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Abstract. Transparency is a paramount concern in the medical field,
prompting researchers to delve into the realm of explainable AI (XAI).
Among these XAI methods, Concept Bottleneck Models (CBMs) aim
to restrict the model’s latent space to human-understandable high-level
concepts by generating a conceptual layer for extracting conceptual fea-
tures, which has drawn much attention recently. However, existing meth-
ods rely solely on concept features to determine the model’s predictions,
which overlook the intrinsic feature embeddings within medical images.
To address this utility gap between the original models and concept-
based models, we propose Vision Concept Transformer (VCT). Fur-
thermore, despite their benefits, CBMs have been found to negatively
impact model performance and fail to provide stable explanations when
faced with input perturbations, which limits their application in the
medical field. To address this faithfulness issue, this paper further pro-
poses the Stable Vision Concept Transformer (SVCT) based on VCT,
which leverages the vision transformer (ViT) as its backbone and incor-
porates a conceptual layer. SVCT employs conceptual features to en-
hance decision-making capabilities by fusing them with image features
and ensures model faithfulness through the integration of Denoised Dif-
fusion Smoothing. Comprehensive experiments on four medical datasets
demonstrate that our VCT and SVCT maintain accuracy while remain-
ing interpretability compared to baselines. Furthermore, even when sub-
jected to perturbations, our SVCT model consistently provides faithful
explanations, thus meeting the needs of the medical field.

Keywords: Explainable medical image classification · Explainability ·
Stability · Medical diagnosis.

1 Introduction

As the field of medical image analysis continues to evolve, deep learning models
and methods have demonstrated excellent performance in tasks such as image
* Equal Contribution.
† Corresponding Author.
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recognition and disease diagnosis [9]. However, these advanced deep learning
models are usually regarded as black boxes and lack credibility and transparency.
Especially in the medical field, this opacity makes it difficult for physicians and
clinical professionals to trust the predictions of the models. Thus, the require-
ment for interpretability of model decisions is more urgent in the medical field
[17].

The healthcare field, characterized by stringent requirements for trustwor-
thiness, necessitates models that not only exhibit high performance but are also
comprehensible and can be trusted by practitioners. Therefore, Explainable Ar-
tificial Intelligence (XAI) has become one of the hotspots for research and devel-
opment. By introducing interpretability, XAI tries to make the decision-making
process of deep learning models more transparent and understandable. Some
compelling interpretable methods, such as attention mechanisms [20], saliency
maps [26], DeepLIFT and Shapley values [12], and influence functions [10], at-
tempt to provide users with visual explanations about model decisions. However,
while these post-hoc explanatory methods can provide useful information, there
is still a certain disconnect between their explanations and model decisions, and
these explanations are generated after model training and fail to participate in
the model learning process. Some studies [17] have shown that post-hoc is sen-
sitive to slight changes in the input, making the post-hoc methods misleading
as they could provide explanations that do not accurately reflect the model’s
decision-making process.

Fig. 1: An example of VCT framework on OCT2017 dataset [9]. The leftmost
figure displays the input image, while the adjacent one on the left shows the con-
cept output without perturbations. In contrast, the figure on the right presents
the concept output after applying input perturbations, resulting in noticeable
changes.

Therefore, researchers have shown interest in self-explained methods. Among
them, concept-based methods have attracted a lot of attention. These approaches
strive to incorporate interpretability into machine learning models by establish-
ing connections between their predictions and concepts that are understandable
to humans. As an illustration, the Concept Bottleneck Model (CBM) [11] ini-
tially forecasts an intermediate set of predefined concepts, subsequently utilizing
these concepts to make predictions for the final output. [15] introduce Label-
free CBM, a novel framework designed to convert any neural network into an
interpretable CBM without the need for labeled concept data compared to the
original CBM. These inherently interpretable methods provide concept-based ex-
planations, which are generally more comprehensible than post-hoc approaches.
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However, many existing methods rely solely on concept features to determine
the model’s predictions. These approaches overlook the intrinsic feature embed-
dings within medical images. For instance, [18] solely utilizes concept labels to
supervise the concept prediction results of the entire image. This oversight can
lead to a decrease in classification accuracy, which is suggested to stem from
the inefficient utilization of valuable medical information. Therefore, a signifi-
cant challenge in the field of medical imaging is how to maintain a high level of
accuracy while incorporating interpretability.

To address the aforementioned challenges, we propose Vision Concept Trans-
former (VCT), a novel medical image processing framework that is interpretable
and maintains high performance. Vision Transformers (ViTs) [3] have achieved
state-of-the-art performance for various vision tasks, showing good robustness
in prediction. Thus, in the VCT framework, we utilize ViTs as the foundational
network. To enhance interpretability, we employ a label-free methodology for
generating the conceptual layer. Moreover, unlike previous CBMs, which only
use conceptual features for prediction, in the VCT framework, we integrate con-
ceptual features with image features, utilizing the conceptual layer as supple-
mentary information to augment decision-making. This integration effectively
addresses the issue of accuracy degradation associated with a singular label-free
CBM, ensuring interpretability without compromising accuracy.

While VCT keeps the interpretability of CBMs, it also inherits their inter-
pretability instability when facing perturbations or noise in the input. Specifi-
cally, adding slight noise to the input image can significantly change the top-k
important concepts given by CBMs (see Figure 1 for an example), i.e., the top
k-indices of the concept vector. Instability is a common issue in deep learning in-
terpretation methods, making it challenging to understand model reasoning [6],
especially with unlabeled data and self-supervised training [4]. As in real medical
scenarios, there is always natural and inherent noise or some adversarial exam-
ples manipulated by attackers [1]. Thus, VCT cannot be a faithful explainable
tool for these applications.

To address the faithfulness issue, by using the Denoised Diffusion Smoothing
method, we can smoothly and directly transform VCT into a Stable Vision
Concept Transformer (SVCT) framework that is capable of providing stable
interpretations despite perturbations to the inputs, the structure is shown in
Figure 2. Our contributions can be summarised as follows.

– We proposed the VCT framework, transforming ViTs into an interpretable
CBM. VCT integrates conceptual features with image features, utilizing con-
ceptual features as auxiliary decision-making components. This effectively
addresses the performance degradation issue in existing CBMs due to ineffi-
cient utilization of medical information.

– To further enhance the interpretability stability of VCT, we propose a for-
mal mathematical definition of an SVCT, which ensures that the top-k index
of its conceptual vectors remains relatively stable under slight perturba-
tions. We utilize a Denoised Diffusion Smoothing (DDS) method to obtain
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an SVCT. Moreover, we theoretically proved that our method satisfies the
properties of SVCT.

– We conducted extensive experiments on four medical datasets to validate
the superiority of SVCT in the medical domain. First, we demonstrate that
our SVCT is more accurate and interpretable than other CBM approaches.
Secondly, we verified that the SVCT model still provides stable explanations
under perturbations.

2 Related Work

Concept Bottleneck Models. Concept Bottleneck Model (CBM) [11] stands out as
an innovative deep-learning approach applied to image classification and visual
reasoning. It introduces a concept bottleneck layer into deep neural networks, en-
hancing model generalization and interpretability by learning specific concepts.
However, CBM faces two primary challenges: its performance often lags behind
that of original models lacking the concept bottleneck layer, attributed to in-
complete information extraction from the original data to bottleneck features.
Additionally, CBM relies on laborious dataset annotation [7]. Researchers have
explored solutions to these challenges. [2] extend CBM into interactive prediction
settings, introducing an interaction policy to determine which concepts to label,
thereby improving final predictions. [14] address CBM limitations and propose
a novel framework called Label-free CBM. This innovative approach enables the
transformation of any neural network into an interpretable CBM without re-
quiring labeled concept data, all while maintaining high accuracy [24]. However,
most of the existing CBMs use only conceptual features for prediction, which
can cause a degradation in prediction performance and make them unsuitable
for medical scenarios.

Faithfulness in Explainable Methods. Faithfulness is an important property that
should be satisfied by explanatory models, which ensures that the explanation
accurately reflects the true reasoning process of the model [8]. Stability is cru-
cial to the faithfulness of the interpretation. Some preliminary work has been
proposed to obtain stable interpretations. For example, [23] theoretically ana-
lyzed the stability of post-hoc explanations and proposed the use of smoothing
to improve the stability of explanations. They devised an iterative gradient de-
scent algorithm for obtaining counterfactual explanations, which showed desir-
able stability. However, these techniques are designed for post-hoc explanations
and cannot be directly applied to attention-based mechanisms like ViTs.

Interpretability in Medical Image Classification. In the research of interpretable
artificial intelligence in medical image analysis, [21] proposes a new method to
construct a robust and interpretable medical image classifier using natural lan-
guage concepts, and it has been evaluated on multiple datasets. [18] focuses on
self-explanatory deep models, introducing a model that implicitly learns concep-
tual explanations during training by adding an explanation generation module.
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These methods collectively enhance the interpretability of the model. However,
the existing interpretability methods face two main issues. Firstly, they rely
solely on concept features for decision-making, leading to insufficient utilization
of valuable information in medical images and resulting in a performance de-
cline in medical image processing. Secondly, existing methods exhibit instability
when confronted with noise, failing to provide faithful explanations. Therefore,
our work aims to ensure good performance while maintaining interpretability
and providing faithful explanations to address these issues. See Appendix F for
more details.

3 Stable Vision Concept Transformer

In this section, we propose the Stable Vision Concept Transformer (SVCT)
framework. Specifically, we first leverage the Label-free Concept Bottleneck Model
[15] to transform the ViT network into an interpretable CBM without concept
labels, which is an automated, scalable, and efficient fashion to address the core
limitations of existing CBMs. We then fuse the concept features with the ViTs
features as decision-aiding features, which not only improves the interpretability
of the model but also ensures a high degree of accuracy. To obtain an SVCT, we
adopt Denoised Diffusion Smoothing (DDS) to turn it into an SVCT.

Our model consists of the following six steps, which are illustrated in Figure
2 - Step1: The ViT model is trained on the target task, and VCT is transformed
into SVCT by inserting the DDS method. Step2: We generate initial concept
set based on the target task and filter out unwanted concepts using a series of
filters. Step3: Compute embeddings by the backbone on the training dataset
and obtain the concept matrix. Step4: Learn projection weights Wc to create
a Concept Bottleneck Layer (CBL). Step5: Fuse the concept features with the
ViTs features. Step6: Learn the weights WF of the sparse final layer to make
predictions. Detailed notations can be found in Table 6. We first introduce VCT
for convenience.

3.1 Vision Concept Transformer

In this section, we introduce the vision concept transformer. Before that, it is
necessary to pre-train the ViT model f on the target task dataset as a backbone
for the VCT framework.
Label-free CBMs. We use the label-free CBM [15] to get concept feature
fc (X) ∈ RM , where M is the number of concepts. Firstly, we obtain a concept
set and use it as human-understandable concepts in the concept bottleneck layer
(See Appendix D and E for details). Next, we need to learn how to project from
the feature space Rd0 of the backbone network to an interpretable feature space
∈ RM that corresponds to the set of interpretable concepts in the axial direction.
We use a way of learning the projection weights Wc ∈ RM×d0 without any labeled
concept data by utilizing CLIP-Dissect [16]. We can learn about a bottleneck
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Fig. 2: Overview of our Stable Vision Concept Transformer (SVCT) model.

conceptual layer and get the concept feature

fc (X) = Wcf(X) ∈ RM . (1)

Concat ViT feature and concept feature. Now that we have learned about
the conceptual bottleneck layer and get Wc ∈ RM×d0 . In VCT, the concep-
tual features are no longer used as the only features for classification. According
to previous studies, based on the conceptual features alone will degrade the
accuracy of the model. Therefore, here we use the conceptual features as the
supplementary features, which are fused with the features extracted from the
backbone network, and this feature fusion makes the VCT able to ensure ac-
curacy improvement while having a better explanatory nature. Specifically, we
define fm(X) = concat(f(X), fc(X)), where fm

(
X(i)

)
∈ RM+d0 , and we define

a feature of VCTs for prediction as follows:

F (X) = concat(f(X),Wcf(X)). (2)

Final classification layer. The next goal is to learn the final predictor using
the fully connected layer WF ∈ Rdz×(M+d0), where dz represents the final num-
ber of predicted categories. For each input X, we have access to its predictive
distribution through the final classification layer.

3.2 Stable VCT

As we mentioned in the introduction and Figure 1, CBMs and VCT have an
interpretation instability issue, i.e., a slight perturbation on the input could
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change the top-k concepts in the concept vector (concept feature in VCT). Here
we aim to address the instability issue. We first give the definition of the top-k
overlap ratio for two (concept) vectors,

Definition 1. For vector x ∈ Rn, we define the set of top-k component Tk(·) as

Tk(x) = {i : i ∈ [d] and {|{xj ≥ xi : j ∈ [n]}| ≤ k}}.

For two vectors x, x′, their top-k overlap ratio Vk(x, x
′) is defined as Vk(x, x

′) =
1
k |Tk(x) ∩ Tk(x

′)|.

Definition 2 (Stable VCTs). Giving M number of concepts, a norm ∥ · ∥,
and a divergence metric D, we call a function g : Rdmodel×n → RM is an
(R,D, γ, β, k, ∥ · ∥)-stable concept module for VCTs if for any given input data
X and for all X ′ ∈ Rdmodel×n such that ∥X −X ′∥ ≤ R:

(1) (Explanation Stability) Vk (g (X
′) , g(X)) ≥ β.

(2) (Prediction Robustness) D (ȳ(X), ȳ (X ′)) ≤ γ, where ȳ(X), ȳ (X ′) are the
prediction distribution of VCTs based on g(X), g (X ′) respectively.

We call the models of VCTs based on g as SVCTs.

Intuitively, for input X, g(X) is its concept vector. Thus, the first condition
of SVCT ensures that the k-most important concepts will not change much, even
if there are some perturbations on the input. The second one guarantees that
the prediction of SVCT is also stable against perturbation, which inherits the
good performance of VCT. For the parameters, R represents the stable radius.
Within this radius, g is a stable concept module, D is the Rényi divergence
between two distributions (we denote it as Dα). γ is a similarity coefficient,
and as γ gets smaller, g is more robust. β is the stability coefficient, which
measures the stability of the interpretation, and as β gets larger, g is more
stable. In this paper, ∥ · ∥ is the ℓ2-norm (if we consider X as a d = dmodel × n
dimensional vector). We can show if the prediction distribution is robust under
Rényi divergence, then the prediction will be unchanged with perturbations on
input (shown in Theorem 1).

Theorem 1. If a function is a (R,Dα, γ, β, k, ∥ · ∥)-stable concept module for
VCTs, then if

γ ≤ − log(1− p(1) − p(2) + 2(
1

2
(p1−α

(1) + p1−α
(2) ))

1
1−α ),

we have for all X ′ such that where ∥X −X ′∥ ≤ R,

argmax
h∈H

P(ȳ(X) = h) = argmax
h∈H

P(ȳ(X ′) = h),

where H is the set of classes, p(1) and p(2) refer to the largest and the second
largest probabilities in {pi}, where pi is the probability that ȳ(X) returns the i-th
class.
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Finding Stable Vision Concept Transformers. Motivated by [5], we propose a
method called Denoised Diffusion Smoothing (DDS) to obtain SVCTs. The pro-
cess is as follows: we use randomized smoothing to the VCT and then apply
a denoised diffusion probabilistic model to the perturbed input. With this pro-
cessing, we can transform a VCT into an SVCT, and its corresponding concept
module becomes a stable concept module. Specifically, for a given input image
x, its corresponding token embedding is X. We add some randomized Gaussian
noise to X, i.e., X̃ = X + S, where S ∼ N

(
0, σ2Idmodel×n

)
. Then we will use

some denoised diffusion models to denoise X̃ to get X̂. We then take the ob-
tained X̂ as a new input to get concept feature fc(X̂) in (1) and go through the
remaining structures of the VCT to get the final prediction.

Specifically, for a given input X, randomized smoothing is done by augment-
ing the data points of an image by adding additive Gaussian noise to the image,
which we can denote as Xrs ∼ N

(
X,σ2I

)
. Diffusion models rely on a particular

form of noise modeling, denoted as Xt ∼ N
(√

βtX, (1− βt) I
)
. Where βt is a

constant related to time step t. Thus, if we want to use a diffusion model for
randomized smoothing, we need to establish a link between the parameters of
the two noise models. The DDS model used in this paper multiplies Xrs by the
factor

√
βt, thus satisfying the requirement of the noise mean, and accordingly,

in order to satisfy the requirement of the variance, we can obtain the equation
σ2 = 1−βt

βt
. As the time step changes, σ2 changes as βt changes because βt

is a constant with respect to the time step. But it can be computed at every
time step, and by using this, we are able to obtain Xt∗ =

√
βt∗(X + S), where

S ∼ N
(
0, σ2I

)
. Such a form of noise is consistent with the form on which the

diffusion model depends, and we can use the diffusion model on Xt∗ to obtain
denoised sample X̂ = denoise (Xt∗ ; t

∗). In this paper, we repeat this process
several times to improve robustness.

In the following, we show that w̃ = fc(X̂) is a stable concept feature satisfying
Definition 2 if σ2 satisfies some condition. Before showing the results, we first
provide some notations. For input image x, we denote w̃i∗ as the i-th largest
component in w̃(x). Let k0 = ⌊(1−β)k⌋+1 as the minimum number of changes
on w̃(x) to make it violet the β-top-k overlapping ratio with w̃(x). Let S denote
the set of last k0 components in top-k indices and the top k0 components out of
top-k indices. Then, we can prove the following upper bound. The details of the
algorithm are in Algorithm 1.

Algorithm 1 SVCTs via Denoised Diffusion Smoothing
1: Input: X; A standard deviation σ > 0.
2: t∗, find t s.t. 1−βt

βt
= σ2.

3: Xt∗ =
√
βt∗(X̃ +N (0, σ2I)).

4: X̂ = denoise(Xt∗ ; t
∗).

5: w = fc(X̂), where fc is in (1).
6: Return: Concept feature vector w.
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Theorem 2. Consider the function w̃(X) = fc(T (X + S)), where fc as the
function in (1), T as the denoised diffusion model and S ∼ N (0, σ2Idmodel×n).
Then, it is an (R,Dα, γ, β, k, ∥ · ∥2)-stable concept module for VCTs for any
α > 1 if for any input image x we have

σ2 ≥ max{αR2/2(
α

α− 1
ln(2k0(

∑
i∈S

w̃α
i∗)

1
α+

(2k0)
1
α

∑
i ̸∈S

w̃i∗)−
1

α− 1
ln(2k0)), αR

2/2γ}.

Fig. 3: Results of concept visualization. From left to right: one sample from each
dataset, concept visualization results before perturbation, and concept visual-
ization results after perturbation. Clear and enlarged pictures are shown in the
Appendix L.

4 Experiments

4.1 Experimental Settings

Datasets. We conducted experiments on four medical datasets, including Hu-
man Against Machine with 10,015 training images (HAM10000) dataset [19],
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Covid19-CT dataset [25], BloodMNIST dataset [22], and Optical coherence to-
mography (OCT) 2,017 dataset [9]. Details are in Appendix G.

Table 1: Results of accuracy for the baselines and SVCT w/w.o perturbation.
Method HAM10000 Covid19-CT BloodMNIST OCT2017
Standard (No interpretability) 99.13% 81.62% 97.05% 99.70%

Label-Free CBM (LF-CBM) 93.61% 79.75% 94.97% 97.50%
Post-hoc CBM (P-CBM) 97.60% 76.26% 94.83% 98.60%
Vision Concept Transformer (VCT) 99.00% 80.62% 96.21% 99.10%
Stable VCT(SVCT) 99.05% 81.37% 96.96% 99.50%
ρu = 8/255 - LF-CBM 90.08% 67.98% 80.53% 91.88%
ρu = 8/255 - P-CBM 90.96% 70.66% 77.55% 91.70%
ρu = 8/255 - VCT 95.80% 69.78% 89.45% 96.80%
ρu = 8/255 - SVCT 97.97% 74.45% 94.07% 98.70%
ρu = 10/255 - LF-CBM 88.70% 65.12% 75.63% 90.58%
ρu = 10/255 - P-CBM 90.21% 66.32% 74.27% 90.10%
ρu = 10/255 - VCT 95.28% 68.85% 87.71% 96.25%
ρu = 10/255 - SVCT 97.24% 71.65% 92.65% 98.48%

Baselines. In this paper, the standard model is ViT [3], which accomplishes
the classification task by extracting image features, but the model itself is not
interpretable. The baseline model is label-free CBM [15], which uses ViT as the
backbone to generate a conceptual bottleneck layer and finally makes predictions
through a linear layer.

Table 2: Results on CFS and CPCS for the baselines and SVCT under various
perturbations.

Method HAM10000 Covid19-CT BloodMNIST OCT2017

CFS CPCS CFS CPCS CFS CPCS CFS CPCS

ρu = 6/255 - LF-CBM 0.3335 0.9405 0.6022 0.8117 0.5328 0.8511 0.3798 0.9254
ρu = 6/255 - VCT 0.3361 0.9394 0.6761 0.7650 0.5432 0.8436 0.3625 0.9314
ρu = 6/255 - SVCT 0.1354 0.9900 0.5555 0.8359 0.3589 0.9320 0.3257 0.9468
ρu = 8/255 - LF-CBM 0.3719 0.9256 0.6707 0.7710 0.6280 0.7947 0.3941 0.9196
ρu = 8/255 - VCT 0.4109 0.9098 0.8114 0.6743 0.7162 0.7328 0.3812 0.9240
ρu = 8/255 - SVCT 0.1555 0.9867 0.6446 0.7818 0.4383 0.8977 0.3459 0.9387
ρu = 10/255 - LF-CBM 0.4027 0.9123 0.7224 0.7336 0.6906 0.7545 0.4055 0.9145
ρu = 10/255 - VCT 0.4637 0.8844 0.8943 0.6155 0.8057 0.6670 0.3949 0.9179
ρu = 10/255 - SVCT 0.1725 0.9836 0.7096 0.7389 0.5058 0.8625 0.3620 0.9321

Perturbations. Perturbation refers to small changes or modifications made
to input data. In this paper, we introduce perturbations to input images with
different radius ρu to assess the stability and robustness of the SVCT model.
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The range of perturbation radii ρu is [6/255, 10/255]. We employ the PGD [13]
algorithm to craft adversarial examples with a step size of 2/255 and a total of
10 steps. As a default, we set the standard deviation S = 8/255 for the Gaussian
noise in our method. All results are the average score running 10 times to reduce
variance.
Evaluation metrics. To demonstrate the utility of our approach, we report
the classification accuracy on test data for classification tasks. We evaluate our
model’s stability using Concept Faithfulness Score (CFS) and Concept Pertur-
bation Cosine Similarity (CPCS). CFS measures the stability of model inter-
pretability between two concept weight vectors using Euclidean distance; we
use c1 to represent the concept weight vector without perturbation and c2 to
represent the concept weight after the perturbation. Then CFS is defined as
CFS = ∥c2 − c1∥/∥c1∥. CPCS measures the cosine similarity between two con-
cept weight vectors, which is defined as CPCS = c1 ·c2/∥c1∥∥c2∥. The smaller the
value of CFS, the less the conceptual weights change after being perturbed, and
the more stable the model interpretability is. The closer the value of CPCS is to
1, the higher the similarity of conceptual weights before and after perturbation
and the more stable interpretability of the model. More experimental details are
in the Appendix G.
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4.2 Utility Evaluation

Table 1 presents the accuracy results of our proposed SVCT method and the
baseline approach on four datasets with different levels of perturbations. The ta-
ble clearly shows that our method maintains a consistently high accuracy across
all datasets without any noticeable variation or loss. This highlights the robust-
ness of our approach in terms of accuracy preservation. Compared to Label-free
CBM, our model can maintain higher accuracy while guaranteeing interpretabil-
ity. Overall, the results in Table 1 show that our SVCT model successfully com-
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bines high accuracy and interpretability and maintains stability over multiple
datasets.

Table 3: Results on sensitivity and specificity for the baselines and SVCT w/w.o
perturbation.

Method HAM10000 Covid19-CT BloodMNIST OCT2017
sensitivity specificity sensitivity specificity sensitivity specificity sensitivity specificity

Label-free CBM 0.8878 0.9827 0.7984 0.8608 0.9407 0.9956 0.9750 0.9960
SVCT 0.9899 0.9999 0.8191 0.8037 0.9667 0.9958 0.9950 0.9994
ρu = 10/255 - LF CBM 0.6779 0.9615 0.5794 0.9810 0.5880 0.9998 0.8380 0.9880
ρu = 10/255 - SVCT 0.9180 0.9932 0.7136 0.9303 0.8681 0.9948 0.9790 0.9923

4.3 Stability Evaluation

Table 2 illustrates the experimental result for CFS and CPCS, assessing the
stability of CBMs across various disturbance radii and comparing it with the
baseline models. SVCT demonstrates superior stability concerning conceptual
weights, showcasing minimal disparities pre and post-disturbance, signifying no-
table similarity. The prowess of SVCT in both CFS and CPCS exceeds that of
the baseline model. These outcomes imply that SVCT maintains interpretability
with robust resistance to perturbation, establishing it as a model with faithful
explanations.

In order to represent the experimental results more intuitively, we first visu-
alized the conceptual weight changes before and after the perturbation of each
data. The results of these visualizations provide an intuitive explanation of the
validity and stability of the SVCT’s performance under the perturbation. The
results in both Table 2 and Figure 3 amply demonstrate that, compared with
the baseline model, the SVCT is a model with superior stability while keeping
interpretability to perturbation. These advantages make SVCT valuable in the
medical field. Secondly, we also conducted repeated experiments in several con-
ceptual spaces to verify the validity of SVCT. Details can be found in Appendix
K.

4.4 Interpretability Evaluation

Faithfulness and stability. SVCT introduces a DDS module while ensuring
interpretability, which enables SVCT to provide faithful interpretations, and the
results in Table 2 and Figure 3 have shown that the stability performance of
SVCT performs even better under input perturbations. Experimental results
indicate that SVCT is a faithful model.
Test-time intervention. We envision that in practical applications, medical
experts interacting with the model can intervene to "correct" concept values that
the model predicts incorrectly. During the inference process, we initially predict
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Table 4: Ablation study of SVCT on DDS module. We assess the efficacy of
denoising and smoothing under input perturbations.

Method Setting HAM10000 Covid19-CT BloodMNIST OCT2017

Denosing Smoothing CFS CPCS CFS CPCS CFS CPCS CFS CPCS

ρu = 6/255

0.3361 0.9394 0.6761 0.7650 0.5432 0.8436 0.3625 0.9314
✓ 0.3342 0.9405 0.6490 0.7789 0.5412 0.8462 0.3516 0.9362

✓ 0.2689 0.9607 0.5698 0.8221 0.3612 0.9288 0.3367 0.9425
✓ ✓ 0.1354 0.9900 0.5555 0.8359 0.3589 0.9320 0.3257 0.9468

ρu = 8/255

0.4109 0.9098 0.8114 0.6743 0.7162 0.7328 0.3812 0.9240
✓ 0.3716 0.9255 0.7258 0.7288 0.6349 0.7862 0.3724 0.9279

✓ 0.3020 0.9503 0.6556 0.7710 0.4560 0.8724 0.3574 0.9343
✓ ✓ 0.1555 0.9867 0.6446 0.7818 0.4383 0.8977 0.3459 0.9387

ρu = 10/255

0.4637 0.8844 0.8943 0.6155 0.8057 0.6670 0.3949 0.9179
✓ 0.4022 0.9119 0.7856 0.6884 0.6940 0.7453 0.3869 0.9217

✓ 0.3306 0.9402 0.7157 0.7320 0.4988 0.8421 0.3711 0.9283
✓ ✓ 0.1725 0.9836 0.7096 0.7389 0.5058 0.8625 0.3620 0.9321

concepts and obtain corresponding concept scores. Subsequently, we intervene
by altering concept values and generating output results based on the inter-
vened concepts. In Figure 4, we present several examples of interventions. In the
example, we observed a significant darkening of the lung color, and the model
gave an incorrect prediction, which, after our corrections, ended up being cor-
rect. When the model predicts correctly, we make the wrong corrections, which
likewise causes the model to predict incorrectly. SVCT gives explanations that
humans can understand and that humans can modify to achieve co-diagnosis.
Besides, our SVCT can also improve its faithfulness in the test-time intervention
under perturbations.
Sensitivity and specificity. We also conducted sensitivity and specificity ex-
periments on four datasets. Results are shown in Table 3. Sensitivity measures
the proportion of actual positive cases that are correctly identified by the model
and specificity measures the proportion of actual negative cases that are correctly
identified by the model. Results show that SVCT consistently outperforms the
LF CBM. For the Covid19-CT dataset, while LF CBM has the highest specificity
(0.8608), SVCT demonstrates a higher sensitivity (0.8191), suggesting better de-
tection of positive cases. When perturbation (ρu = 10/255), SVCT continues to
show robust performance. For example, on the HAM10000 dataset, SVCT main-
tains high sensitivity (0.9180) and specificity (0.9932). These results demonstrate
that SVCT not only performs well under standard conditions but also maintains
high accuracy and robustness in the presence of data perturbations, making it a
promising method for medical image analysis.

4.5 Ablation Study

Results are shown in Table 4 and 5. The denoising diffusion model and random-
ized smoothing play an important role in SVCT. When we remove the denoising
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Table 5: Ablation study of SVCT on DDS module. We assess the efficacy of
denoising and smoothing under input perturbations.

Method Setting HAM10000 Covid19-CT BloodMNIST OCT2017
Denosing Smoothing

ρu = 0

99.00% 81.23% 96.81% 99.40%
✓ 98.33% 80.54% 95.88% 99.20%

✓ 98.88% 81.09% 96.33% 99.50%
✓ ✓ 99.05% 81.37% 96.96% 99.50%

ρu = 10/255

92.56% 68.22% 80.59% 95.40%
✓ 92.66% 69.10% 81.14% 97.00%

✓ 96.11% 70.03% 90.21% 98.10%
✓ ✓ 97.24% 71.65% 92.65% 98.48%

diffusion model, the performance of the model suffers significantly. While re-
moving the randomized smoothing, the model performance degradation is small.
When both modules are removed at the same time, the overall performance of
the model decreases more significantly compared to removing a single module.
This suggests that these two modules play a key role in maintaining conceptual
stability while being able to provide faithful explanations. The ablation results
show that without any one of the two modules, the performance of disease di-
agnosis may suffer. More ablation studies about the effect of feature fusion and
DDS are shown in Appendix H, indicating that each module in our SVCT is nec-
essary and efficient. The computational cost is shown in Appendix I, implying
the efficiency of our SVCT.

5 Conclusion

In this paper, we propose the Vision Concept Transformer (VCT), and further
propose the Stable Vision Concept Transformer (SVCT) framework. In SVCT,
we utilize ViT as a backbone, generate the concept layer, and fuse the concept
features and image features. SVCT mitigates the information leakage problem
caused by CBM and maintains accuracy. Comprehensive experiments show that
SVCT can provide stable interpretations despite perturbations to the inputs,
with less performance degradation than CBMs and maintaining higher accuracy,
indicating SVCT is a more faithful explanation tool.
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