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Abstract. Graph learning for urban region modeling has gained significant at-
tention for leveraging multi-modal data to generate region representations for
downstream task prediction. However, existing models face two key limitations:
(1) they primarily adopt a global perspective, overlooking the joint modeling of
both local and global aspects, and (2) they rely on redundant, low-information
nodes, leading to suboptimal region representations. To address these challenges,
we propose GraphJCL, a dual-perspective framework that models both local and
global perspectives. Specifically, GraphJCL first constructs local graphs for indi-
vidual regions and a global graph encompassing all regions, integrating POI, taxi
flow, remote sensing, street view, and road network data. Additionally, GraphJCL
employs specialized message-passing mechanisms to efficiently capture both lo-
cal and global graph node representations. Furthermore, GraphJCL incorporates
entropy-optimized graph node pruning, retaining only the most informative nodes
to enhance final region representations. To ensure the effectiveness of the de-
signed dual-perspective graph framework, GraphJCL introduces a joint contrastive
learning approach, optimizing region representations through geography-driven,
entropy-optimized, and mutual information-based optimization techniques. Ex-
tensive experiments on two real-world datasets across five modalities demonstrate
that GraphJCL consistently outperforms state-of-the-art methods on three tasks,
validating its flexibility and effectiveness.

Keywords: Urban region representation · Graph neural networks · Joint con-
trastive learning.

1 Introduction

Graph learning [7,18,32] for urban region representation leverages multi-modal data,
including Points of Interest (POI), taxi flow, remote sensing imagery, street view im-
agery, road network data, and socioeconomic indicators, to generate embeddings that
effectively capture cross-modal relationships and semantic structures. These embed-
dings facilitate various downstream tasks, such as check-in prediction [9], crime fore-
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Fig. 1. An illustration of local and global graph construction using two regions. The local graph
for each region is modeled independently, containing only nodes and intra-region edges within
itself. In contrast, the global graph spans both regions, incorporating nodes from both, intra-region
edges (solid lines), and inter-region coarse-grained modality connections edges (dashed lines).

casting [19], and traffic crash prediction [5], thereby supporting smart urban optimiza-
tion [11]. Despite the effectiveness of existing graph learning methods, two key limi-
tations persist. First, neglecting joint region modeling of local and global aspects.
Local region modeling integrates multi-modal data within a specific region to cap-
ture localized information. However, global modeling simultaneously incorporates both
intra-region information and inter-region interactions but does not explicitly model in-
dividual regions in isolation. Ideally, local and global modeling should work in tandem
to produce a comprehensive urban region representation. However, existing methods
predominantly focus on global modeling while often neglecting the independent local
modeling of individual regions. For instance, methods such as [2,29,30,32] construct a
global heterogeneous graph where region representations are optimized jointly, without
an independent process for learning region-specific embeddings. Second, reliance on
redundant, low-information nodes. Many existing methods rely on excessively redun-
dant, low-information nodes to generate final region representations, which negatively
impacts representation quality. For example, [28] directly averages the representations
of all modality nodes to obtain the final region representation, while [7] averages the
representations of all modality nodes and modality-type nodes to produce the final rep-
resentation. These methods fail to prune low-information nodes, resulting in graphs that
include numerous redundant nodes. This lack of refinement leads to inefficient represen-
tation learning and ultimately hampers the overall performance of final representations.
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To address these limitations, we propose GraphJCL, a dual-perspective graph-based
framework that models both local and global perspectives. It integrates five modalities:
POI, taxi flow, remote sensing imagery, street view imagery, and road network data,
categorized into coarse-grained and fine-grained types based on their characteristics.
(1) Coarse-grained modalities capture region-level urban functions by aggregating raw
data into representative vectors. POI data is clustered by category to reflect commercial
activity, taxi flow is aggregated over time to represent mobility patterns, and remote
sensing imagery provides a macro-level view of land use and urban structure. (2) Fine-
grained modalities capture spatial topology and local environmental structures. Street
view imagery consists of diverse location-specific images, while road network data rep-
resents individual road segments with distinct positions and attributes.

Based on this modality classification, GraphJCL constructs both local graphs for
individual regions and a global graph encompassing all regions, as illustrated in Fig. 1.
Specifically: (1) Local graphs connect each region node to its aggregated POI, taxi flow,
and remote sensing imagery vector nodes, along with multiple street view images nodes
and road network elements nodes, capturing both functional and spatial characteristics.
(2) The global graph establishes inter-region edges only between coarse-grained region
nodes (POI, taxi flow, remote sensing) and region boundary nodes, while fine-grained
nodes remain unconnected to prevent edge explosion and unnecessary computational
overhead. This structure ensures effective inter-region interactions while keeping the
graph compact and efficient. Additionally, GraphJCL introduces specialized message-
passing mechanisms to capture local and global graph node representations effectively.
Furthermore, GraphJCL incorporates entropy-optimized graph node pruning to retain
high-information nodes while eliminating redundant ones, ensuring the generation of
effective region representations. Finally, to ensure that our designed dual-perspective
graph framework functions effectively and draws inspiration from contrastive learn-
ing [14,25], GraphJCL employs a joint contrastive learning approach to optimize lo-
cal region representations from three views, ultimately generating the final region rep-
resentation. Specifically, it refines region representations using geography-driven and
entropy-optimized techniques and integrates global region representations through mu-
tual information-based optimization. These three aspects work together to collectively
enhance region representations. In summary, our key contributions are as follows:

– We propose GraphJCL, a dual-perspective graph-based framework, as the first to
jointly model both local and global perspectives for urban region representation.

– GraphJCL constructs local graphs for individual regions and a global graph en-
compassing all regions. It employs tailored message-passing mechanisms to effec-
tively capture both local and global node representations, enabling joint modeling
of regional structures. Additionally, it integrates graph node pruning and attention
mechanisms to derive more efficient and informative region representations.

– GraphJCL introduces a joint contrastive learning approach, incorporating geography-
driven and entropy-optimized contrastive learning techniques, as well as mutual
information-based optimization, to refine and enhance region representations.

– Extensive experiments on two real-world datasets spanning five modalities demon-
strate that GraphJCL outperforms state-of-the-art methods across three downstream
tasks, highlighting its flexibility and effectiveness.
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2 Related Work

Graph Representation for Multi-Modal Data Graph embedding for multi-modal
data aims to learn low-dimensional vector representations of graph nodes from diverse
data sources. Recent advances in graph neural networks (GNNs) have significantly
improved these representations. For instance, HetCAN [31] enhances heterogeneous
graph representation by incorporating both type-aware and dimension-aware encoders.
These GNN-based approaches have gained substantial attention for their effectiveness
in multi-modal data representation learning [10,21]. Early methods employed taxi flow
patterns to define graph edges [18,23], whereas more recent studies integrate spatial
and socio-environmental attributes into heterogeneous graphs for comprehensive urban
modeling [7,32,33]. Additionally, graph contrastive learning has shown great poten-
tial in urban representation tasks [29]. These approaches highlight the effectiveness of
graph-based multi-modal learning for urban region modeling.

Urban Region Representation Learning Urban region representation learning mod-
els can be categorized based on the number of modalities they utilize. Some approaches
focus on single-modal data. For instance, [18] leverages taxi data to model urban re-
gion embeddings, capturing vehicle movement patterns to reflect the semantic charac-
teristics of urban areas. Similarly, [6] primarily utilizes Points of Interest (POI) fea-
tures for region representation learning, while [22] employs satellite imagery, lever-
aging large-scale models to enhance final region representations. Other studies adopt
multi-modal data to construct richer and more comprehensive urban region representa-
tions [9,24,26,27,30]. For example, [27] introduces a multi-view joint learning frame-
work that integrates taxi data, POI data, and check-in records, effectively capturing
cross-modal correlations to model urban regions from multiple perspectives. From a
methodological perspective, some studies employ attention mechanisms for modality
fusion [8,15,20], while others utilize graph-based approaches for urban region represen-
tation learning [7,32]. Our framework utilizes five modalities in a graph-based structure
with contrastive learning, effectively capturing effective urban region representations.

3 Preliminaries & Problem Statement

Definition 1 (Urban Regions (U)). An urban area is partitioned into N non-overlapping
regions, denoted as U = {U1, U2, . . . , UN}. Each Ui has a geographical boundary.

Definition 2 (Coarse-Grained Modalities (CM)). A modality is considered coarse-
grained if it captures region-level urban functional attributes, allowing its data within
a region to be aggregated into a single vector representing overall urban functionality.
The coarse-grained modalities CM used are as follows:

– Point-of-Interest (POI) (P): POI data reflects the commercial activity of a region.
Each region Ui is associated with a vector Pi = {Pi1, Pi2, . . . , PiK}, where Pij

denotes the count of POIs in category j within region Ui. The K represents the top
K POI categories with the highest occurrence frequency across all regions.
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Fig. 2. The framework: (a) GraphJCL constructs local graphs for individual regions and a global
graph for all regions. (b) GraphJCL introduces tailored message-passing mechanisms to capture
local and global graph node representations. (c) GraphJCL employs entropy-optimized graph
node pruning and modality-aware attention mechanisms to derive effective region representa-
tions. (d) Geography-driven, entropy-optimized, and mutual information-based contrastive tech-
niques jointly enhance local region representations to generate the final region representations.

– Taxi Flow (T F): Taxi flow captures mobility patterns within a region. Each region
Ui is associated with a vector TF i = {TF i1, TF i2, . . . , TF iT }, where TF ij rep-
resents the taxi flow count in region Ui during the j-th time period. The T represents
the total number of periods (e.g., hours in a month), depending on the dataset.

– Remote Sensing Imagery (RS): Remote sensing imagery provides a macro-level
view of land use and urban structure within a region. Each region Ui is associated
with a remote sensing image RSi.

Definition 3 (Fine-Grained Modalities (FM)). A modality is considered fine-grained
if it captures spatial topology and local environmental structures within a region, mean-
ing that its data points exhibit significant variability and cannot be effectively aggre-
gated into a single vector representation.
The fine-grained modalities FM used are as follows:

– Street View Imagery (SV): Street view imagery captures local visual characteris-
tics of urban regions through numerous spatially distributed images. Each region Ui

contains a collection of street view images, denoted as {SV i1, SV i2, . . . , SV i|SVi|},
where SV ij represents the street view image with index j within region Ui.

– Road Network (RN ): The road network captures the topological structure of ur-
ban regions. Each region Ui contains a collection of road network elements, de-
noted as {RN i1, RN i2, . . . , RN i|RN i|}, where RN ij represents a road segment
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or junction with index j within region Ui. The category index RNSij specifies the
type of road element (e.g., trunk road or motorway).

Definition 4 (Downstream Tasks (Y )). Downstream tasks refer to socio-economic
and environmental indicators in urban contexts. For urban area U withN regions , the
L task targets are represented as Y ∈ RN×L. This paper focuses on three downstream
tasks, check-in counts, crime incidents, and traffic crash counts, where L = 3.

Definition 5 (Problem Statement: Urban Region Representation). Given urban re-
gions U along with their associated coarse-grained modalities CM and fine-grained
modalities FM, the objective is to learn a low-dimensional representation Hi ∈ Rdout

for each region Ui. These embeddings H = {H1, H2, . . . ,HN} are used to predict
downstream tasks Y .

4 Methodology

In this section, we introduce GraphJCL, a dual-perspective graph-based framework for
urban region representation. Its key components are illustrated in Fig. 2.

4.1 Local-Global Graph Construction
In this subsection, to achieve joint region modeling of local and global aspects, we
construct a local graph for each individual region and a global graph for all regions.

Local Graph Construction For each region Ui, we construct a local heterogeneous
graph Gi = (Vi, Ei) to capture its intrinsic features without influence from other regions.
Specifically, the node set Vi consists of six types of nodes:

– Region: A node Ui representing the geographic boundary of the region.
– POI: A node Pi representing aggregated POI data.
– Taxi Flow: A node TF i representing aggregated taxi mobility patterns.
– Remote Sensing: A node RSi capturing macro-level land use and urban structure.
– Street View Imagery: A set of nodes {SV i1, SV i2, . . . , SV i|SVi|} representing

localized street-level visual environmental features.
– Road Network: A set of nodes {RN i1, RN i2, . . . , RN i|RN i|} representing the

topological structure of road segments and junctions.

The edge set Ei consists of five types of edges, defining relationships between the
region node Ui and other modality nodes:

– U_has_P: An edge (Ui, Pi) that connects the region node to the POI node.
– U_has_T F : An edge (Ui, TF i) that connects the region node to the taxi node.
– U_has_RS: An edge (Ui, RSi) that connects the region node to the remote sensing

imagery node.
– U_has_SV: A set of edges (Ui, SV ij), where j = 1, 2, . . . , |SVi|, that connect the

region node to all street view images nodes.
– U_has_RN : A set of edges (Ui, RN ij), where j = 1, 2, . . . , |RN i|, that connect

the region node to all road network elements nodes.

Based on the local graph construction method above, N local graphs Gi, where i =
1, 2, . . . , N , can be constructed for urban regions U1, U2, . . . , UN , respectively.
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Global Graph Construction For all regions Ui ∈ U , i = 1, 2, . . . , N , we construct a
global graph G = (V, E), which includes all nodes and edges from the local graphs
G1, . . . ,GN . Additionally, it introduces four extra types of edges that capture inter-
region relationships, based on region nodes U and coarse-grained modalities: POI (P),
Taxi Flow (T F), and Remote Sensing (RS). Fine-grained modalities Street View (SV)
and Road Network (RN ), do not establish inter-region edges, as they primarily capture
local environmental and topological features within a region. The four types are:

– U_sim_U : A set of edges (Ui, Uj) connecting region nodes whose geographical
boundaries are adjacent, where i, j = 1, 2, . . . , N and i ̸= j.

– P_sim_P: A set of edges (Pi, Pj) connecting POI nodes based on cosine semantic
similarity across regions, where i, j = 1, 2, . . . , N and i ̸= j.

– T F_sim_T F : A set of edges (TF i, TF j) connecting taxi flow nodes based on
cosine mobility similarity across regions, where i, j = 1, 2, . . . , N and i ̸= j.

– RS_sim_RS: A set of edges (RSi, RSj) connecting remote sensing nodes based
on cosine satellite similarity across regions, where i, j = 1, 2, . . . , N and i ̸= j.

4.2 Graph Node Representation

This subsection introduces the initialization of node representations for different modal-
ities, followed by our designed message passing mechanisms for iterative updates.

Node initialization for each modality

– Region (U): An undirected graph is constructed with all region geographic bound-
ary Ui, i = 1,2,...N and edges connecting adjacent regions. The initialization vector
u
(0)
i ∈ Rdin for Ui is derived using the Node2Vec algorithm [3].

– Remote Sensing Imagery (RS): The initialization vector rs(0)i ∈ Rdin for each
RSi is obtained by applying the EfficientNet-B4 model [16].

– Point-of-Interest (POI) (P): The initialization vector p(0)
i ∈ Rdin for each Pi is

generated by setting K = din.
– Taxi Flow (T F): The initialization vector tf (0)

i ∈ Rdin for each TF i is computed
by setting T = din.

– Street View Imagery (SV): The initialization vector sv
(0)
i,j ∈ Rdin is obtained

for each street view image SV i,j , where j = 1, 2, . . . , |SVi|, by leveraging the
CLIP-ViT-B/32 model [13].

– Road Network (RN ): The initialization vector rn
(0)
i,j ∈ Rdin is generated for

each road network element RN i,j , where j = 1, 2, . . . , |RN i|, by employing an
embedding technique [12].

Local Graph Message Passing Mechanism For each local graph Gi in region Ui, the
nodes include the region node Ui, POI node Pi, taxi flow node TF i, remote sensing
node RSi, street view node SV ij , and road network node RN ij . Their node repre-
sentations at the l-th layer are denoted as u

(l)
i , p(l)

i , tf (l)
i , rs(l)i , sv(l)

ij , and rn
(l)
ij , re-

spectively, with initial embeddings defined as previously described. To capture region-
specific features without interference from other regions, message passing in the local
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graph occurs only between nodes within the same region. Specifically, the node repre-
sentations are updated at the l-th layer according to the following GNN update rule:

u
(l)
i = σ

 ∑
m∈{p,tf,rs}

Wmm
(l−1)
i +

∑
m∈{sv,rn}

|Mi|∑
j=1

Wmm
(l−1)
ij

 ,

m
(l)
i = σ

(
Wuu

(l−1)
i

)
, m ∈ {p, tf, rs},

m
(l)
ij = σ

(
Wuu

(l−1)
i

)
, m ∈ {sv, rn}, j = 1, 2, . . . , |Mi|,

(1)

where σ is the activation function, and Wm and Wu are learnable. The final layer out-
puts are denoted as ui, pi, tf i, rsi, svij , and rnij , all of which belong to Rdin .

Global Graph Message Passing Mechanism For the global graph G = (V, E), the
nodes in region Ui include the region node Ui, POI node Pi, taxi flow node TF i, re-
mote sensing node RSi, street view node SV ij , and road network node RN ij . The node

representations at the l-th layer are u(l)
i , p(l)

i , tf
(l)

i , rs(l)i , sv(l)
ij , and rn

(l)
ij . Each vector

lies in Rdin and is initialized as previously described. The global graph captures region
representations through interactions across regions. Message passing between regions
occurs only for coarse-grained modalities, while fine-grained modalities focusing on
local topology do not exchange information across regions. The sets NU

i and Nm
i de-

note neighboring region nodes and same-modality neighboring nodes across regions,
respectively, and σ is the activation function. Specifically, the node representations are
updated at the l-th layer according to the following GNN update rule:

u
(l)
i = σ

 ∑
m∈{p,tf,rs}

Wmm
(l−1)
i +

∑
m∈{sv,rn}

|Mi|∑
j=1

Wmm
(l−1)
ij +

∑
j∈NU

i

Wuuu
(l−1)
j

 ,

m
(l)
i = σ

Wuu
(l−1)
i +

∑
j∈Nm

i

Wmmm
(l−1)
j

 , m ∈ {p, tf, rs},

m
(l)
ij = σ

(
Wuu

(l−1)
i

)
, m ∈ {sv, rn}, j = 1, 2, . . . , |Mi|,

(2)
where Wm, Wuu, Wu, and Wmm are learnable weight matrices. The final layer outputs
are denoted as ui, pi, tf i, rsi, svij , and rnij , all of which belong to Rdin .

4.3 Entropy-Optimized and Multi-Modal Region Representation

To eliminate redundant low-information nodes, we propose an entropy-optimized graph
node pruning mechanism. Specifically, we compute each node’s entropy based on its
graph node representation. High-entropy nodes, which carry more informative content,
are preserved, while low-entropy redundant nodes are discarded. To obtain region rep-
resentations, we design a modality-aware attention mechanism to dynamically adjust
each modality’s contribution, ensuring an effective multi-modal region representation.
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Entropy-Optimized Graph Node Pruning Mechanism To enhance efficiency and
reduce redundancy, we perform entropy-optimized graph node pruning on both the lo-
cal and global graphs. (1) In the local graph, Gi, a large number of street view im-
ages nodes SV ij are present, with each node represented as svij ∈ Rdin. Here, j =
1, 2, . . . , |Mi|. To assess the informativeness of each node SV ij , we first normalize
its feature vector as svnorm

ij,f =
|svij,f |∑din

f=1 |svij,f |
to ensure proportional scaling. We then

compute its entropy H(SV ij) and sampling probability P (SV ij) as:

H(SV ij) = −
din∑
f=1

svnorm
ij,f log(svnorm

ij,f ), P (SV ij) = H(SV ij)/

|SVi|∑
j=1

H(SV ij). (3)

Then existence of node SV ij follows a Bernoulli distribution, SV ij ∼ Bern(P (SV ij)).
Nodes with higher entropy values, and consequently higher P (SV ij), are more likely
to be retained, while low-entropy nodes are pruned. The retained nodes are selected
based on the sampling ratio ε. The sampled street view node representations, where
each is svij ∈ Rdin , are averaged to derive an embedding svi ∈ Rdin for region Ui.
Similarly, an embedding for the road network is obtained as rni ∈ Rdin .

(2) In the global graph, G, a large number of fine-grained street view images nodes
and road network elements nodes are present in the region Ui. Applying the same prun-
ing strategy as in the local graph, we retain high-entropy nodes and average their repre-
sentations to obtain the final embeddings svi, rni ∈ Rdin for region Ui.

Modality-Aware Attention Mechanism To effectively capture the varying contribu-
tions of different modalities, we apply a modality-aware attention mechanism in both
the local and global graphs. (1) In the local graph, Gi of region Ui, modality represen-
tations are denoted as mi ∈ Rdin , where m ∈ {u,p, tf , rs, sv, rn}. Since different
modalities contribute unequally to the final region representation, an attention weight
vector wm ∈ Rdin is learned for each modality to capture its importance. The modality-
specific representation is computed as mattn

i = σ(wm ⊙ mi), where ⊙ denotes
element-wise multiplication and σ is an activation function. To refine the information,
a linear transformation [17] is applied, followed by an autoencoder [1] with a hidden
dimension of dhid, producing the final local modality representation mfinal

i ∈ Rdout .
(2) In the global graph G, modality representations in region Ui are given by mi ∈

Rdin , where m ∈ {u,p, tf , rs, sv, rn}. Applying the same modality-aware attention
mechanism, we derive the final global modality representation as mfinal

i ∈ Rdout .

Local-Global Region Representation We compute coarse-grained, fine-grained, and
overall local region representations HCM

i ,HFM
i ,H local

i ∈ Rdout and global repre-
sentation Hglobal

i ∈ Rdout as described below:

HX
i = Mean

(
{mfinal

i | m ∈ X}
)
, X ∈ {CM,FM, local},

CM = {p, tf , rs}, FM = {sv, rn}, local = {u,p, tf , rs, sv, rn},

Hglobal
i = Mean

({
mfinal

i | m ∈ {u,p, tf , rs, sv, rn}}
})

.

(4)
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4.4 Joint Contrastive Learning

To effectively learn multi-modal region representations within our dual-perspective lo-
cal and global graph framework, we introduce a joint contrastive learning approach that
optimizes H local

i from three views.

Geography-Driven Contrastive Learning with HCM
i The coarse-grained local re-

gion representation HCM
i captures functional attributes with strong geographical con-

tinuity. Since neighboring regions exhibit similar coarse-grained representations, we
apply contrastive learning by treating geographically adjacent regions, such as Uj , as
positive samples and non-adjacent regions, such as Us, as negative samples. To refine
the final region representation, we replace HCM

i with H local
i ,γ is a margin hyperpa-

rameter and ∥ · ∥2 represents the L2 norm, the contrastive loss is defined as follows:

LCM = max
(
∥H local

i −HCM
j ∥2 − ∥H local

i −HCM
s ∥2 + γ, 0

)
. (5)

Entropy-Optimized Contrastive Learning with HFM
i The fine-grained local region

representation HFM
i captures spatial topology and local environmental structures. Due

to high variability across regions, all regions except the target are treated as negative
samples, with positive samples drawn from the region’s own fine-grained data. During
graph node pruning, a different sampling ratio ε1. is used to obtain H̃

FM
i , which serves

as a positive sample. To refine the final representation, H local
i replaces HFM

i . τ is the
temperature hyperparameter. The entropy-optimized contrastive loss is:

LFM =

N∑
i=1

[
− log exp

(
H local

i · H̃FM
i

τ

)

+ log

exp

(
H local

i · H̃FM
i

τ

)
+
∑
j ̸=i

exp

(
H local

i ·H local
j

τ

)], (6)

Mutual Information-Based Optimization with Hglobal
i The global region repre-

sentation Hglobal
i and the local region representation H local

i capture complementary
perspectives from the same regional data. To integrate global information into H local

i ,

we maximize the mutual information I(H local
i ,Hglobal

i ) = E
[
log

pl,g
i

pl
ip

g
i

]
, where pl,gi ,

pli, and pgi represent the joint and marginal distributions of the local and global represen-
tations, respectively. The mutual information is optimized by minimizing the following
contrastive loss, with λ as a hyperparameter:

LMI = −
∑
i

pl,gi

[
log pl,gi − λ

(
log pli + log pgi

)]
. (7)
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Table 1. Dataset statistics. * denotes model training data, and # denotes downstream task data.

U∗ P∗ T F∗ RS∗ SV∗ RN ∗ Crime# Crash# Check-in#

NYC 180 20872 848006 180 20698 13200 77701 14564 329153
CHI 77 36963 922746 77 36179 56005 91252 109645 167222

Training. The final objective function is defined as:

L = LCM + LFM + LMI . (8)

The enhanced local region representation, H local
i , learned jointly through L, serve as

the final region embeddings Hi ∈ Rdout. H = H1,H2, . . . ,HN corresponds to the
urban regions U = U1, U2, . . . , UN and is used for predicting downstream tasks Y .

5 Evaluation

5.1 Experimental Setup

Datasets and Metrics. We conduct experiments on two real-world urban datasets from
New York City (NYC) and Chicago (CHI) [7,24,28], which provide region-level infor-
mation U along with five heterogeneous modalities: Points of Interest (POI) P , taxi flow
T F , remote sensing imagery RS, street view data SV , and road network topology RN .
These multimodal datasets support three representative downstream tasks: check-in pre-
diction, crime forecasting, and traffic crash prediction. The detailed dataset statistics are
summarized in Table 1. To comprehensively evaluate prediction performance, we adopt
three widely used metrics: Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and the Coefficient of Determination (R2). These metrics jointly assess both
the accuracy and robustness of the model across different predictive tasks.

Baselines. To evaluate the performance of GraphJCL, we compare it with seven base-
line models: i) GraphST [29], a spatiotemporal graph learning model designed for
self-supervised learning; ii) ReCP [9], a pipeline for consistent representation learning
across diverse views; iii) HREP [32], a framework leveraging heterogeneous region em-
bedding with prompt learning; iv) HAFusion [15], which applies a dual-feature attentive
fusion module to capture higher-order correlations within and across region features; v)
UrbanVLP [4], integrating multi-granularity macro (satellite) and micro (street-view)
information; vi) MuseCL [24], a multi-semantic contrastive learning framework for
fine-grained urban region profiling; and vii) GURPP [7], a graph-based urban region
pretraining and prompting framework for improved representation learning.

Parameter Settings For experiments in NYC and CHI, the input and output dimen-
sionality (din and dout) of all modalities is consistently set to 168. Models for both cities
are optimized using Adam optimizer with a learning rate of 0.001 and weight decay of
0.01, and trained for a maximum of 50 epochs. The batch size is configured as 180 for
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NYC and 77 for CHI. The hyperparameters for contrastive learning are as follows: the
margin hyperparameter γ and the temperature hyperparameter τ are both set to 2 and
0.1, respectively, for both cities. The parameter λ is set to 8 for NYC and 7 for CHI.

5.2 Overall Performance

Table 2 presents a performance comparison of baseline models across three tasks in two
cities. Since different region representation models utilize different modality sets UM,
a total of ten modality sets are employed in the regional representation models reviewed
in this paper, as detailed in the header of Table 2. Among these, UM1, UM2, UM3,
and UM4 correspond to modality sets used by existing models, while the remaining six
are novel modality sets introduced by our model. (1) High Flexibility and Effective-
ness: On existing modality sets, GraphJCL outperforms baseline models across all tasks
and cities, highlighting its effectiveness in capturing regional representations from both
local and global perspectives. Moreover, its support for ten modality sets demonstrates
superior flexibility. (2) Adaptability to Novel Modality Sets: GraphJCL consistently
performs well across all ten modality sets, proving its adaptability to diverse data distri-
butions and robustness with novel modality sets. (3) Effective Modality Information
Utilization: The modality sets (UMi, i = 3, 4, 5, 6, 7) are derived by sequentially
removing RN , SV , P , T F , or RS from the full set (P, T F ,RS,SV,RN ). The per-
formance decline of GraphJCL when excluding any modality underscores its capability
to effectively leverage each modality and integrate their distinct information features.

5.3 Ablation Study

To assess the contributions of different modules in our model, we evaluate five vari-
ants of GraphJCL: i) w/o NP: Removes entropy-optimized graph node pruning. ii)
w/o MA: Removes the modality-aware attention mechanism. iii) w/o LCM: Removes
geography-driven contrastive learning. iv) w/o LFM: Removes entropy-optimized con-
trastive learning. v) w/o LMI : Removes mutual information-based optimization. Exper-
imental results are shown in Table 3. The results show that GraphJCL outperforms all
variants, highlighting the importance of its key modules. Notably, removing entropy-
optimized local graph node pruning (w/o NP) causes the largest performance drop,
emphasizing the importance of selecting high mutual-information nodes. Omitting the
modality-aware attention mechanism (w/o MA) also reduces performance, underlining
the need for modality weighting in final region representations. Finally, removing any
of the contrastive learning components (w/o LCM, w/o LFM, or w/o LMI ) leads to
performance degradation, highlighting the significance of joint contrastive learning.

5.4 Hyper-parameter Study

We conduct a detailed analysis of two key hyper-parameters that significantly influence
the model’s performance: the sampling ratio ε used in the entropy-optimized graph
node pruning module, and the hidden dimension dhid employed in the modality-aware
attention mechanism, both introduced in subsection 4.3. The effects of these hyper-
parameters are illustrated in Fig. 3, where model performance is evaluated using the
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Table 2. Performance comparison of baseline models across three tasks in two cities. UM rep-
resents the corresponding modality set used by each model. A total of 10 modality sets are uti-
lized across all models, as listed below: T M = (P, T F ,RS,SV,RN ), UM1 = (P, T F),
UM2 = (RS,SV), UM3 = T M\RN (i.e., T M excluding RN ), UM4 = T M\SV (i.e.,
T M excluding SV), UM5 = T M \ P (i.e., T M excluding P), UM6 = T M \ T F (i.e.,
T M excluding T F ), UM7 = T M \RS (i.e., T M excluding RS), UM8 = (P, T F ,RN ),
UM9 = (RS,SV,RN ).

Model UM

NYC

Check-in Crime Crash

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

GraphST[29] UM1 1501.3 2838.2 0.284 316.04 496.41 0.103 30.855 42.633 0.162
ReCP[9] UM1 823.4 1404.6 0.719 183.74 280.56 0.498 33.518 43.110 0.226
HREP[32] UM1 1122.6 1745.4 0.566 201.69 308.86 0.391 26.859 34.483 0.505
HAFusion[15] UM1 1051.7 1709.0 0.584 188.15 299.60 0.427 25.177 32.566 0.558
UrbanVLP[4] UM2 1508.5 2652.6 0.286 195.30 404.53 0.395 38.421 50.695 0.183
MuseCL[24] UM3 1479.3 2781.6 0.313 278.28 394.83 0.433 33.977 44.077 0.104
GURPP[7] UM4 900.3 1356.0 0.738 194.64 280.50 0.498 30.194 41.764 0.274

UM1 747.5 1269.6 0.771 165.33 251.80 0.595 26.987 34.771 0.497
UM2 610.1 1072.8 0.836 167.19 270.28 0.534 27.672 35.732 0.468
UM3 613.0 1117.1 0.822 162.73 257.18 0.578 26.106 34.869 0.495
UM4 691.5 1248.9 0.778 158.35 246.95 0.611 26.861 36.399 0.448
UM5 684.4 1142.5 0.814 164.67 258.01 0.575 23.199 30.542 0.612

GraphJCL UM6 683.8 1135.7 0.816 170.37 275.84 0.514 22.498 29.430 0.639
UM7 683.7 1103.7 0.827 176.39 276.10 0.513 22.891 29.979 0.651
UM8 770.5 1320.5 0.752 172.18 266.48 0.546 23.027 29.908 0.628
UM9 676.7 1142.9 0.814 177.99 264.27 0.554 24.481 31.482 0.587
T M 676.2 1027.0 0.850 158.20 235.26 0.647 22.829 29.733 0.632

Model UM

CHI

Check-in Crime Crash

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

GraphST[29] UM1 2066.7 5281.3 0.545 566.79 721.12 0.381 548.625 761.611 0.464
ReCP[9] UM1 1508.2 3448.3 0.581 322.41 445.39 0.763 384.472 555.310 0.701
HREP[32] UM1 2139.5 4174.6 0.385 518.71 679.53 0.448 623.910 811.459 0.362
HAFusion[15] UM1 1280.7 3424.5 0.586 578.57 758.15 0.312 655.469 899.352 0.217
UrbanVLP[4] UM2 2524.5 5786.6 0.388 570.67 859.28 0.388 613.180 883.680 0.510
MuseCL[24] UM3 2264.2 5944.2 0.424 624.35 858.21 0.123 473.063 596.230 0.672
GURPP[7] UM4 1251.5 2850.9 0.713 346.84 455.69 0.752 386.788 586.449 0.667

UM1 1145.9 2783.3 0.727 302.54 400.827 0.797 367.110 529.178 0.729
UM2 1555.0 3526.5 0.561 381.56 498.66 0.703 330.951 469.629 0.786
UM3 1154.8 2812.7 0.721 300.32 427.16 0.782 342.628 505.661 0.752
UM4 1194.2 2695.4 0.744 317.21 464.22 0.742 335.786 466.867 0.789
UM5 1267.7 2860.0 0.712 436.94 592.05 0.581 319.905 469.139 0.789

GraphJCL UM6 1139.5 2692.2 0.744 349.06 529.48 0.665 306.288 496.011 0.762
UM7 1217.8 3011.6 0.680 338.89 463.84 0.743 326.074 479.446 0.777
UM8 1001.0 2326.3 0.809 305.38 417.81 0.791 322.057 528.207 0.730
UM9 1361.3 2985.7 0.685 437.97 575.19 0.604 313.112 469.137 0.787
T M 894.9 2115.2 0.842 293.24 391.67 0.817 316.244 465.734 0.790
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Table 3. Performance evaluation of ablation experiments across three tasks in two cities.

Method

NYC

Check-in Crime Crash

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

w/o NP 730.8 1364.7 0.735 165.68 238.62 0.637 23.968 30.809 0.605
w/o MA 681.4 1035.5 0.847 160.06 247.06 0.610 23.626 31.183 0.595
w/o LCM 687.3 1135.8 0.816 170.02 277.19 0.510 24.555 32.049 0.572
w/o LFM 758.2 1238.7 0.782 174.63 283.53 0.487 23.945 31.593 0.584
w/o LMI 701.4 1053.0 0.842 160.50 241.36 0.628 23.760 31.177 0.595
GraphJCL 676.2 1027.0 0.850 158.20 235.26 0.647 22.829 29.733 0.632

Method

CHI

Check-in Crime Crash

MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

w/o NP 1080.3 2446.7 0.789 366.08 497.45 0.704 333.024 468.868 0.787
w/o MA 928.0 2297.8 0.813 311.24 435.34 0.773 317.946 484.319 0.772
w/o LCM 1098.7 2412.6 0.795 315.98 438.36 0.770 351.831 545.538 0.712
w/o LFM 1103.8 2516.8 0.777 317.49 426.89 0.782 314.124 456.12 0.783
w/o LMI 895.9 2232.3 0.824 294.44 393.11 0.809 323.476 488.833 0.769
GraphJCL 894.9 2115.2 0.842 293.24 391.67 0.817 288.56 434.242 0.812

average coefficient of determination (R2) across three representative urban prediction
tasks: check-in prediction, crime forecasting, and traffic crash prediction. For the NYC
dataset, setting the sampling ratio ε to 0.5 and hidden dimension dhid to 144 consis-
tently yields the highest average R2 across tasks. Similar trends are observed for the
CHI dataset, where we also set ε = 0.5 and dhid = 144 as optimal. Consequently, we
adopt ε = 0.5 and dhid = 144 as the default settings for both cities.

5.5 Model Efficiency Study

We evaluate the efficiency of GraphJCL in comparison with state-of-the-art region rep-
resentation models using the complete modality set (P, T F ,RS,SV,RN ). The eval-
uation procedure involves loading the same raw datasets, applying model-specific pre-
processing pipelines, and training each model for one epoch, as illustrated in Fig.4.
All experiments were conducted on an Intel® Xeon® Gold 6148 CPU (80 cores, 2.40
GHz) and a 24 GB NVIDIA RTX 4090 GPU to ensure consistent and fair compar-
isons. GraphJCL demonstrates superior efficiency by achieving higher predictive ac-
curacy while maintaining competitive processing time when compared to HAFusion,
UrbanVLP, and MuseCL. Although GraphST, ReCP, HREP, and GURPP exhibit faster
training speeds, their overall performance is limited due to reduced modality usage
and oversimplified modeling strategies. By integrating dual-perspective global and lo-
cal modeling with five different modalities, GraphJCL slightly increases training time
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Fig. 3. Hyperparameter study of GraphJCL.
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Fig. 4. Efficiency study: The time required for each model to load all data and train for one epoch.

but significantly enhances predictive performance, making the additional computational
cost a highly worthwhile trade-off for practical applications.

6 Discussion and Conclusion

In this paper, we propose GraphJCL, a novel dual-perspective graph framework for
urban region representation that models both local and global perspectives. It employs
joint contrastive learning to enhance region representations. Experimental results demon-
strate the model’s flexibility and effectiveness. Future research will explore alternative
strategies for integrating local and global learning beyond contrastive optimization, as
well as extending the framework to incorporate dynamic data, temporal variations, and
contextual information to enhance real-time prediction accuracy and robustness.
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