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Abstract. Long-term urban crowd flow prediction suffers significantly
from cumulative sampling errors, due to increased sequence lengths and
sampling intervals, which inspired us to leverage Neural Controlled Dif-
ferential Equations (NCDEs) to mitigate this issue. However, regard-
ing the crucial influence of Points of Interest (POIs) evolution on long-
term crowd flow, the multi-timescale asynchronous dynamics between
crowd flow and POI distribution, coupled with latent spurious causal-
ity, poses challenges to applying NCDEs for long-term urban crowd flow
prediction. To this end, we propose Causal-aware Collaborative neural
CDE (C3DE) to model the long-term dynamic of crowd flow. Specif-
ically, we introduce a dual-path NCDE as the backbone to effectively
capture the asynchronous evolution of collaborative signals across mul-
tiple time scales. Then, we design a dynamic correction mechanism with
the counterfactual-based causal effect estimator to quantify the causal
impact of POIs on crowd flow and minimize the accumulation of spuri-
ous correlations. Finally, we leverage a predictor for long-term prediction
with the fused collaborative signals of POI and crowd flow. Extensive
experiments on three real-world datasets demonstrate the superior per-
formance of C3DE, particularly in cities with notable flow fluctuations.

Keywords: Long-Term Urban Crowd Flow Prediction · Neural Con-
trolled Differential Equation · Counterfactual Inference.

1 Introduction

Urban development is a dynamic process driven by population growth, economic
activities, and infrastructure development. As a key indicator of urban opera-
tions, urban crowd flow exhibits a significant continuous evolution trend. Explor-
ing its long-term evolution helps reveal urban operating patterns and provides
valuable insights for traffic management and sustainable urban development.

Existing researches on long-term prediction [15,32,34] typically employed
coarse-grained data with hourly or even longer intervals, in contrast to the high-
frequency, minute-level data commonly used. Such coarse-grained data obscures
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the important urban dynamics and trends, leading to information loss and mak-
ing it harder for models to capture crowd flow dynamics, resulting to suboptimal
prediction performance. Consequently, we introduce a continuous modeling ap-
proach to better capture urban dynamics from coarse-grained data, enhancing
prediction stability and accuracy. Intuitively, it is essential to consider the evolu-
tion of urban structure in urban crowd flow prediction, which is mainly reflected
in the changes of POI distribution [19,33]. For example, the construction of a
new commercial center may attract higher pedestrian flow, while the renovation
of an old residential area may affect the surrounding traffic flow.

However, modeling the impact of POI distribution on crowd flow (also re-
ferred to as collaborative signals) from a continuous-time perspective poses the
following two challenges: i) The multi-timescale asynchronous dynam-
ics of collaborative signals increase the difficulty of modeling spatio-
temporal dependencies in urban dynamic systems. The evolution of col-
laborative signals occurs across different time scales, with their dynamic changes
unsynchronized. Specifically, changes in low-frequency POI distributions gradu-
ally manifest in the high-frequency crowd flow patterns. This cross-scale influ-
ence is often reflected in significant crowd flow variations across multiple times-
tamps, which significantly increases the difficulty of modeling the multi-scale
asynchronous dynamic and revealing dynamic patterns in a urban system. ii)
The accumulation of spurious correlations between collaborative sig-
nals complicates the identification of true causal relationships in con-
tinuous modeling. POI distribution and urban crowd flow often exhibit statis-
tically spurious correlations, which may mislead the model. From a discrete-time
perspective, spurious correlations can be easily identified and removed through
statistical methods like calculating correlation coefficients or Granger causal-
ity tests [7]. However, in continuous-time modeling, where time is treated as a
continuous variable and dynamics are learned through differential equations[4],
spurious correlations can be amplified during long-term integration. Moreover,
minor perturbations in continuous time can significantly impact the overall sys-
tem, further complicating the accurate identification of true causality.

To this end, we propose a Causal-aware Collaborative Neural Controlled
Differential Equations framework (C3DE) for long-term urban crowd flow pre-
diction. Specifically, we propose a collaborative neural controlled differential
equation (NCDE) with a dual-path architecture to capture the dynamic evolu-
tion of collaborative signals across different timescales in continuous time. With
the continuous-time integration property of NCDE, the asynchronous dynamics
of collaborative signals can be effectively modeled. Furthermore, we design a
counterfactual-based causal effect estimator to simulate urban dynamics under
different POI distribution interventions, enabling a quantitative assessment of
each POI category’s direct impact on crowd flow. To mitigate the accumulation
of spurious correlations among collaborative signals, we incorporate causal effect
values into the NCDE framework and introduce a causal effect-based dynamic
correction mechanism. By computing causal influences across multiple time steps
and feeding them back into POI representations, the mechanism effectively min-
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imizes interference from spurious POIs, alleviates the amplification of spurious
correlations, and enhances the model’s robustness and reliability in the long-term
prediction task.

Overall, our contributions can be summarized as follows:

- To the best of our knowledge, C3DE, is the first to simulate the evolution
of collaborative signals and explore the underlying causal mechanisms for
long-term urban crowd flow prediction.

- We propose a collaborative NCDE with a dual-path architecture to effec-
tively capture the asynchronous evolution of collaborative signals across mul-
tiple timescales.

- We design a counterfactual-based causal effect estimator to quantify the
causal impact of POIs on crowd flow and introduce a causal effect-based
dynamic correction mechanism to reduce the accumulation of spurious cor-
relations.

- Extensive experiments on three real-world datasets demonstrate that C3DE
offers a significant advantage in modeling crowd flow dynamics, particularly
in cities with notable flow fluctuations.

2 Related Work

Urban Crowd Flow Prediction. Recently, urban crowd flow prediction [2,21]
has become a critical research topic, relying on historical flow data and using
Gated Recurrent Unit (GRU) and Graph Neural Networks (GNNs) to learn
spatio-temporal features. Traditional spatio-temporal GNNs, like STGCN [31]
and STSGCN [26], used predefined graph structures to capture spatial depen-
dencies but often fail to capture the hidden ones. To address this, methods based
on adaptive graph structures introduced learnable adaptive adjacency matrices,
enabling capturing the dynamics of node relationships [1,25,30]. In addition, con-
sidering that urban structure, i.e., POI distribution, significantly affect crowd
mobility patterns, some works have incorporated it into flow pattern model-
ing [20,23]. For example, GeoMAN [20] treated POI as a spatial feature to cap-
ture spatial correlations within regions. GSTE-DF [23] utilizes POI data to un-
cover differences and similarities between regions for inferring origin-destination
flows. Although these works achieved some success, they treated POI as a static
feature and ignored the dynamics of POI distribution in cities.

Neural Ordinary Differential Equations. [4] first combined neural net-
works with Ordinary Differential Equations (ODE) and proposed Neural ODEs
to model continuous dynamics, which has been widely used in the fields of
time series prediction [11,16], continuous dynamic systems [12,13]. [10] pro-
posed tensor-based ODEs to capture spatio-temporal dynamics, overcoming the
limitations of graph convolutions in modeling long-range spatial dependencies
and semantic connections. [5] designed two types of Neural Controlled Differ-
ential Equations to handle temporal and spatial dependencies separately. Addi-
tionally, [22] proposed STDDE, which incorporates delayed states into NCDE,
allowing it to model time delays in spatio-temporal information propagation.
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Counterfactual Inference. The main goal of counterfactual inference is to an-
alyze potential outcomes through hypothetical interventions and answer "What
would have happened if the situation had been different?" [3,27]. For exam-
ple, [18] proposed a counterfactual data augmentation-based causal explanation
framework that identifies the true causal factors by constructing counterfactual
data. [24] introduced a counterfactual explanation method based on causal inter-
vention, using a causal director to capture causal relationships in the distribution
and guide counterfactual generation. In this paper, We address the spurious cor-
relations between collaborative signals from a counterfactual perspective.

3 Preliminary

3.1 Definitions and problem statement

Definition 1 (Urban Network). The urban network is represented as a di-
rected graph G = (V,X,A), where V = {V1, V2, ..., VN} denotes N regions in
the city. X ∈ Rt′×N×C denotes the urban crowd flow across N regions at t′ time
steps, where t′ is measured in days and C capturing hourly features. A ∈ RN×N

is the adjacency matrix, which encodes the relationships between regions.
Definition 2 (POI Distribution). The POI distribution is denoted as P ∈
Rt′′×N×K , where t′′ is the time steps, measured in months. K represents the
number of POI categories, such as restaurants, shops and public facilities.
Problem Statement (Long-Term Urban Crowd Flow prediction). Given
the crowd flow for the past T time steps and POI distribution for the past M
time steps, our goal is to learn a map function F(·) that capture the causal
evolutionary relationship and predict the urban crowd flow for the next S time
steps. It can be formulated as follows:

F∗ = argmin
F

∑
S

ℓ(F(Xt′−T+1:t′ , Pt′′−M+1:t′′), Xt′+1:t′+S), (1)

where F∗ denote the function with the learned optimal parameters, and ℓ(·) is
the loss function.

In this work, we divide the map function F(·) into two stages, i.e., a repre-
sentation part F (·) to model the collaborative causal evolutionary relationship
and a predictor G(·) to predict the future crowd flow.

3.2 Neural Differential Equation

Neural ODEs. Neural ODEs [4] extend residual networks into the continuous
time domain. Given the input X, neural ODEs define a hidden state h(t) that
evolves over time t, as described by the following Riemann integral:

h(t) = h(0) +

∫ t

0

dh

dt
dt = h(0) +

∫ t

0

f(h(t), t; θ)dt, (2)
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Input data Causal-Aware Collaborative NCDE for Continuous Modeling 
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Fig. 1: Framework overview of C3DE.

where a neural network f(·) with parameter θ parameterize the derivative of the
hidden state, i.e., dh

dt := f(h(t), t; θ). The evolution process is computed using
ODE solvers, such as the Euler method and Runge-Kutta. To improve efficiency,
the adjoint sensitivity method is often employed to compute the parameter gra-
dients via the adjoint equations, rather than direct backpropagation.
Neural CDEs. Neural CDEs [17] are the extension of neural ODEs. Neural
CDEs introduces an external control signal Xt, which drives the evolution of
the hidden state h(t), making it dependent on both its own dynamics and the
control signal. Specifically, it can be expressed as:

h(t) = h(0) +

∫ t

0

f(h(t), t; θ)dXt, (3)

where Xt is a continuous path defined in a Banach space, representing the ex-
ternal control signal. Different from Eq. 2, it represents a Riemann−Stieltjes
integral, allowing to model the influence of control signal on system’s evolution.

4 Methodology

In this section, we introduce the proposed C3DE framework, as shown in Fig. 1.
It comprises two main modules. The first is the main pipeline of causal-aware col-
laborative neural CDE, which models the continuous evolution of collaborative
signals while uncovering their potential causal impacts. The second is the well-
designed causal effect estimator, consisting of counterfactual data augmentation
and causal dependency mining, designed to explore the causal relationships be-
tween collaborative signals.
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4.1 Dual Neural CDE

We first introduce a naive dual neural CDE as F (·) for modeling both the crowd
flow and the POI distribution data simultaneously. It is formulated as:{

hx(t
′) = hx(0) +

∫ t′

0
f(hx(t), t; θ)dXt, t′ ∈ [0, T ],

hp(t
′′) = hp(0) +

∫ t′′

0
f(hp(t), t; θ)dPt, t′′ ∈ [0,M ],

(4)

where hx(t
′) and hp(t

′′) represent the hidden states of crowd flow and POI distri-
bution at t′ and t′′ respectively, which can be computed by an adaptive step-size
solver or a fixed step-size solver like Runge-Kutta and Euler methods [14]. The
control signals Xt and Pt guide the dynamic evolution process of the dual neural
CDE, which are derived from the urban crowd flow and the POI distribution,
respectively. Given the crowd flow Xt′−T+1:t′ ∈ RT×N×C and POI distribution
Pt′′−M+1:t′′ ∈ RM×N×K , we use the natural cubic spline [5] to create continuous
paths which are needed in a neural CDE for control signals:

Xt = Spline(Xt′−T+1:t′), Pt = Spline(Pt′′−M+1:t′′), (5)

where Spline(·) denotes the natural cubic spline function, which generates con-
tinuous, smooth, and twice-differentiable paths for a given input, ensuring accu-
rate and stable gradient computation.

Exemplification. In Eq.(4), the function f(·), which deals with the spatio-
temporal features of signals, can be applied with any model for processing se-
quential data.

Without loss of generality, we leverage Gated Recurrent Unit (GRU) [6] as
an example to illustrate the derivation of f(·) in Eq.(4). To extend the state
update of GRU to the continuous time domain, we introduce the state change
△ht over the time interval △t, defined as:

△ht = ht − ht−△t = (1− zt)⊙ (h̃t − ht−△t), (6)

where zt and h̃t are the intermediate vectors of GRU. As the time interval △t
tends to 0, it can be transformed into the differential form of continuous time:

dh(t)

dt
= (1− zt)⊙ (h̃t − ht−△t). (7)

Similarly to the GRU model, the state update of any function f(·) for pro-
cessing sequential data can be extended to the continuous time domain.

4.2 Causal-aware Collaborative Neural CDE (C3DE)

Intuitively, there is a tight interaction between long-term evolution of the urban
crowd flow and that of the POI distribution. These mutual causalities result
in the insufficient modeling in the dual neural CDE which deals with the two
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collaborative signals respectively. To explore causal impacts of collaborative sig-
nals, we integrate the causal awareness mechanism and propose the causal-aware
collaborative neural CDE. Regarding the accumulation of spurious correlations
during continuous evolution, we employ a dynamic correction mechanism in F (·)
and rewrite the Eq.(4) to alleviate spurious correlations as follows:{

hx(t
′) = hx(0) +

∫ t′

0
f(hx(t), t; θ)dXt, t′ ∈ [0, T ],

hp(t
′′) = hp(0) +

∫ t′′

0
C · f(hp(t), t; θ)dPt, C ∈ [C1, ..., CL], t′′ ∈ [0,M ].

(8)

where C ∈ RN×K is the causal impact weight, used to correct the biased POI
representations, and L is the number of observation points during the evolution.
We design a counterfactual-based causal effect estimator g(·) to compute C.
Specifically, it takes the hidden states of collaborative signals at observation
points during the evolution as input to quantify:

Ci = g(hx(t
′
i), hp(t

′′
i )), i ∈ {1, ..., L}, (9)

where {t′1, ..., t′i, ..., t′L} ⊂ [0, T ] and {t′′1 , ..., t′′i , ..., t′′L} ⊂ [0,M ] are the evenly
spaced observation time points within their intervals. Ci denotes the causal im-
pact weight of i-th observation point. Next, we introduce the design of g(·).

Counterfactual-Based Causal Effect Estimator. Inspired by the success
of counterfactual data augmentation in natural language processing [35] and
dynamic system [28], we explore the causal impact of POI on crowd flow from
a counterfactual perspective, which aims to answer: "How would crowd flow
change if a certain POI were changed?".

Specifically, the causal effect estimator consists of two modules: counterfac-
tual data augmentation and causal dependency mining.

Counterfactual Data Augmentation. To answer the above question, we
propose a counterfactual data augmentation method based on category-level
perturbation, simulating various scenarios of POI changes. Specifically, given
the POI representation hp(t

′′
i ) ∈ RN×K×H at the i-th observation points, where

H denotes the hidden space dimension, the counterfactual data for the k-th POI
category is constructed as hk

p∗(t′′i ):

hk
p∗(t′′i ) = hp(t

′′
i )⊙Mk, (10)

where Mk is a perturbation matrix, such as zero-setting, random perturbation, or
mean replacement, that controls the category-level perturbation on the k-th POI
category. Take the zero-setting perturbation as an example, the perturbation
matrix Mk can be defined as:

(Mk)n,j,h =

{
0, if j = k

1, otherwise,
(11)

where n is the region index, j is the POI category index, and h is the hidden
space dimension index.
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We can generate a set of counterfactual POI data by applying perturbations
to the K POI categories:

{
h1
p∗(t′′i ), ..., h

k
p∗(t′′i ), ..., h

K
p∗(t′′i )

}
, where each represents

the POI representation under a specific POI category’s perturbation. Next, we
pair the generated counterfactual POI representation hk

p∗(t′′i ) with the crowd
flow representation hx(t

′
i) to obtain K pairs of counterfactual samples Dcf :

Dcf =
{(

hx(t
′
i), h

k
p∗(t′′i )

)
| hk

p∗(t′′i ) ∈
{
h1
p∗(t′′i ), ..., h

K
p∗(t′′i )

}}
, (12)

the unperturbed POI representation hp(t
′′
i ) and hx(t

′
i) are paired to form the

factual sample Dfact:
Dfact = {(hx(t

′
i), hp(t

′′
i ))} . (13)

Causal Dependency Mining. To evaluate the dynamic impacts of collab-
orative signals and reveal their causal dependency, we propose a causal depen-
dency mining module based on factual and counterfactual samples.

We first pre-train a predictor T (·) with the loss function ℓ(·). Notably, T (·)
can be any spatiotemporal model, and here we use MTGNN [29] as the backbone:

T ∗ = argmin
T

ℓ(T (Xt−T+1:t, Pt′−M+1:t′), Xt+1:t+S). (14)

Next, we sequentially input the counterfactual samples into the predictor
T (·) to obtain the counterfactual output Ok

x,p∗ :

Ok
x,p∗ = T (hx(t

′
i), h

k
p∗(t′′i )) ∈ RN , ∀(hx(t

′
i), h

k
p∗(t′′i )) ∈ Dcf . (15)

Meanwhile, we input the factual samples {(hx(t
′
i), hp(t

′′
i ))} ∈ Dfact into the same

T (·) to obtain the factual output Ok
x,p, which is considered as an anchor:

Ok
x,p = T (hx(t

′
i), hp(t

′′
i )) ∈ RN . (16)

We quantify the causal impact of a specific POI category on crowd flow by
the absolute difference between the anchor and counterfactual outputs. For the
k-th category of POI, the causal effect value is computed as followed:

Ck(i) = |Ok
x,p −Ok

x,p∗ | ∈ RN . (17)

A larger causal effect value Ck(i) indicates significant fluctuations in crowd flow
with the changes in k-th POI category, suggesting its key role in flow variation.

To evaluate the causal impacts of all categories, we apply Softmax function
to normalize all causal effect values, obtaining the overall causal effect value at
i-th observation point:

C(i) = Softmax(C1(i), ..., CK(i)) ∈ RN×K . (18)

By performing the above operation at L observation points, we can capture
the dynamic causal impacts of POI on crowd flow.
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4.3 Predictor and Overall Objective

Predictor. Through the modeling process of C3DE, we obtain the crowd flow
representation hx(t

′) and POI distribution representation hp(t
′′), capturing his-

torical evolution and the key causal features for the prediction task. We fuse
their representations to explore the evolution of collaborative signals between
POI and crowd flow, resulting in a comprehensive representation H that cap-
tures the multidimensional features of crowd flow changes:

H = σ(hx(t
′) ·Wx + bx)⊙ (hp(t

′′) ·Wp + bp), (19)

where Wx and Wp are the learnable weight matrices, bx and bp are learnable
bias, and σ(·) denotes the sigmod function.

Subsequently, the fused representation H is fed into a multilayer perceptron-
based predictor G(·) to predict the next S time steps, as shown below:

X̂t+1:t+S = G(H; θg) ∈ RS×N×C , (20)

where X̂t+1:t+S denotes the predicted values.

Overall Objective. Finally, we adopt the Huber loss as the objective function
ℓ(·). Compared to the traditional squared error loss, it exhibits greater robustness
in handling outliers. For simplicity, we use Y and Ŷ to represent Xt′+1:t′+S and
X̂t′+1:t′+S , respectively. The learning objective is expressed as:

ℓ(Y, Ŷ ) =

{
1
2 (Y − Ŷ ), |Y − Ŷ | ≤ δ

δ|Y − Ŷ | − 1
2δ

2, otherwise,
(21)

where δ is a hyperparameter that controls the sensitivity to outliers.

4.4 Complexity Analysis of C3DE

In the solving process of C3DE, we adopt the adjoint sensitivity method [8] to
compute gradients efficiently. Unlike traditional backpropagation, this method
solves an auxiliary adjoint differential equation to trace gradients backward in
time, requiring only the storage of the final state rather than the entire forward
trajectory. This leads to a space complexity of O(N · d), where N denotes the
number of nodes and d is the dimension of the hidden state, significantly lower
than that of standard backpropagation. However, this advantage in space comes
at the cost of additional computation time. Since the adjoint method requires an
extra backward integration, the time complexity is approximately O(2 ·Nfe ·Cf ),
where Nfe is the number of times the CDE solver calls the function f(·), and Cf

is the time cost of the spatio-temporal modeling function f(·). Given that our
task focuses on long-term crowd flow prediction, where prediction accuracy and
stability are prioritized over real-time inference, this trade-off in computation
cost is acceptable. The advantages in storage space and model performance make
our approach both practical and deployable in real-world urban management
applications.
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Table 1: Statistics of urban crowd flow dataset.

Description NYC-1 NYC-2 Beijing
time spanning 2012.06∼ 2014.05 2014.09∼2016.12 2018.07 ∼ 2019.10
# of time steps 16,128 17,424 10,241

# of records 2,322,432 2,787,840 1,894,585
# of nodes 144 160 185

Table 2: Statistics of POI distribution dataset.

Description NYC-1 NYC-2 Beijing
time spanning 2011.10∼ 2014.05 2014.01∼2016.12 2017.10 ∼ 2019.10
# of records 23,040 28,800 32,375
# of nodes 144 160 185
# of types 5 5 7

5 Experiments

5.1 Experimental setup

Dataset. We evaluate the proposed framework on three real-world urban crowd
flow datasets and their corresponding POI datasets: NYC-1 and NYC-2, col-
lected from NYC OpenData1, and Beijing [34]. We summarize the statistics for
three datasets in Table 1 and Table 2.
Baselines. To evaluate the effectiveness of our C3DE, we compare it with the
following baselines:

– Traditional methods: HA predicts future values by averaging historical data
from the same time period. SVR is a regression method based on support
vector machines.

– Discrete methods: STGCN [31] learns spatio-temporal dependencies with a
graph convolutional structure. GWNET [30] uses an adaptive adjacency
matrix to capture hidden spatial dependencies. STSGCN [26] captures
localized correlations via the synchronous mechanism. MTGNN [29] is
a general GNN for modeling multivariate time series. STWave [9] is a
decomposition-based framework that decouples flow using wavelet transform.

– Continuous methods: STGODE [10] extends GNNs with tensor-based ODEs
to build deeper networks. STG-NCDE [5] designs two NCDEs to model
temporal and spatial dependencies. MTGODE [16] uses NODEs and dy-
namic graph structure learning to model continuous dynamics.

Evaluation Metrics. We use Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE) to evaluate per-
formance. Lower values of these metrics indicate better performance.
Implementation Details. We implemented C3DE in PyTorch using the Adam
optimizer with a learning rate lr = 0.001, weight decay of 5 × 10−4, and batch
1 https://opendata.cityofnewyork.us/
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Table 3: Overall performance comparison on three real-world datasets. High-
lighting denotes the best results and bolding denotes the second-best results.

Dataset Method Horizon 7 Horizon 14 Average
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Beijing

HA 289.40 756.21 81.4% 289.40 756.21 81.4% 289.40 756.21 81.4%
VAR 280.41 724.90 74.2% 285.71 731.12 79.5% 283.06 728.01 76.8%

STGCN 271.55 669.84 77.3% 283.85 692.63 80.1% 277.70 681.24 78.7%
GWNET 170.33 414.13 39.0% 208.77 503.38 47.7% 189.55 458.76 43.4%
STSGCN 198.82 507.28 50.7% 221.04 546.77 53.3% 209.93 527.02 52.0%
MTGNN 196.19 483.25 38.9% 232.93 561.09 48.2% 214.56 522.17 43.6%
STWave 212.40 522.14 48.6% 242.89 588.74 54.4% 227.65 555.44 51.5%
STGODE 209.26 498.13 58.1% 234.87 560.02 59.2% 222.07 529.08 58.7%

STG-NCDE 159.56 404.01 39.2% 202.23 491.81 47.0% 180.89 447.91 43.1%
MTGODE 218.85 572.61 75.1% 222.38 594.06 76.4% 220.61 583.33 75.7%

C3DE 117.56 245.20 35.3 % 124.05 248.39 41.9 % 120.81 246.80 38.6 %

NYC-1

HA 39.065 106.79 34.42% 39.065 106.79 34.42% 39.065 106.79 34.42%
VAR 36.186 101.18 32.70% 37.393 104.03 33.80% 36.789 102.60 33.25%

STGCN 28.777 63.783 26.68% 30.316 77.264 26.99% 29.546 70.524 26.84%
GWNET 25.060 60.958 17.40% 24.970 61.039 17.96% 25.015 60.999 17.68%
STSGCN 26.143 62.917 26.19% 26.943 63.592 26.14% 26.543 63.255 26.17%
MTGNN 24.165 57.958 18.94% 24.899 58.121 20.30% 24.532 58.040 19.62%
STWave 24.354 57.839 16.90% 24.824 58.256 17.35% 24.589 58.047 17.13%
STGODE 24.868 58.664 20.01% 25.095 58.777 20.75% 24.982 58.721 20.38%

STG-NCDE 24.693 58.289 19.53% 24.988 58.479 20.52% 24.841 58.384 20.03%
MTGODE 24.141 57.771 16.37% 24.758 57.726 17.06% 24.449 57.748 16.72%

C3DE 23.997 55.598 14.16 % 24.050 56.208 14.31 % 24.024 55.903 14.24 %

NYC-2

HA 24.963 63.686 24.73% 24.963 63.686 24.73% 24.963 63.686 24.73%
VAR 23.908 61.967 16.46% 24.232 62.761 16.22% 24.070 62.364 16.34%

STGCN 19.969 34.225 11.63% 20.619 36.281 11.64% 20.294 35.253 11.64%
GWNET 11.043 27.509 8.73% 11.665 29.120 8.90% 11.354 28.314 8.82%
STSGCN 11.424 27.697 8.84% 11.736 29.163 8.92% 11.580 28.430 8.88%
MTGNN 10.699 26.470 8.18% 11.102 28.049 8.36% 10.901 27.260 8.27%
STWave 10.933 26.074 8.37% 11.676 28.056 8.45% 11.304 27.065 8.41%
STGODE 12.780 28.357 11.55% 12.780 29.633 11.43% 12.780 28.995 11.49%

STG-NCDE 10.876 27.601 8.22% 11.342 28.970 8.78% 11.109 28.286 8.50%
MTGODE 10.545 26.028 8.18% 10.816 28.023 8.33% x10.681 27.026 8.26%

C3DE 10.159 25.619 7.98 % 10.115 27.257 8.07 % 10.137 26.438 8.03 %

size B = 64. The representation size was fixed to 64 for all methods. We set
the historical observation length to T = 14, M = 4, and the future prediction
length to S = 14. For the Beijing, NYC-1 and NYC-2 datasets, we set the
number of observation points to L = 10/8/8, respectively. For counterfactual
data augmentation, we applied zero-setting perturbation by default. We used an
adaptive solver for the Beijing and NYC-2 datasets and the 4th order Runge-
Kutta (RK4) solver with a step size of 1.2 for NYC-1. The codes are available
at https://github.com/Sonder-arch/C3DE.

5.2 Overall Performance

We evaluate C3DE on three real-world datasets for the task of long-term ur-
ban crowd flow prediction, with results in Table 3. We observe: (1) Statistical

https://github.com/Sonder-arch/C3DE
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Fig. 2: Ablation study on Beijing and NYC-2 datasets.

methods HA and VAR perform the worst, as relying solely on historical data
fails to capture complex and dynamic spatiotemporal patterns, leading to sig-
nificant prediction errors. (2) MTGODE performs sub-optimally on the NYC-1
and NYC-2 datasets but experiences a sharp performance drop on the Beijing
dataset. While its continuous-time modeling and dynamic graph structure can
effectively capture long-term dependencies in the stable NYC data, it strug-
gles with the complex temporal dynamics of the more volatile Beijing dataset,
resulting in instability. In contrast, STG-NCDE achieves the second-best perfor-
mance on the Beijing dataset, likely due to its NCDEs-based independent spatio-
temporal modeling, which better captures sudden flow changes and intricate
temporal dynamics. (3) Continuous methods do not always outperform discrete
methods. MTGNN consistently surpasses STGODE across all three datasets,
likely because while STGODE employs a continuous GNN with residual connec-
tions to avoid over-smoothing, it still relies on a fixed graph structure, limiting
its ability to capture potential correlations. MTGNN overcomes this limitation
with node-adaptive graph convolution. (4) C3DE consistently outperforms all
baselines, especially on the Beijing dataset, demonstrating its superior general-
ization and stability. It is due to its ability to uncover complex data changes
through counterfactual inference. When handling highly volatile collaborative
signals, it more accurately models their continuous evolution, demonstrating
stronger robustness and generalization in complex scenarios.

5.3 Ablation Study

In this section, we further validate the effectiveness of the proposed modules in
C3DE, with a particular focus on the continuous modeling and causal mining
modules. Specifically, we design the following variants, and the experimental
results on Beijing and NYC-2 datasets are shown in Fig. 2.

– w/o MS-NCDE : Remove the NCDE continuous modeling module.
– w/o CA-Att : Replacing counterfactual-based causal effect values with atten-

tion mechanism-based values.
– w/o CA: Remove the counterfactual-based causal effect estimator module

totally, only simply fuse POI and flow final representations.
– All : It is our complete framework.

Effectiveness of Dynamic Continuous Modeling. Experimental results
show that w/o MS-NCDE performs the worst across the three datasets, high-
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Table 4: The impact of different counterfactual strategies on Beijing dataset.

Method Horizon 7 Horizon 14 Average
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

baseline (w/o CA) 160.66 291.87 41.8% 182.26 327.58 47.9% 171.46 309.73 44.9%
C3DE-random 123.12 252.36 35.9% 136.08 271.18 42.7% 129.60 261.77 39.3%

C3DE-zero 117.56 245.20 35.3% 124.04 248.39 41.9% 120.81 246.80 38.6%
C3DE-mean 128.53 266.86 36.2% 142.66 278.08 43.4% 135.60 272.47 39.8%

lighting the effectiveness of collaborative NCDE in continuous collaborative sig-
nals modeling. Specifically, collaborative NCDE, formulated as differential equa-
tions, can smoothly capture the fine-grained continuous spatio-temporal evolu-
tion of collaborative signals, thereby effectively learning potential changes be-
yond the observation points.
Effectiveness of Causal Dependency Mining. From the results, we can see
that the All outperforms the w/o CA and w/o CA-Att, which demonstrates the
effectiveness of the counterfactual-based causal effect estimator in capturing and
eliminating spurious correlations. Further, we also find that: first, the w/o CA
variant performs worst among the three variants, indicating that relying solely
on POI distribution for prediction is insufficient. While POI distribution can
partially reflect flow dynamics, not all POI have a substantive causal relation-
ship with crowd flow. Many POIs exhibit only superficial correlations, which
introduce spurious relationships and weaken the model’s expressiveness, lead-
ing to the performance degradation of w/o CA. Second, w/o CA-Att models
collaborative signals based on attention, dynamically assigning weights to POI
distributions to highlight key signals. However, it fundamentally relies on data
correlations, making it challenging to distinguish true causal relationships. Third,
All employs a counterfactual framework for causal inference, capturing more in-
terpretable causal dependencies and mitigating spurious correlations, leading to
superior modeling of collaborative signal evolution.

5.4 The Impact of Different Counterfactual Strategies

In this section, we explore the impact of different counterfactual strategies on pre-
diction performance. Specifically, we employ three strategies: "random", "zero",
and "mean", against the baseline w/o CA, which removes the causal effect es-
timator module. Table 4 presents the results on Beijing dataset, leading to the
following findings: (1) The "zero" strategy performs best. As a stringent inter-
vention, it sets the target POI representation to zero, effectively removing its
feature information to explore its direct causal impact on crowd flow. (2) Unlike
"zero", the "random" strategy introduces random noise to replace the target POI
representation. However, this may introduce uncertainty into the model’s causal
inference process, leading to suboptimal performance. (3) The "mean" strat-
egy averages all POIs representations except the target and uses this average as
its counterfactual representation. However, it achieves the lowest performance,
possibly because the averaged spatial distribution information blurs the target
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Fig. 3: The impacts of Step Size and L on two datasets.

POI’s unique causal effect, making it challenging for the model to capture its
true impact. (4) Notably, all three strategies outperform the baseline "w/o CA",
demonstrating that our framework effectively mines the true causality and thus
enhances performance regardless of the intervention strategy.
5.5 Impacts of Hyper-Parameters

We conduct experiments to validate the impacts of different solvers and the
number of observation points L in the dynamic correction mechanism. First,
we choose the adaptive solver and the commonly used fixed-step RK4 solver
with different step sizes. Note that, smaller step sizes yield finer data fitting. As
illustrated in Fig. 3a and Fig. 3b, the adaptive solver (marked with *) and RK4
solver with a step size of 1.2 perform best on the Beijing and NYC-1 datasets,
respectively. Performance improves as the step size decreases, as larger step
sizes hinder the model to capture precise dynamic changes. However, beyond a
threshold, further reducing the step size offers no gains, as the variation between
each step becomes negligible. Second, the impacts of varying L from 4 to 16 are
shown in Fig. 3c and Fig. 3d. The best results are achieved with L = 10 for
Beijing and L = 8 for NYC-1. A small L limits the model’s ability to detect
and reduce spurious correlations between collaborative signals, while a large L
hinders its capacity to capture dynamic signal variations.

5.6 Visualization of Prediction Results

We conduct a case to demonstrate the advantages of our method over the contin-
uous modeling baseline, STG-NCDE. Specifically, C3DE excels at capturing the
early-stage changes in fluctuations, which are critical for accurate prediction. As
shown in Fig. 4, it can not only accurately identify the growth trend at the be-
ginning of the fluctuation(Fig. 4a) but also capture the subsequent decline(Fig.
4b and Fig. 4c), which is due to C3DE’s ability to accurately model the relation-
ships between collaborative signals. These results indicate that C3DE effectively
captures the dynamic changes in the system, precisely tracks the early stages of
fluctuations, and accurately predicts the future flow variation trends.

6 Conclusion

In this paper, we proposed C3DE, a framework with causal-aware collabora-
tive neural controlled differential equations for long-term urban crowd flow pre-
diction. We first introduced the neural CDE with a dual-path architecture to
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Fig. 4: Visualization of prediction results on the Beijing dataset.

capture the asynchronous dynamic evolution of collaborative signals. Next, we
designed a counterfactual inference-based causal effect estimator to simulate ur-
ban dynamics under different POI distribution scenarios and mine the direct
impact of different POIs on crowd flow. Moreover, we incorporated causal effect
values into neural CDE. By introducing a causal effect-based dynamic correc-
tion mechanism, C3DE can mitigate the accumulation of spurious correlations
among collaborative signals. Extensive experiments on three real-world datasets
demonstrated the significant superiority of C3DE. Future work will focus on en-
hancing causal relationship mining efficiency by integrating causal priors based
on domain knowledge in urban dynamics.
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