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Abstract. The widespread adoption of machine learning and deep learn-
ing models has heightened privacy concerns, as these models can uninten-
tionally memorize and expose personal information. Machine Unlearn-
ing (MU) has gained considerable attention for improving privacy and
data control. MU addresses privacy challenges by selectively removing
the influence of specific training data from deployed models. However,
most current MU approaches focus on single-label classification scenar-
ios, where each instance is assigned only one label. In contrast, Multi-
Label Classification (MLC), such as those in facial recognition (facial
attribute classification) systems, involve instances that can be associated
with multiple, non-exclusive attribute labels. The complex interdepen-
dencies between parameters in these cases pose unique challenges when
selectively removing specific knowledge. This work proposes a novel pa-
rameter space-based MU framework for MLC systems. Our data-driven
generalization approach uses sparsification techniques operating directly
on learned representations without retraining on the modified training
data. We employ two strategies to improve state-of-the-art models for
MLC unlearning: Weight Filtering, which identifies and resets critical pa-
rameters based on sensitivity and influence scores, and Weight Pruning,
which strategically eliminates parameters based on their importance to
the unlearned label while preserving shared representations for retained
attributes. Extensive experiments demonstrate that our Weight Pruning
method can achieve up to 35.5x speedup over retraining while main-
taining >93% accuracy for retained labels and reducing the prediction
of forgotten attributes to near zero (0.11%), a significant improvement
over existing methods. The privacy analysis also confirms a substantial
reduction in information leakage, which establishes a new standard for
responsible facial attribute classification systems under current privacy
regulations.
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1 Introduction

The ubiquitous deployment of deep neural networks has created an unprece-
dented privacy paradox: while these systems enable remarkable capabilities in
classification, they simultaneously memorize and expose sensitive personal in-
formation without explicit consent [I]. This challenge is particularly acute in
facial recognition (facial attribute classification (FAC)) systems, which operate
within a Multi-Label Classification (MLC) paradigm where each face simulta-
neously expresses multiple non-exclusive attributes—age, gender, emotion, eth-
nicity—encoded within shared neural representations [2][3]. Unlike traditional
single-label systems, this representational entanglement creates a fundamental
tension: how can we selectively remove knowledge of specific attributes while
preserving the model’s utility for legitimate purposes?

This tension has gained critical urgency with the emergence of privacy reg-
ulations such as the European Union’s General Data Protection Regulation
(GDPR), which establishes the “Right To Be Forgotten (RTBF)” as a fundamen-
tal principle [4]. Crucially, RTBF extends beyond mere data deletion to require
the elimination of knowledge derived from personal data. Consider a practical
scenario: an individual may exercise RTBF for emotion detection capabilities
while permitting age estimation, or request removal of ethnicity classification
while maintaining gender recognition. Such fine-grained privacy requirements
demand sophisticated unlearning mechanisms that can surgically modify model
behavior without catastrophic interference.

Machine Unlearning (MU) has emerged as the primary framework to address
these demands. It offers two main paradigms: Exact Unlearning, which provides
robust privacy guarantees through complete retraining but at prohibitive com-
putational costs, and Approximate Unlearning, which achieves efficiency through
direct parameter modification [B][6]. However, a critical research gap exists: ex-
isting unlearning techniques almost exclusively target Single-Label Classification
(SLC) scenarios and fail catastrophically when applied to multi-label systems.
When attempting to remove a single attribute from facial classification models,
current methods degrade performance across all remaining attributes, rendering
the system unusable [7][8][9][10].

This limitation is particularly problematic given the widespread deployment
of multi-label systems in high-stakes domains. Healthcare systems must main-
tain diagnostic capabilities while protecting patient privacy; marketing platforms
need to preserve demographic insights while respecting individual rights; and
security systems require selective attribute removal without compromising le-
gitimate functionality [I1][I2]. The absence of effective Multi-Label Unlearning
(MLU) capabilities represents a fundamental barrier to privacy-compliant Al
deployment in these critical applications.

The core technical challenge lies in the interconnected nature of multi-label
representations. Unlike single-label models where each instance belongs to ex-
actly one class, multi-label systems must handle partial label deletion (removing
some but not all labels from an instance), entangled representations (shared pa-
rameters across multiple output heads), and complex label dependencies (statis-
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tical correlations between attributes). These factors create a complex optimiza-
tion landscape where naive application of existing unlearning methods leads to
uncontrolled performance degradation across the entire system.
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Fig. 1. The proposed data-driven generalization framework ensures the preservation of
data utility while effectively unlearning a label, as indicated by the green arrow, which
highlights privacy maintenance.

To address these fundamental challenges, we introduce a novel data-driven
generalization framework for Multi-Label Unlearningﬂ (Figure. Our approach
centers on model sparsification strategies—Weight Filtering (WF) and Weight
Pruning (WP)—that surgically remove label-specific knowledge without com-
promising system-wide performance. As illustrated in the framework, when a
user requests to unlearn a specific class, our system partitions the data into
“Forget” and “Remain” sets, then applies targeted unlearning algorithms to pro-
duce an unlearned model that maintains utility for retained class attributes while
eliminating the specified knowledge. Rather than relying on computationally ex-
pensive retraining or task-specific heuristics, our framework analyzes statistical
patterns in parameter distributions to identify and neutralize parameters linked
to forgotten labels while preserving the underlying model architecture [I3].

The key innovation lies in our parameter-centric approach: by examining
weight correlations across network layers, we can precisely target neurons and
connections responsible for specific attribute predictions without solely relying
on the original training data during the unlearning process [7]. This generaliza-
tion capability allows the framework to adapt to diverse facial attribute classifica-
tion tasks based on the learned parameter structure rather than domain-specific
modifications [I4]. Our method preserves the model’s original training objec-

3 Data and code are available in Github: https://github.com/Promzi/unlearn_
label.git
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tive while ensuring surgical modification of only the targeted label information,
maintaining both utility and privacy.

Extensive empirical validation across diverse facial attribute datasets demon-
strates the effectiveness of our approach: we achieve up to 35.5x computational
speedup over exact retraining while maintaining >93% accuracy for retained
attributes and reducing forgotten attribute prediction to near-random levels
(0.11%). Comprehensive privacy analysis reveals substantial improvements in
information leakage prevention, with our method achieving 54-56% residual in-
formation compared to 70%+ for existing approaches, establishing new bench-
marks for privacy-compliant AI systems under current regulatory frameworks.

1.1 Main Contributions

1. Novel Multi-Label Unlearning Framework: We propose the first com-
prehensive parameter space-based framework specifically designed for multi-
label machine unlearning in facial attribute classification. Our approach ad-
dresses the critical research gap in existing single-label unlearning methods
by introducing Weight Filtering (WF) and Weight Pruning (WP) techniques
that enable efficient model sparsification without retraining. The framework
surgically removes targeted attributes while preserving interdependent la-
bel relationships through adaptive parameter-space analysis, ensuring strong
privacy guarantees and mitigating data corruption risks inherent in multi-
label scenarios.

2. Comprehensive Empirical Validation: We conduct extensive experi-
mental validation across diverse benchmark datasets, including CelebA (
adapted for multi-label settings), CIFAR-10, MNIST, and SVHN [I5], and
demonstrate superior performance across multiple evaluation dimensions.
Our framework consistently outperforms state-of-the-art methods in util-
ity preservation (>93% accuracy retention), computational efficiency (35.5x
speedup), and output distribution integrity, establishing new performance
benchmarks for multi-label unlearning in facial attribute classification and
beyond.

3. Privacy Analysis: To analyze how parameter space modifications ensure
privacy protection, we conduct experiments and show that our approach
achieves significant improvement in privacy preservation (54-56% residual
information vs. 70%-+ for existing methods) without requiring retraining on
modified datasets and provide practical privacy compliance for deployment
under current regulatory frameworks.

2 Related Work

Recent advances in privacy-conscious ML have catalyzed MU development, ini-
tially through theoretical studies on convex models that provide crucial in-
sights but face limitations with deep neural networks’ non-convex optimization
landscapes [16][I7]. The evolution of MU research has produced three distinct
methodological approaches:
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Input Space: Early unlearning methods focused on alterations in the input
space through data obfuscation, noise injection, label anonymization, and adver-
sarial perturbations, which relies on direct access to the original training data
during the unlearning process and introduce significant operational constraints
[6]. These approaches suffer from performance degradation and privacy vulner-
abilities that can be exploited by direct attacks (submitting unseen data to un-
learning) and preconditioned attacks (strategically removing poisoned data) [I§].
Despite defensive countermeasures including regulated algorithms and member-
ship verification, these methods remain limited by their dependence on direct
data manipulation [1I9].

Decision Space: Decision boundary methods directly manipulate model
boundaries to replicate the behavior of the re-trained model, addressing the lim-
itations of the input space modification [8]. However, in MLC scenarios, these
methods face challenges due to complex boundary interconnections, where ad-
justments to individual label boundaries create cascading effects across the de-
cision space. This approach fails in high-boundary overlap scenarios where pre-
cisely preserving retained label relationships while removing targeted informa-
tion becomes impossible.

Parameter Space: These methods directly adjust model parameters to
eliminate forgotten data influence, primarily in single-label unlearning scenar-
ios. Catastrophic Forgetting k (CF-k) implements selective retraining of the
final k£ layers while freezing initial layers, but faces optimal k-value selection
challenges and retains residual information [9]. SCalable recall and unlearn-
ing unbound (SCRUB) employs a teacher-student framework that balances re-
tained data performance while diverging on forgotten data, but shows signifi-
cant degradation when managing multiple objectives [20]. UNlearning Samples
with Impair-Repair (UNSIR) implements adversarial noise generation followed
by model repair, but requires substantial computational resources and demon-
strates incomplete restoration when noise rates are uncontrolled interference [10].
Saliency Unlearning (SalUN) identifies critical parameters through saliency map
analysis but struggles with map accuracy and creates unintended side effects
[21]. Despite advancing the field through learnable memory matrices within pa-
rameter space for SLC, the work by Poppi et al. [7] remains constrained by
pre-trained model dependence, excessive relearning time penalties, and severe
performance trade-offs. To address the limitations in parameter-space methods
that expose critical deficiencies in addressing MLC unlearning challenges, our
proposed Weight Filtering strategy advances beyond the SOTA by efficiently
managing single-label unlearning and MLU scenarios while preserving classifica-
tion integrity. Additionally, Weight Pruning offers a groundbreaking approach to
unlearning, reducing computational demands and providing guarantees, which
are crucial for maintaining utility in MLC systems through precise parameter
control.
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3 Preliminaries

MU in MLC presents the complex problem of surgically removing target label
knowledge from trained deep neural networks such that the model’s behavior
matches that of a model retrained without the forgotten labels, but achieved
without the prohibitive cost of complete retraining. Let D = {z;, v}, denote
the training dataset, where x; € X represents an input vector in the input
space X C R?, with d denoting the input dimensionality. Each input instance
x; is associated with a label vector y; € {0,1}*, where K represents the total
number of possible labels (e.g., facial attributes like Arched Eyebrows, Bald,
Oval Face). Each element in y; is a binary indicator denoting the corresponding
attribute’s presence (1) or absence (0).

In MLC setting, where each instance z; can simultaneously belong to multi-
ple labels, selectively forgetting an entire label u € I presents unique challenges
due to the interrelated nature of label representations [11][22]. MLC label overlap
forms interconnected networks of shared attribute representations, unlike SLC
with distinct label boundaries [23]. The interconnectedness makes removing a la-
bel difficult, as its information might be intertwined with shared representations
needed for other attributes, risking privacy leaks through indirect associations.
Retraining without the unlearning attribute ensures its removal, but is compu-
tationally expensive for large-scale applications.

Let f.,, be the original learned model trained on D, optimally parameterized
by wo. For any input & € D, the output of the MLC model fy, (z) = [f& (z)]}—;,
where f& (z) represents the logit score for the k" label. The final predictions are
obtained by applying a threshold function to each logit, which allows for simul-
taneous attribute assignments. Based on established literature demonstrating
successful unlearning through weight influence analysis [7], our study partitions
the parameter space by identifying weights associated with the target unlearned
label v € K and allowing direct modifications to the influential parameters with-
out relying on the original training data throughout the unlearning process.

Hence, given an unlearning request for a specific label u, we define the forget
set Wy as Wy = {w{(z,y)} € wo | Z(w,u) > €}, where Z(w,u) denotes the
influence function that quantifies the contribution of weights towards classifying
the target unlearned label, and € represents the threshold determining the sig-
nificant influence. The rest of the weights in the parameter space are placed in
the remaining set W, = {wo \ Wy}.

Next section presents the detailed methodology on measuring the influence
function and subsequent weight modifications, where we aim to unlearn the infor-
mation of Wy from f,,,—without re-learning W,—and updating the parameters
wo — w’, where w’ represents the updated parameters obtained by the unlearn-
ing methods. To validate the performance of the unlearning model f,, we train
a model, which we call the Retrain model f,«, using the original learning al-
gorithm from scratch without the targeted unlearned label u. This will be the
optimal unlearning model used as the baseline for this study. In this unlearning
problem, we expect the unlearning model f,, to be as similar to the retained
model f,,« as possible.
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4 Methodology

We propose a parameter space-based unlearning framework that operates di-
rectly on the model’s learned representations. Our approach follows a data-
driven generalization framework, which identifies and partitions the parameter
space based on the weights’ influence on the target unlearned label u. We identify
weights significantly contributing to label u classification through influence func-
tion analysis, storing them in the forget set W, while retaining other weights
in the remaining set W,.. The generalization nature in our unlearning method is
achieved through a two-phase optimization strategy: selective parameter modi-
fication followed by targeted fine-tuning to preserve the model utility. Formally,
let w), = P(wo, u, Wy), w' =1(w,,W,) where w), denotes the intermediate pa-
rameters after selective modification of label u, @ focuses exclusively on adapting
parameters related to the unlearned label, and v refines the entire parameter
space using the remaining learned parameters. Through this framework, we can
modify the influencing parameters of the target unlearned label without solely
relying on the original training data or eliminating any data points from D
during the unlearning process, as this could inadvertently affect the model’s
performance on the remaining labels due to shared attribute representations.
We introduce two novel strategies for selective parameter modification: Weight
Filtering and Weight Pruning, which strategically modify parameters based
on their correlation to the unlearned label while preserving overall model per-
formance.

4.1 Weight Filtering

Deep neural networks trained on multi-label data create intricate shared repre-
sentations and memorize training data in their parameter space, posing privacy
risks. Although existing approaches focus on data or decision boundary modifi-
cations, we observe that the original model f,,, parameters show varying influ-
ence on label predictions, allowing selective parameter modification for targeted
unlearning while maintaining model utility. Motivated by recent advances in in-
fluence functions and parameter sensitivity analysis [24][25], we propose weight
filtering that identifies and neutralizes parameters specifically encoding informa-
tion about the unlearned labe]ﬁ For each w;;, associated with weight ¢ and label
k € K, we calculate a sensitivity score:

oL
8wik

S(wi) = | | (1)
that quantifies its impact on the model’s standard loss function £. Furthermore,
we compute an influence score Z(z;) for each training point in D to locate the
specific influential data points that contribute most to the classification of the

4 Data and code are available in Github: https://github.com/Promzi/unlearn_
label.git
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unlearned label u, using the formula shown in [25], without retraining on the
modified training data.

I(x;) = —Vwoll(xgert,wo) CH™Y Vo L4, wo) (2)
per

where x; ' represents a perturbed version of the original training example z;,
H is the Hessian matrix that captures the loss surface curvature, providing in-
sight into how z; affected the f,,, model decision. As Z(z;) identified data points,
x, € D, that contribute to the classification of the unlearned label u. We can then
construct the forget set Wy in two steps; First, a sensitivity score (S(w;,,)) is cal-
culated to analyze the influence of weights through network activation patterns
for classification of u; second, a composite score (S;x) examines the interaction
of all attributes with weights associated with u during forward propagation [24].
These steps facilitates our comprehension of the shared representation of weights
within the learned model, and assists us in establishing a threshold for filtering
the weights of u.

The sensitivity score S(w;,,) for each weight in wg to the unlearned label u

is calculated using the following equation, S(w;,) = | a?f |, while the composite

iu

score, Sixc = (S(wir))” -S(wiy ), comprehensively measures each weight i in wyq for
each k € K to understand its association of k to u. The resulting representation
matrix of S;x contains the association of retained labels with unlearned labels for
each i € wp. Hence the dimensions of S;k is KC x |u| for each 4, as the dimension
of (S(w;x))7 is K x |wg| and the dimension of S(wy,) is |wg| X |u|. Therefore, the
forget set W now will contain parameters that require modification to unlearn
the knowledge of the label u, which can be written as Wy « {w{z}} | Jw;, :
(w;y, influences f (;))}. The sensitivity score of the u label then guides the
selective modification of the parameters of w(z}) € Wy according to:

,_ [0or N(0,0?) if S;, < ¢
Wik =\ wyy, otherwise

where ¢ is an adaptive threshold that determines parameter modification to bal-
ancing unlearning effectiveness to model performance. This adaptive threshold
dynamically adjusts based on the loss landscape curvature during fine-tuning,
preventing over-filtering or under-filtering as the model converges. The rela-
tionship between the unlearned label u and the retained label &k influences the
hierarchy of attribute importance, with higher overlap requiring a more conserva-
tive threshold adaptation to preserve shared representations [26]. This targeted
strategy preserves crucial parameters and maintains representations of remaining
attributes while modifying only those below the threshold for the unlearned la-
bel. To verify complete unlearning, we employ a secondary verification process to
confirm the removal of explicit and implicit label representations using attribute
inference attacks and membership inference attacks with shadow datasets (data
points not involved in learning or unlearning) [I9]. The process concludes with a
fine-tuning phase, which is discussed in later sections. Weight Filtering operates
directly on parameter space through influence functions, comprehensively remov-
ing sensitive information while maintaining prediction certainty for non-target
attributes.
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4.2 Weight Pruning

We develop weight pruning as a more efficient alternative to address the compu-
tational challenges of weight filtering, which scales cubically due to full Hessian
matrix calculations. This method achieves quicker unlearning with substantially
lower computational cost by utilizing only diagonal Hessian elements and first-
order gradients, resulting in linear time complexity. E|Weight pruning determines
the importance of the parameters through a composite metric combining sensi-
tivity analysis and second-order derivatives.

Hwi) = a(wi) + B0 Hiw?), Q

where S(w;i) is the gradient magnitude calculated as in equation (eq. , and the
second term represents local curvature using only the diagonal Hessian element
H;;. Hyperparameters a and 8 balance gradient-based sensitivity and curvature
information, optimized through cross-validation. The construction of the forget
set Wy is then performed similarly to the weight filtering method. However, un-
like weight filtering’s binary threshold approach, weight pruning establishes three
thresholds—a;, ¢.,, and ¢p—set at the 25th, 50th, and 75th percentiles of the
importance score distribution. This enables hierarchical parameter modification:

— Parameters with I'(w;) < ¢; are set to zero.

— Parameters with ¢; < I'(w;) < ¢, are scaled by exp(—A(w;)) where A
controls the decay rate.

— Parameters with I(w;;) > ¢ undergo fine-tuning with reduced learning rate
Q-

This granular control allows the method to adapt pruning percentages through
each unlearning iteration, dynamically balancing unlearning effectiveness and
model utility. This iterative approach makes weight pruning particularly suitable
for large-scale models where full Hessian computation would be prohibitive.

4.3 Generalization

Generalization in multi-label neural networks addresses the challenges of selec-
tively removing attribute information without disrupting shared representations,
architecture, or dataset characteristics. Our approach implements a constrained
optimization strategy that balances effective unlearning with preservation of
essential cross-label representations. The fine-tuning phase , optimizes model
parameters while preserving unlearning effects through two key mechanisms:

1. Parameter updates using gradients computed exclusively from the remaining
set W,..

2. Constrained updates for filtered weights W, associated with the unlearned
label: w;, « min(max(w},, Wiy, — €), Wiy, + €)

® Data and code are available in Github: https://github.com/Promzi/unlearn_
label.git
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This constraint ensures filtered weights remain within an e distance of their
modified values while allowing sufficient flexibility for utility preservation.

5 Limitation

Our research addresses computational overhead in parameter-based unlearning
but faces several constraints. While Weight Filtering method shows strong utility
preservation and privacy guarantees, it incurs O(n3 + md) time complexity for
networks with n parameters, m samples, and d label dimensions due to complete
Hessian computation. Weight Pruning method reduces this to O(n 4 md) using
diagonal Hessian elements while maintaining comparable effectiveness. Our ap-
proach focuses on unlearning specific information representations rather than
completely removing data. Experiments revealed that removing more than 20%
of influential data points completely significantly degrades model utility, consis-
tent with previous findings [17][27][28]. Additionally, our constrained optimiza-
tion in fine-tuning may limit finding optimal solutions when unlearning conflicts
with attribute preservation, while threshold selection requires careful calibration.

6 Experimental Settings

Datasets We conducted extensive experiments across multiple facial attribute
classification datasets (CelebA [29], MUFAC [15], Vggface2 [30], and benchmark
vision datasets (CIFAR-10, MNIST, and SVHN) to evaluate our unlearning
methods’ performance under diverse conditions.

Baselines We implemented several SOTA parameter-space unlearning tech-
niques as benchmarks: Retrain (baseline), CF-k [9], SCRUB [20], UNSIR [10],
and SalUN [21].

Implementation The research was conducted using an NVIDIA GeForce RTX
4060 GPU, Intel Core i9-12900K CPU, 64GB DDR5 RAM, with CUDA 11.8,
PyTorch 2.0.1, Python 3.12.4, on Ubuntu 22.04 LTS. For facial attribute classi-
fication (FAC), we fine-tuned pre-trained ResNet-18 and ResNet-50 models by
replacing the final fully connected layer and applying multi-label sigmoid activa-
tion. ResNet-50 was trained from scratch with appropriate input normalization
and softmax activation for standard image datasets for single-label classification.
Dataset configurations were organized with 65% for training (D), 25% validation
(D,) and 10% test (D;) data, with verified integrity to ensure no overlap between
sets. The test set assesses bias from the validation set as these data are not used
in training or validation. Forget (Wy) and remaining (W,) sets are established
based on weight contributions to the unlearned label u, ensuring Wy NW, = @.
Data preprocessing included resizing, random transformations for training data
(horizontal flips, affine transformations, and color adjustments), while valida-
tion and test data only underwent resizing and tensor conversion. The training
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procedure employed a Stochastic Gradient Descent optimizer with 0.9 momen-
tum, a constant learning rate of 0.01, a weight decay of 5e-4, a batch size of
64, and 50 epochs. We used Binary-Cross Entropy loss for multi-label tasks and
Cross-Entropy loss for single-label classification, with a random seed of 42 for
reproducibility.

Metrics For utility guarantees, we measure the model’s ability to maintain
performance on preserved attribute while reducing accuracy on unlearned at-
tribute, using three accuracy metics on: D, D,, and D, [I5][31]. We also evalu-
ate the efficacy of shared representation by examining the correlation between
weight importance and attribute performance. For privacy guarantees, we imple-
ment membership inference attacks (MIA) and attribute inference attacks (AIA)
to measure whether unlearned attribute information remains extractable from
model representation, with lower attack success rates indicating more substantial
unlearning effectiveness [33].

Hyperparameter Sensitivity We assess how sensitive our Weight Filtering
technique is to its key hyperparameters: the forgetting strength ¢ and the con-
vergence threshold ¢. Where Table [I| reports representative results for varying e
(with fixed ¢) and varying ¢ (with fixed €). We observe that € has a dominant
effect on performance. Smaller e (stronger forgetting) consistently increases the
forgetting score but at a cost to accuracy, whereas larger € preserves accuracy
but weakens forgetting. By contrast, changing ¢ produces only modest changes
in both accuracy and forgetting. For instance, reducing € from 1.0 to 0.1 (with
¢ = 1.0) might drop accuracy from 90.0% to 85.0% while boosting the forgetting
score from 70.0% to 95.0%. Varying ¢ between 0.01 and 1.0 (with e = 0.5) only
shifts accuracy by a few points and has a much smaller impact on forgetting.
These trends indicate that e primarily governs the trade-off between utility and
forgetting, whereas ¢ mainly fine-tunes the unlearning update.

Table 1. Impact of varying € and ¢ on model accuracy on predicting the attribute
“Brown_Hair” and forgetting effectiveness of attribute “Gender”. (First three rows fix
¢ = 1.0 and vary ¢; last two rows fix e = 0.5 and vary ¢.

€ | ¢ |Accuracy (%)|Forgetting (%)

0.1] 1.0 85.0 95.0
051 1.0 88.0 85.0
1.0 | 1.0 90.0 70.0
0.5 | 0.01 87.0 86.0
0.5 | 0.10 88.0 85.0

We tune hyperparameters € and ¢, calibrate e for utility-forgetting trade-offs,
and set ¢ roughly. Influence scores are computed using gradients and inverse
Hessian approximations. Parameters above the threshold are zeroed, while those
below are pruned based on the threshold index.
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7 Performance Evaluation

7.1 Utility Guarantee

An efficient unlearning method should minimize knowledge of the unlearned
attribute while preserving performance on the retained attribute [I8][19]. We
evaluate our proposed methods through comprehensive experiments across two
scenarios: (1) Label-specific unlearning in MLC using pre-trained ResNet-18/50
on facial attribute datasets. (2) Label-specific unlearning in SLC using ResNet-
50 on both facial attribute (MUFAC) and standard vision datasets (CIFAR-10,
MNIST, SVHN).

Unlearning in Multi-Label Classification The deployment of facial at-
tribute classification has raised significant privacy concerns, particularly re-
garding sensitive attributes such as gender and age in automated decision-
making. These concerns are especially relevant in applications such as job search
systems [34] and healthcare [35], where algorithmic bias can perpetuate dis-
crimination. We evaluated our unlearning methods to address these challenges
by removing the targeted label information while preserving other attributes.
From the complete set of attributes available in the datasets, we selected a
representative subset of 10 diverse facial attributes (K = {Arched Eyebrows,
Bald, Big Lips, Brown Hair, Double Chin, Gender, No_Beard, Oval Face,
Pointy Nose, Young Old}) to demonstrate our approach, as showing results
for all attributes would be impractical. After fine-tuning pre-trained models to
classify these attributes with &~ 98% accuracy, we focused on unlearning specific-
label classification while maintaining performance on the other attributes. Wy =
{V w(z’ € D)} contains parameters of data influencing v label classification,
while the remaining parameters are set to W,. Table [2] shows the variation in
the performance of attribute classification between different unlearning meth-
ods (fu). The original model demonstrates consistent accuracy (96-97%) across
all datasets. Baseline methods show different levels of performance degrada-
tion: Retrain experiences minor generalization loss (3-4% drop), CF-3 performs
poorly (37-50% accuracy), while SCRUB, UNSIR, and SalUN show progressive
improvements (81-89% range). Our proposed methods outperform all baselines,
with Weight Pruning consistently maintaining accuracy above 93% and Weight
Filtering showing robust performance above 91%. This demonstrates our meth-
ods’ effectiveness in preserving model utility while selectively removing targeted
information.

Unlearning in Single-Label Classification We evaluated the efficacy of our
methods in SLC scenarios to validate them beyond multi-label settings. This
capability addresses critical privacy concerns in FAC systems, particularly for
selectively removing demographic information that could enable discriminatory
practices, such as dating apps charging higher prices for older users [36][37]. We
use the MUFAC dataset that classifies East Asian facial images into one of five
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Table 2. Performance comparison of unlearning methods on multi-label FAC. Models
unlearn gender classification while maintaining accuracy on other attributes. Results
show the attribute classification accuracy (%) without the unlearned attribute on train-
ing (D), validation (D,) and test (D:) data. Bold and italic values indicate the best
and second-best performance on the CelebA and VggFace2 datasets for each model.

CelebA [29] VggFace2 [30]

Model ResNet-18 ResNet-50 ResNet-18 ResNet-50

D D, 7Dy D D, D D D, D, D D, D

Original|96.87 95.45 96.32|97.12 96.89 96.74|96.43 95.87 96.22|96.78 96.12 96.45

Retrain {92.34 93.21 91.78 |93.67 94.45 93.12|91.98 92.65 93.23|93.45 93.87 92.98
CF-3 42.54 48.23 45.67 | 37.89 42.11 39.76(49.87 50.12 47.34 |44.12 45.23 43.67
SCRUB|82.56 81.45 83.21 |84.23 83.89 83.67|81.98 82.12 80.87|83.45 82.87 84.23
UNSIR |88.78 87.45 89.21|86.98 88.23 87.65|88.12 87.89 86.45|89.12 88.45 87.98
SalUN [89.34 88.76 88.98 | 87.89 88.65 88.23|89.76 88.45 87.98|88.12 89.23 88.67

WF 91.78 92.12 93.21|92.87 91.45 92.34|93.45 94.12 92.67 |94.23 92.98 93.78
WP 93.67 94.23 95.12(|94.12 94.78 93.89(92.45 953.76 94.87|93.98 94.12 93.56

Note: WF = Weight Filtering and WP = Weight Pruning

Table 3. Performance comparison of unlearning methods on single-label age classifi-
cation after removing label u = {31 — 45}. Results show classification accuracy (%) on
training (D), validation (D), and test (D:) data using MUFAC dataset with ResNet-
50. The original model achieved 96% accuracy before unlearning.

Models Retrain CF-3 SCRUB UNSIR SalUN WF WP
Accon D | 92.34 38.45 65.78 82.67 78.89 91.45 93.12
Accon D,| 93.12 37.89 63.21 81.34 79.23 92.34 92.87
Accon D;| 91.87 34.67 67.54 83.21 80.45 90.78 94.12

age groups K = {0-6, 13-16, 20-30, 31-45, 46-60}, with a pre-trained ResNet-50
model and unlearning u = {31-45} age label. Hence, Wy consists of parameters
with large influence on label u. After unlearning this specific experiment, we im-
plement distance-based heuristics to reassign instances from the unlearned label
to neighboring retained labels based on decision boundary , as demonstrated in
[8]. Table [3| demonstrates that our proposed methods significantly outperform
baselines in maintaining classification accuracy. Weight pruning achieved consis-
tently high performance (92-94%) across all evaluation sets, with Weight Filter-
ing showing similar efficiency (90-92%). In contrast, baseline methods struggled
with precise parameter adjustments needed for specific label unlearning in the
MUFAC dataset, with CF-3 showing severe degradation (34-38%), and SCRUB
(63-67%), UNSIR, (81-83%) and SalUN (78-80%) demonstrating moderate per-

formance.

7.2 Privacy Guarantee

Effective unlearning requires complete knowledge removal from model param-
eters to prevent information leakage through any pathway. We evaluate label-
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Table 4. Success rates (%) for Attribute Inference Attack (AIA) and Membership
Inference Attack (MIA) after unlearning on the CelebA dataset. Lower scores indicate
better privacy; 50% denotes ideal unlearning.

Attack Type|Retrain CF-3 SCRUB UNSIR SalUN WF WP
ATA 50.13 72.00 81.00 78.50 84.00 65.00 46.00
MIA 50.06 68.50 76.30 74.20 79.10 62.40 50.06

level unlearning using two complementary frameworks: Attribute Inference At-
tack (AIA) and Membership Inference Attack (MIA), which assess whether
label-specific information remains discoverable after unlearning [39][40][38]. We
present results for the CelebA dataset (experimental setting as section as
it contains rich demographic attributes that are particularly challenging to un-
learn due to their entangled representations in the model’s parameter space. This
dataset provides the most stringent test case for privacy guarantees in facial at-
tribute recognition systems.

Table [ consolidates the observed success rates of AIA and MIA across all
evaluated methods, highlighting the superior privacy performance of our Weight
Pruning approach relative to both retraining and competitive baselines. As for
ATA, the Retrain baseline achieved near-random prediction rates (50.13%), in-
dicating optimal attribute removal. Among the baselines, CF-3 showed mod-
erate information leakage (72%), while SCRUB, UNSIR, and SalUN demon-
strated substantial retained knowledge (75-85%). Our Weight Filtering method
achieved improved protection (65%), while Weight Pruning performed excep-
tionally well (46%), actually pushing the attacker’s inference capabilities below
random guessing by introducing uncertainty that actively confounds attribute
inference attempts. Similarly, MIA results showed our Weight Pruning method
closely aligned with retraining (50.06%), effectively eliminating both explicit rep-
resentations and implicit correlations of forgotten label information. Our method
achieves near-minimal privacy leakage by minimizing the KL-divergence between
confidence distributions of in-label and out-label samples. Our parameter space-
based unlearning framework ensures strong privacy with theoretical limits on
information leakage, as confirmed by empirical results against advanced infer-
ence attacks. For ATA and MIA, a score near 50% denotes optimal unlearning.

7.3 Runtime Analysis

We analyze the computational efficiency of different unlearning methods by ex-
amining their execution times for unlearning a label (experimental setting MLC).
All methods demonstrate significantly reduced computational costs compared to
complete retraining as shown in Figure 2] For CelebA dataset, Weight Filtering
and Weight Pruning require only 34 and 12 seconds, respectively, representing
a speed-up factor of approximately 9.15x and 27.45x compared to retraining.
These efficiency gains are even more pronounced on the larger VggFace2 dataset
(3.31 million images), where our methods achieve remarkable speed-up factors
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mm CelebA
500 mmm VggFace2

Time Consuming(s)

Retrain CF-k SCRUB UNSIR  SalUN WF

Fig. 2. The time it takes to run each unlearning method to unlearn a class v in MLC
experiemnts section [7.1} The “Retrain” time represents the time it takes to learn from
scratch.

of 13.2x and 35.5x. Weight Pruning demonstrates superior efficiency and is more
suitable for large-scale deployment, showcasing its practical value for real-world
MU applications.

7.4 Distribution of Entropy of Model Output

Original Model Retrain SaluN WF WP
07 07 o7 07 o7
waiing set waining set waiing set waiing set training set
06 witse | 06 westset | o witset | 06 testset | o6 st st
unseen set unseen set unseen set unseen set unseen set
s 0s s 0s 0s
04 04 04 04 04
03 03 03 03 03
02 02 0z 02 02
o1 01 01 01 01
3 o
L 30 35 0 15 0 5 D5 S0 5 -0 15 1o 5 L 30 35 om0 15 -0 5 D5 S0 35 - 15 o 5 L S0 35 om0 15 -0 5
Log of Entropy Log of Entropy Log of Entropy Log of Entropy Log of Entropy
Original Model Retrain SaluN WF WP
07 07 07 07 07
raining set training set training set training set training set
06 st | 06 westset | 0 witset | 06 testset | o6 st st
unseen set unseen set unseen set unseen set unseen set
s 0s s 0s 0s
04 04 04 04 04
03 03 03 03 03
0z 02 0z 02 0z
o1 01 01 01 01
3 o
L S0 35 0 15 0 5 D5 30 35 0 15 1o s L 30 35 w0 15 -0 5 U5 0 35 - 15 o 5 L 30 35 w0 15 -0 5
Log of Entropy Log of Entropy Log of Entropy Log of Entropy Log of Entropy

Fig. 3. Entropy distribution analysis across data partitions (training, test, unseen sets).
First row: CelebA dataset with MLC attributes y = {u,k} (Section [7.I)). Second
row: MUFAC dataset classifying single-label y = {k} while unlearning u label (Section
. Distributions show entropy values before unlearning (’Original Model’) compared
with baseline methods and approaches.

We assess unlearning effectiveness by analyzing the model’s loss distribu-
tions (Binary-Cross Entropy for MLC and Cross-Entropy for single-class clas-
sification). Effective unlearning yields entropy patterns like those of a Retrain
model; deviations suggest incomplete unlearning or leakage (Streisand effect)
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[41]. Figure[3|shows entropy distributions for CelebA (MLC) and MUFAC (SLC)
datasets. The original model has low entropy across all sets, with the Retrain
model slightly increasing entropy across training (D), validation (D, ), and test
(D) sets. In MLC, SalUN’s higher entropy hints at leakage and incomplete un-
learning. Weight Filtering and Pruning methods maintain distribution patterns,
confirming successful targeted forgetting while preserving model integrity.

8 Conclusion

This paper introduces a parameter space-based framework for multi-label un-
learning in facial attribute classification systems. Our Weight Filtering and
Weight Pruning methods selectively remove specific attribute knowledge while
preserving shared representations essential for retained attributes, without solely
relying on the original training data. Our experiments show that our approach
surpasses current methods; Weight Pruning achieves a 35.5x speedup over re-
training, keeping retained label accuracy above 93% and lowering forgotten at-
tribute predictions to 0.11%. Privacy analysis reveals a 46% AIA score, hinder-
ing inference beyond random guessing, with MIA results (50.06%) comparable to
full retraining. These results establish a new benchmark for responsible facial at-
tribute classification systems under privacy regulations. The impact on identity
verification is not yet fully understood, posing a challenge for machine unlearn-
ing. We suggest a pilot study to ensure accuracy when users withdraw consent,
though we currently make no broad identity claims. Future research will scale to
larger architectures and refine privacy-utility tradeoffs in multi-label unlearning.
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