in ASR for both GCN and GAT models. Conversely, an
increase in NMA results in a decrease in ASR for both GraphSage. Concerning
graph-level tasks, the ASR demonstrates an increase with the increase of NMA
in the case of GAT and GraphSage. However, in the scenario of GCN, the ASR
shows a decrease with the increase of NMA. Attack Time (AT). For both
node-level and graph-level tasks, an increase in AT results in a decrease in ASR
for three models. Overlapping Rate (OR). The ASR demonstrates an upward
trend as the overlapping rate increases. This correlation can be attributed to the
possibility that overlapping nodes facilitate the backdooring of normal clients,
primarily through the presence of cross-edges.

Local Level Factors: Trigger Size (TS). For node-level tasks, an increase
in TS leads to an increase in ASR for GCN. However, in the case of GAT and
GraphSage, the ASR demonstrates a decrease with the increase of T'S. Concerning
the graph-level task, the ASR shows an increase with the increase of TS across all
three GNNs. Trigger Types (TT). In the node-level task, the adaptive trigger
demonstrates a higher ASR on most models. Conversely, in the graph-level task,
the universal trigger exhibits higher ASR. Trigger Position (TP). In node-
level tasks, we observed a significantly large ASR when using importance-based
positions (Degree and Cluster) compared to random positions. However, for the
graph-level task, while importance-based positions showed higher ASR for GCN,
random positions yielded higher ASR for GAT and GraphSage. Poisoning Rate
(PR). On node classification, an increase in PR results in a slight decrease in
ASR. However, graph classification exhibits an upward trend in ASR. Due to the
page limit, the results on other datasets and metrics, please refer to Appendix [A.5]

4.4 Defense Methods Against Federated Graph Backdoor Attack

To comprehensively evaluate the impact of the graph backdoor attack on FedGNN,
considering both adaptive optimizer settings and defense strategies, we conduct
additional experiments utilizing state-of-the-art federated algorithms and defense
techniques. This involves advanced federated algorithms (FedOpt [30], Fed-
Prox [23], and Scaffold [18]) the discarding aggregation methods (e.g., Krum [2],
Multi-Krum [2], Bulyan) and non-discarding aggregations (e.g., Median, Trimmed-
mean). The results of the federated defense experiments conducted under the
backdoor attack "renyi-random" are illustrated in Figure [5] Overall, the re-
sults reveal that even advanced federated methods and defense approaches have
limitations in effectively mitigating the graph backdoor attack.
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Fig.5: Advanced federated algorithms Defense methods against backdoor attack.

(1) Non-IID distribution is more susceptible to malicious activities.

(2) More malicious clients corresponds to higher attack performance.

(3) Malicious clients possess the capacity to initiate attacks during any
phase of federated training rounds.

(4) The inclusion of cross-client edges enhances the attack process by facil-
itating the transfer of malicious trigger knowledge across client, thereby
amplifying the trigger signal.

(5) A larger trigger size does not necessarily equate to higher attack capa-
bility.

(6) The adaptive trigger is tailored to individual graphs, resulting in a
higher attack success rate.

(7) The placement of the trigger in a significant position leads to enhanced
attack performance.

(8) A higher poisoning rate corresponds to an elevated attack success rate.
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5 Related Works

FedGNN. FedGNN present a distributed machine learning paradigm that facili-
tates collaborative training of GNNs among multiple parties, ensuring the privacy
of their sensitive data. In recent years, extensive research has been conducted on
FedGNN, with a particular focus on addressing security concerns [TTI44/T2[46I10].
Among these concerns, poisoning attacks have garnered significant attention,
encompassing both data poisoning attacks and model poisoning attacks. Data
poisoning attacks occur when an adversary employs tainted data to train the
local model, while model poisoning attacks involve manipulation of either the
training process or the local model itself. Currently, the majority of attacks
on FedGNN primarily concentrate on data poisoning attacks. Chen et al. [5]
proposed adversarial attacks on vertical federated learning, utilizing adversarial
perturbations on global node embeddings based on gradient leakage from pair-
wise nodes. Additionally, Xu et al. [44] investigated centralized and distributed
backdoor attacks on FedGNN.

Graph Backdoor Attacks. Backdoor attacks on GNNs have received signif-

icant attention in recent years [S0/43JA7454TI5T6]. Regarding graph backdoor
attacks, they can be classified into two types based on the employed trigger: uni-
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versal graph backdoor attacks and adaptive backdoor attacks. In universal graph
backdoor attacks, Zhang et al. [50] generated sub-graphs using the Erdés-Rényi
(ER) model as triggers and injected them into the training data. Additionally, Xu
et al. [41] observed that the position of the trigger injection into the graph can
also affect the attack’s performance. As for adaptive trigger backdoor attacks, Xi
et al. [41] developed an adaptive trigger generator that optimizes the attack’s
effectiveness for both transductive and inductive tasks. In our benchmark, we
focus primarily on data poisoning attacks. While model poisoning attacks can be
effective, data poisoning attacks may be more convenient because they do not
require tampering with the model learning process, and they allow non-expert
actors to participate [36].

6 Conclusions and Open Problems

Conclusions. In this paper, we proposed a unified framework for classification
backdoor attacks on FedGNN. We then introduced the critical factors involved
in graph backdoor attacks on FedGNN, including both global and local level
factors. Along this line, we performed approximately 8,000 experiments on the
graph backdoor attacks benchmark and conducted critical factor experiments to
provide a comprehensive analysis.

Open Problems. (1) Enhancing the success rate of transferred attacks:
Our findings reveal that malicious attackers can also backdoor normal clients
through the FL mechanism. However, there is a need to explore methods that
can identify and exploit the worst vulnerabilities under these circumstances. (2)
Evaluating the defense method under backdoor attack: We demonstrate that
FedGNN can be compromised by malicious attackers. However, assessing the
effectiveness of defense mechanisms against such attacks still requires further
exploration. (3) Cooperative malicious attackers: Currently, the majority of
malicious attackers operate independently during the attack process, neglecting
the potential benefits of collaboration. An intriguing research direction lies in
investigating the utilization of collaboration to enhance attack performance.

Acknowledge

This work was supported by the National Key R&D Program of China (Grant
No.2023YFF0725004), National Natural Science Foundation of China (Grant
No0.92370204), the Guangzhou Basic and Applied Basic Research Program under
Grant No. 2024A04J3279, Education Bureau of Guangzhou Municipality.

References

1. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509-512 (1999)



14

10.

11.

12.

13.

14.

15.

16.

17.

F. Liu et al.

. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with

adversaries: Byzantine tolerant gradient descent. Advances in neural information
processing systems 30 (2017)

Borgwardt, K.M., Ong, C.S., Schénauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.: Protein function prediction via graph kernels. In: Proceedings Thirteenth
International Conference on Intelligent Systems for Molecular Biology 2005, Detroit,
MI, USA, 25-29 June 2005. pp. 47-56 (2005)

Cheibub, J.A., Gandhi, J., Vreeland, J.R.: Democracy and dictatorship revisited.
Public choice pp. 67-101 (2010)

Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, C.: Graph-fraudster:
Adversarial attacks on graph neural network-based vertical federated learning.
IEEE Transactions on Computational Social Systems (2022)

Dai, E., Lin, M., Zhang, X., Wang, S.: Unnoticeable backdoor attacks on graph
neural networks. In: Proceedings of the ACM Web Conference 2023. p. 2263-2273.
WWW 23, New York, NY, USA (2023)

Fang, M., Cao, X., Jia, J., Gong, N.Z.: Local model poisoning attacks to byzantine-
robust federated learning. In: 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020. pp. 1605-1622. USENIX Association (2020)

Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics 30(4), 1141
1144 (1959)

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 1263-1272. PMLR (2017)
Guo, Z., Han, R., Liu, H.: Against multifaceted graph heterogeneity via asymmetric
federated prompt learning (2024), https://arxiv.org/abs/2411.02003

Guo, Z., Yao, D., Yang, Q., Liu, H.: Hifgl: A hierarchical framework for cross-silo
cross-device federated graph learning. In: Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. pp. 968-979. KDD ’24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3637528.3671660, https://doi.org/10.1145/3637528.3671660
Halimi, A., Kadhe, S., Rawat, A., Baracaldo, N.: Federated unlearning: How to
efficiently erase a client in FL? CoRR abs/2207.05521 (2022)

Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. pp. 1024-1034 (2017)

Han, J., Liu, H., Xiong, H., Yang, J.: Semi-supervised air quality forecasting via
self-supervised hierarchical graph neural network. IEEE Transactions on Knowledge
and Data Engineering 35(5), 5230-5243 (2022)

Han, J., Zhang, W., Liu, H., Tao, T., Tan, N., Xiong, H.: Bigst: Linear complexity
spatio-temporal graph neural network for traffic forecasting on large-scale road
networks. Proc. VLDB Endow. 17(5), 1081-1090 (Jan 2024). https://doi.org/
10.14778/3641204.3641217, https://doi.org/10.14778/3641204.3641217

He, C., Ceyani, E., Balasubramanian, K., Annavaram, M., Avestimehr, S.: Spread-
gnn: Decentralized multi-task federated learning for graph neural networks on
molecular data (2021)

Huang, X., Yang, Y., Wang, Y., Wang, C., Zhang, Z., Xu, J., Chen, L., Vazirgiannis,
M.: Dgraph: A large-scale financial dataset for graph anomaly detection. In: NeurIPS
(2022)


https://arxiv.org/abs/2411.02003
https://doi.org/10.1145/3637528.3671660
https://doi.org/10.1145/3637528.3671660
https://doi.org/10.1145/3637528.3671660
https://doi.org/10.1145/3637528.3671660
https://doi.org/10.1145/3637528.3671660
https://doi.org/10.14778/3641204.3641217
https://doi.org/10.14778/3641204.3641217
https://doi.org/10.14778/3641204.3641217
https://doi.org/10.14778/3641204.3641217
https://doi.org/10.14778/3641204.3641217

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Title Suppressed Due to Excessive Length 15

Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.:
Scaffold: Stochastic controlled averaging for on-device federated learning. arXiv
preprint arXiv:1910.06378 2(6) (2019)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net
(2017), https://openreview.net/forum?id=SJU4ayYgl

Knyazev, B., Taylor, G.W., Amer, M.: Understanding attention and generalization
in graph neural networks. Advances in neural information processing systems 32
2019

(Li, H.), Wu, C., Zhu, S., Zheng, Z.: Learning to backdoor federated learning. arXiv
preprint arXiv:2303.03320 (2023)

Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-iid data silos: An ex-
perimental study. In: 2022 IEEE 38th International Conference on Data Engineering
(ICDE). pp. 965-978. IEEE (2022)

Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. Proceedings of Machine learning and
systems 2, 429-450 (2020)

Liu, F., Feng, Y., Xu, Z., Su, L., Ma, X., Yin, D., Liu, H.: Jailjudge: A comprehen-
sive jailbreak judge benchmark with multi-agent enhanced explanation evaluation
framework (2024), https://arxiv.org/abs/2410.12855

Liu, F., Liu, H.: Subgraph federated unlearning. In: Proceedings of the ACM on Web
Conference 2025. p. 1205-1215. WWW 25, Association for Computing Machinery,
New York, NY, USA (2025). https://doi.org/10.1145/3696410.3714821, https!
//doi.org/10.1145/3696410.3714821

Maekawa, S., Noda, K., Sasaki, Y., Onizuka, M.: Beyond real-world benchmark
datasets: An empirical study of node classification with gnns. In: NeurIPS (2022)
McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations
on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. p. 43-52. SIGIR
’15, Association for Computing Machinery (2015)

McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Proceedings of Machine Learning
Research, vol. 54, pp. 1273-1282. PMLR (2017)

Ozdayi, M.S., Kantarcioglu, M., Gel, Y.R.: Defending against backdoors in federated
learning with robust learning rate. In: Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAT 2021. pp. 9268-9276. AAAI Press (2021)

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Kone¢ny, J., Kumar, S.,
McMahan, H.B.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295
(2020)

Riesen, K., Bunke, H.: TAM graph database repository for graph based pattern
recognition and machine learning. In: Structural, Syntactic, and Statistical Pattern
Recognition, Joint TAPR International Workshop, SSPR & SPR 2008, Orlando, USA,
December 4-6, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5342,
pp. 287-297. Springer (2008)

Rong, Y., Xu, T., Huang, J., Huang, W., Cheng, H., Ma, Y., Wang, Y., Derr, T.,
Wu, L., Ma, T.: Deep graph learning: Foundations, advances and applications. In:
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020. pp. 3555-3556. ACM (2020)


https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2410.12855
https://doi.org/10.1145/3696410.3714821
https://doi.org/10.1145/3696410.3714821
https://doi.org/10.1145/3696410.3714821
https://doi.org/10.1145/3696410.3714821

16

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

F. Liu et al.

Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics
and visualization. Proceedings of the AAAI Conference on Artificial Intelligence
29(1) (Mar 2015)

Shchur, O., Mumme, M., Bojchevski, A., Glinnemann, S.: Pitfalls of graph neural
network evaluation. Relational Representation Learning Workshop, NeurIPS 2018
(2018)

Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combina-
torics, Probability and Computing 8(4), 377-396 (1999)

Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against
federated learning systems. In: Computer Security-ESORICS 2020: 25th European
Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK,
September 14-18, 2020, Proceedings, Part I 25. pp. 480-501. Springer (2020)
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings (2018), https://openreview.net/forum?id=rJXMpikCZ

Wale, N., Karypis, G.: Comparison of descriptor spaces for chemical compound
retrieval and classification. In: Sixth International Conference on Data Mining
(ICDM’06). pp. 678-689 (2006). https://doi.org/10.1109/ICDM.2006.39

Wang, Z., Kuang, W., Xie, Y., Yao, L., Li, Y., Ding, B., Zhou, J.: Federatedscope-
gnn: Towards a unified, comprehensive and efficient package for federated graph
learning. In: Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. p. 4110-4120. KDD 22, New York, NY, USA
(2022). https://doi.org/10.1145/3534678.3539112, https://doi.org/10.1145/
3534678.3539112

Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440-442 (1998)

Xi, Z., Pang, R., Ji, S., Wang, T.: Graph backdoor. In: USENIX Security Symposium.
pp. 1523-1540 (2021)

Xie, C., Chen, M., Chen, P., Li, B.: CRFL: certifiably robust federated learning
against backdoor attacks. In: Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Proceedings of
Machine Learning Research, vol. 139, pp. 11372-11382. PMLR (2021)

Xu, J., Abad, G., Picek, S.: Rethinking the trigger-injecting position in graph
backdoor attack. arXiv preprint arXiv:2304.02277 (2023)

Xu, J., Wang, R., Koffas, S., Liang, K., Picek, S.: More is better (mostly): On the
backdoor attacks in federated graph neural networks. In: Proceedings of the 38th
Annual Computer Security Applications Conference. pp. 684698 (2022)

Xu, J., Xue, M., Picek, S.: Explainability-based backdoor attacks against graph
neural networks. In: Proceedings of the 3rd ACM Workshop on Wireless Security
and Machine Learning. pp. 31-36 (2021)

Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Kadhe, S., Ludwig, H.: Detrust-FL:
Privacy-preserving federated learning in decentralized trust setting. In: IEEE 15th
International Conference on Cloud Computing, CLOUD 2022, Barcelona, Spain,
July 10-16, 2022. pp. 417-426. IEEE (2022)

Yang, S., Doan, B.G., Montague, P., De Vel, O., Abraham, T., Camtepe, S., Ranas-
inghe, D.C., Kanhere, S.S.: Transferable graph backdoor attack. In: Proceedings of
the 25th International Symposium on Research in Attacks, Intrusions and Defenses.
pp. 321-332 (2022)


https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/ICDM.2006.39
https://doi.org/10.1109/ICDM.2006.39
https://doi.org/10.1145/3534678.3539112
https://doi.org/10.1145/3534678.3539112
https://doi.org/10.1145/3534678.3539112
https://doi.org/10.1145/3534678.3539112

48.

49.

50.

51.

Title Suppressed Due to Excessive Length 17

Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. In: Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. JMLR
Workshop and Conference Proceedings, vol. 48, pp. 40-48. JMLR.org (2016)
Zhang, K., Yang, C., Li, X., Sun, L., Yiu, S.M.: Subgraph federated learning with
missing neighbor generation. Advances in Neural Information Processing Systems
34, 6671-6682 (2021)

Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks.
In: Proceedings of the 26th ACM Symposium on Access Control Models and
Technologies. pp. 15-26 (2021)

Zheng, H., Xiong, H., Chen, J., Ma, H., Huang, G.: Motif-backdoor: Rethinking
the backdoor attack on graph neural networks via motifs. I[EEE Transactions on
Computational Social Systems (2023)



	Bkd-FedGNN: A Benchmark for Classification Backdoor Attacks on Federated Graph Neural Network

