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Abstract. Continual learning (CL) empowers pre-trained vision-language
models to adapt effectively to novel or previously underrepresented data
distributions without comprehensive retraining, enhancing their adapt-
ability and efficiency. While vision-language models like CLIP show great
promise, they struggle to maintain performance across domains in incre-
mental learning scenarios. Existing prompt learning methods face two
main limitations: 1) they primarily focus on class-incremental learning
scenarios, lacking specific strategies for multi-domain task incremental
learning; 2) most current approaches employ single-modal prompts, ne-
glecting the potential benefits of cross-modal information exchange. To
address these challenges, we propose the ChordPrompt framework, which
facilitates a harmonious interplay between visual and textual prompts.
ChordPrompt introduces cross-modal prompts to leverage interactions be-
tween visual and textual information. Our approach also employs domain-
adaptive text prompts to select appropriate prompts for continual adap-
tation across multiple domains. Comprehensive experiments on multi-
domain incremental learning benchmarks demonstrate that ChordPrompt
outperforms state-of-the-art methods in zero-shot generalization and down-
stream task performance.

1 Introduction

Continual Learning (CL) is a crucial paradigm in machine learning that aims to
develop models capable of sequentially learning from various domains without
the need for complete retraining from scratch.

However, continual learning faces a critical challenge known as catastrophic
forgetting [7], which severely undermines the model’s ability to master distinct
tasks sequentially. Catastrophic forgetting occurs when neural networks lose
their ability to perform previously learned tasks after training on new ones.
This leads to a significant deterioration in performance on the initial tasks. This
problem becomes particularly challenging when the model must adapt to new
or under-represented data distributions, a common requirement in real-world
deployments.

Vision-language models like CLIP [22] have shown remarkable performance
on various multi-modal tasks, excelling in visual and linguistic knowledge. Conse-
quently, they exhibit impressive zero-shot generalization performance on unseen



2 Zhiyuan Wang and Bokui Chen

datasets [27]. Nevertheless, continually training Vision-Language (V-L) models
like CLIP is critical. It helps keep the model up-to-date as new data emerges
in real-world deployments. Unfortunately, during the continual fine-tuning of
CLIP, its impressive zero-shot generalization performance substantially declines
due to catastrophic forgetting. In addition, retraining large-scale vision-language
models such as CLIP, pre-trained on 400M image-text pairs, for every new task
would require computational resources often unavailable in real-world scenarios.
Our approach provides a scalable solution by enabling continual learning without
requiring access to the original training dataset or complete model retraining.

Continual learning for vision-language models is an emerging field presenting
many open challenges and opportunities. For the CLIP model, the use of replay
methods is limited, as pre-training datasets are often private and inaccessible.
Therefore, recent studies focus on fine-tuning the entire model [36, 20]. As shown
in Figure 1a, this method can inefficiently use both computational resources and
the model’s original capabilities.

To address these challenges, we introduce ChordPrompt for Continual Learn-
ing framework. Our approach is motivated by the multi-modal hypothesis in
cognitive psychology. This cognitive framework suggests that perception and
learning are not isolated processes confined to individual sensory channels but
somewhat interactive processes where information from one modality can mod-
ulate the processing of another [25]. In traditional continual learning methods,
as illustrated in Figure 1a, the entire model typically requires fine-tuning. This
process can be computationally expensive and may lead to inefficient use of the
model’s original capabilities. Contrastingly, as shown in Figure 1b, single-modal
prompts operate within the confines of a single modality, potentially missing
valuable cross-modal insights. As shown in Figure 1c, our proposed cross-modal
approach ChordPrompt leverages the synergistic relationship between visual and
textual information, overcoming these limitations and enabling the model to
learn and adapt more comprehensively across different scenarios. ChordPrompt
emulates the integrative nature of human cognition by fostering cross-modal in-
teraction. This approach enables the model to develop more detailed and refined
representations, significantly enhancing its performance in continual learning
scenarios. Our work’s main contributions are as follows:

– We introduce a cross-modal prompt strategy ChordPrompt to facilitate con-
tinual learning in vision-language models.

– We propose a domain-adaptive text prompt approach, which enables the
model to adapt to specific characteristics of different domains, addressing
the lack of strategies for multi-domain task incremental learning.

– We design an Aligner module and cross-modal prompts in visual and textual
encoders, addressing the limitation of single-modal prompts and leveraging
the benefits of cross-modal information exchange.

– We demonstrate ChordPrompt’s effectiveness across various tasks and datasets,
particularly highlighting its performance in multi-domain task incremental
learning scenarios with vision-language models.
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(a) Traditional continual learning strategies require fine-tuning the
entire model - a process that can be computationally expensive.

(b) The single-modal prompt restricts the model to learning within
the confines of a single modality, potentially missing valuable cross-
modal insights.

(c) ChordPrompt’s cross-modal approach enables the model to benefit
from the rich interplay between different modalities, leading to more
robust and comprehensive learning.

Fig. 1: Comparison of traditional methods and ChordPrompt.

2 Related Work

Vision-Language Models. Beyond CLIP, other V-L models like ALIGN, ViL-
BERT have shown effectiveness in various tasks. These models employ different
architectures to process and integrate visual and textual information, ranging
from unified representations to two-stream approaches with cross-modality lay-
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ers [10, 19]. The recent advancements in V-L models have played a crucial role in
empowering a wide range of tasks that involve image and text processing [17, 14,
1]. However, these V-L models often face challenges when deployed in continual
learning scenarios. Many studies have proposed continual learning methods to
aid the adaptation of the model to new tasks. Our proposed framework, Chord-
Prompt, is tailored to continual learning (CL) setups for vision-language models,
particularly those with dual-encoder architectures like CLIP. We chose CLIP as
our base model due to its robust performance in aligning image and text em-
beddings and its widespread adoption and proven effectiveness in a variety of
multimodal tasks like VQA.

Prompt Learning Methods. Prompt learning originating from NLP has
become crucial in improving vision-language model performance through care-
fully selecting input prompts. For example, approaches like soft prompting [13]
and prefix tuning [15] help streamline large language models’ training by intro-
ducing learnable tokens that steer the model’s outputs, making it more conve-
nient to tailor the model to new downstream tasks. In the context of vision-
language models, prompt learning has been utilized to guide the models towards
better understanding and alignment of visual and language modalities. For in-
stance, CoOp and Co-CoOp [38, 37] train CLIP for few-shot transfer by prompt
vectors at the language branch. However, these single modal prompts can limit
the model’s ability to adapt to new tasks dynamically. Recent work [33, 12,
39] has begun to explore the potential of cross-modal prompt learning to fully
leverage the power of the cross-modal nature of vision-language models. How-
ever, current cross-modal prompting methods lack ways to select appropriate
prompts for continual adaptation. They typically lack the adaptability and flex-
ibility needed to handle the dynamic shifts in the environment during continual
learning.

Continual Learning Methods. Multiple approaches are put forward to
address the issue of catastrophic forgetting in continual learning. Replay-based
methods [23, 26, 3, 9] store and replay previous data to maintain knowledge. No-
tably, in the case of the CLIP model, replay methods to re-access original private
pre-training datasets face limitations, as these datasets are often inaccessible.
Regularization-based methods [16, 2, 5] mitigate catastrophic forgetting by align-
ing the current output with previous ones. Architecture-based methods [24, 34]
manipulate the model’s architecture, such as dynamically expanding capacity or
allocating model parts to each task. Prompt-based methods [31, 29, 6, 11] have
emerged to mitigate catastrophic forgetting. However, these prompt-based ap-
proaches ignore preserving the zero-shot learning capability, a crucial strength
of vision-language models. Furthermore, existing approaches lack mechanisms
for domain-adaptive selection, making them unsuitable for multi-domain task-
incremental learning scenarios. Unlike previous methods primarily focusing on
single-modal prompts or architectural modifications, our ChordPrompt frame-
work introduces a novel cross-modal prompting strategy to facilitate continual
learning.



ChordPrompt: Orchestrating Cross-Modal Prompt Synergy 5

3 Methodology

Fig. 2: Our proposed ChordPrompt approach. The detailed training process fol-
lows (a) Start by feeding all labels’ text from the current dataset into the
PrototypeExtractor. It transforms the text labels into one-dimensional vectors
as keys. (b) Store these keys in a pool, which will later be used for querying
during the inference phase. (c) Add trainable tokens as prompts at each layer of
the text encoder, which are then stored in the memory pool. (d) Introduce the
Aligner module, which projects text encoder prompts to the vision encoder and
vision encoder prompts to the text encoder. The projected cross-modal prompts
are added to each layer’s value (V) component in both encoders.

In the field of continual learning (CL) for vision-language models, the goal is
to develop models capable of sequentially mastering a series of distinct datasets,
denoted as {D1,D2, . . . ,DN}. The Di represents the dataset for the ith task,
containing Ni labeled samples. For multi-domain task-incremental learning, the
objective is for the model to classify images from all domains it has encountered
without knowing the specific task ID during inference. The optimization problem
can be formulated as:

min
θ

E(x,y)∼
⋃N

i=1 Di

[
− log

exp(sθ(x, ŷ)/τ)∑
yc∈C exp(sθ(x, yc)/τ)

]
(1)

Here, Di = (xi
j , ŷ

i
c)

Ni

j=1
represents the set of data for domain Di, which contains

Ni input-label pairs. xi
j is the jth input sample of domain Di, and ŷic is the

corresponding class label. The set of classes is denoted as C =
⋃Nc

c=1 yc. Nc

represents the total number of classes, and yc denotes a specific class label within
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the set of classes. θ denotes the parameters of the model Fθ. The loss function
L measures the predictive discrepancy, traditionally the negative log-likelihood
of the correct class in the context of contrastive learning.

In our CL formulation, we continually fine-tune the CLIP model on a se-
quence of datasets {D1,D2, ...,DN}.

The similarity score sij,c, between visual Xi
j and textual Y i

c representations is
defined as sij,c = sim(Xi

j , Y
i
c ). The prediction probability is calculated as follows:

p(ŷ|xi
j) =

exp(sij,ŷ/τ)∑Nc

c=1 exp(s
i
j,c/τ)

(2)

where τ represents the temperature coefficient.

Algorithm 1 Training Process for ChordPrompt
Require: Sequence of datasets {D1, D2, ..., DN}; Pre-trained image encoder and text

encoder; Trainable Aligner with θA; Prototype extractor ProtoExtrac; Text Prompt
parameters θT ; Vision Prompt parameters θV ; Temperature coefficient τ ;

Ensure: Updated CLIP parameters
1: for i = 1 to N do
2: Initialize trainable prompts Ti and Vi

3: Load dataset Di with samples {(xj , yj)}Ni
j=1

4: Ki ← ProtoExtrac(Di)
5: Add key Ki to prompt pool P
6: for t = 1 to Titer do
7: for each (xj , yj) in Di do
8: T̂i, V̂i ← Aligenr(Vi;Ti)
9: Yi ← TextEncoder(yj ;Ti, T̂i)

10: Xi,j ← ImageEncoder(xj ;Vi, V̂i)
11: si,j ← sim(Xi,j , Yi)
12: Compute loss L ← LCE(si,j , yj ; τ)
13: θA, θV , θT ← GradientDescent(L, η)
14: end for
15: end for
16: Update prompt pool P with new prompts Ti and Vi and key Ki

17: end for
18: return P

3.1 Domain-Adaptive Cross-modal Text Prompt

Domain-adaptive text prompts are designed to dynamically adjust to the unique
characteristics of each domain during training and inference. By associating each
task with a prototype feature, these prompts ensure that the model can retrieve
domain-specific knowledge, enabling task-specific adaptation and robust transfer
across diverse domains.
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CLIP’s text encoder converts text into feature representations by tokenizing
input text and projecting tokens into word embeddings Ei

0 ∈ RNt×dt .
We introduce a novel Domain-Adaptive Text Prompt method to advance the

conventional continual learning process. This methodology augments CLIP’s text
encoder with learnable tokens T i

l in lth layer of text encoder, each T i
l ∈ Rdt , with

lengths aligned to the visual prompts for cross-modality correspondence. Con-
sequently, the input embeddings are a concatenation of the learnable prompts:
[Ei

0, T
i
1], where Ei

0 denotes the static input tokens.
Specifically, we add new learnable tokens to each transformer layer TextLayerl(·)

in the text encoder, up to L layers in depth. The output embeddings Ei
l−1 are

sequentially fed into the lth transformer layer TextLayerl, for l = 1, 2, · · · , L.
We introduce an Aligner module that projects visual prompts into the text

space to enhance cross-modal interaction. The projected visual prompt T̂ i
l is

computed as:

T̂ i
l = AV2TV

i
l (3)

where AV2T ∈ Rdt×dv is a learnable matrix that aligns the visual prompt space
to the text prompt space.

We incorporate the projected visual prompt into the value (V) component of
the self-attention mechanism in the text encoder. This design choice is particu-
larly effective because it does not interfere with the core attention computation.
Specifically, Query (Q) and Key (K) are used to compute attention weights,
so altering them could disrupt the attention alignment, whereas modifying V
does not affect this crucial calculation. This approach preserves original atten-
tion patterns in Q and K while enhancing cross-modal information integration,
allowing efficient information flow from the visual to the textual domain without
disrupting the established attention mechanisms.

The text encoder is then modified to incorporate both the original text
prompt and the projected visual prompt:

Ei
l = TextLayerl([E

i
l−1, T

i
l , T̂

i
l ]), l = 1, 2, . . . , L. (4)

Upon reaching the Lth layer, the final textual representation Y i is obtained
as:

Y i = TextProj
(
Ei

L

)
. (5)

When the learnable tokens are only introduced at the initial textual embed-
ding, our approach is similar in structure to the CoOp method [38], which uses
learnable class templates to replace manually designed templates. Our approach
distinguishes itself through domain-adaptive prompts, which empower the model
to flexibly adapt its responses to the unique characteristics of each domain, ul-
timately enabling more efficient continual learning.

Prototype Extractor To capture the essence of each task’s textual charac-
teristics and to enable efficient retrieval of relevant prompts during inference,
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we introduce the Prototype Extractor. As can be seen from Figure 3, we utilize
the original CLIP model’s text encoder TextEnc to acquire text feature repre-
sentation Ŷ i

c . Prototypes serve as compact representations of each task’s textual
characteristics. They enable efficient retrieval of relevant prompts during infer-
ence, ensuring the model can quickly adapt to the current task without losing
previously acquired knowledge. The process is as follows:

Ŷ i
c = TextEnc(yic) (6)

Herein, Ŷ i
c represents the feature embedding for the cth class of task i.

Fig. 3: The architecture of our Prototype Extractor.

The prototype feature for task i, denoted as P i, is computed as follows:

P i =

∑Nc

c=1 Y
i
c∣∣∣∑Nc

c=1 Y
i
c

∣∣∣ (7)

In this equation, P i is the normalized prototype feature for the ith task. This is
derived by calculating the sum of the feature representations Y i

c for all classes
c in task i and then normalizing this sum to unit length. The normalization
ensures that the prototype feature vector norm is one. These prototype features
and their corresponding domain-specific prompts are stored in a prompt pool.
The memory pool is designed to store only compact prototype features and
corresponding prompts rather than raw data or task-specific checkpoints. This
significantly reduces storage requirements and ensures scalability, even as the
number of tasks increases. During inference, the model selects the prompt with
the most similar key based on the maximum cosine similarity between the input
and stored prototype features.

3.2 Cross-modal Visual Prompt

Cross-modal prompts with mixed visual and textual information are essential
in vision-language models. By incorporating visual and projected text prompts,
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ChordPrompt enables richer cross-modal interactions, leading to more robust and
adaptable representations.

Image patches U j
b of xi

j , where Nb is the total number of patches, are initially
embedded as Hi

0,j :

Hi
0,j = Embedding(U j

1 , ..., U
j
Nb

) (8)

To facilitate cross-modal learning, we introduce an Aligner module that
projects text prompts into the vision space. The Aligner module, a key inno-
vation in ChordPrompt, facilitates bidirectional information flow between visual
and textual modalities, enabling more robust and comprehensive representations.
The projected text prompt V̂ i

l is computed as:

V̂ i
l = AT2VT

i
l (9)

where AT2V ∈ Rdv×dt is a learnable matrix that aligns the text prompt space to
the visual prompt space.

The vision encoder is then modified to incorporate both the original visual
prompt and the projected text prompt:

Hi
l,j = VisLayerl([H

i
l−1,j , V

i
l , V̂

i
l ]), l = 1, 2, . . . , L. (10)

Similar to the text encoder, we incorporate the projected text prompt into the
value (V) component of the self-attention mechanism in the vision encoder.

Upon reaching the Lth layer, the prompts, and embeddings are combined to
get the final visual representation Xi

j :

Xi
j = VisProj

(
Hi

L,j

)
. (11)

where VisProj is the visual projection layer, transforms the output of the visual
encoder into a visual representation that can be directly compared with text
embeddings in a shared embedding space.

In the end, We store the learned prompts and their corresponding keys for
each task in a memory pool. We use cosine similarity during inference to retrieve
the most suitable prompt from the pool based on the current task’s input.

3.3 Algorithm Architecture

The detailed training process of our algorithm is illustrated in 1. The detailed
inference process is presented in Algorithm 2. Notably, our approach’s image
encoder of CLIP differs from that in conventional continual learning methods, as
the latter do not utilize prompts in the vision branch. The more distinguishable
image embeddings of ChordPrompt emphasize that adding complementary visual
prompts and domain-level text prompts leads to better adaptation of CLIP in
continual learning scenarios.

We can define our learning objective to optimize the parameters for indepen-
dent visual prompts V , separate textual prompts T , and the parameters of the
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Algorithm 2 Inference Process for ChordPrompt
Require: The dataset class categories C={y1, ..., yNc}; Image x for inference; Proto-

type extractor ProtoExtrac; Discrimination threshold γ; Prompt pool P with keys
Ki and domain-specific prompts; Original model CLIP; Aligner matrices AV2T,
AT2V;

Ensure: Predicted class label ŷ for image x;
1: Px ← ProtoExtrac(y1, ..., yNc)

# Query the prompt pool and select the prompts
2: Smax ← −∞; imax ← null
3: for all Ki ∈ P do
4: S ← Px·Ki

∥Px∥∥Ki∥
5: if S > Smax then
6: Smax ← S ; imax ← i # i is the index of the key
7: end if
8: end for

# Inference using original CLIP
9: if Smax < γ then

10: return ŷ = CLIP(x, y1, ..., yNc)
11: else
12: V imax , T imax , AV2T, AT2V ← P[imax] # Retrieve prompts
13: T̂ imax ← AV2TV

imax # Project visual prompt to text space
14: V̂ imax ← AT2VT

imax # Project text prompt to visual space
15: end if
16: Y imax ← TextEncoder(C, T imax , T̂ imax) # Generate text representation
17: Ximax ← ImageEncoder(x, V imax , V̂ imax) # Generate image representation
18: ŷ ← argmax(softmax(sim(Y imax , Ximax)/τ))
19: return ŷ

Aligner component θA. The learning objective can be formulated using the CE
loss function. This optimization can be concisely represented as:

min
V,T,θP

LCE (F(x;V, T, θA), y) (12)

where LCE is the CE loss [21] that measures the predictive discrepancy in a
contrastive learning setup, F is the function representing the vision-language
model parameterized by the prompts, and the Aligner, x is the input data, and
y is the label or target data used for contrastive prediction.

By minimizing this objective, ChordPrompt optimizes the visual and textual
prompts and the Aligner parameters. This approach enables the model to adapt
to new tasks while preserving knowledge from previous tasks, effectively address-
ing catastrophic forgetting in continual learning settings. The CE loss ensures
the model learns discriminative features across different modalities and tasks.
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Average

CLIP ViT-b/16
Zero-shot - 24.3 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.2 65.3
full fine-tuning - 62.0 96.2 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8 89.2
Transfer
Continual-FT 211M - 67.1 46.0 32.1 35.6 35.0 57.7 44.1 60.8 20.5 46.6 44.6
LwF [16] 211M - 74.5 56.9 39.1 51.1 52.6 72.8 60.6 75.1 30.3 55.9 58.9
iCaRL [23] 211M - 56.6 44.6 32.7 39.3 46.6 68.0 46.0 77.4 31.9 60.5 50.4
LwF-VR [3] 211M - 77.1 61.0 40.5 45.3 54.4 74.6 47.9 76.7 36.3 58.6 57.2
WiSE-FT [32] 211M - 73.5 55.6 35.6 41.5 47.0 68.3 53.9 69.3 26.8 51.9 52.3
Dist. only 211M - 80.1 62.2 40.2 39.9 58.1 80.8 53.4 74.6 38.1 61.9 58.9
ZSCL [36] 211M - 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
DDAS[35] 59.8M - 87.9 68.2 44.4 49.9 70.7 88.7 59.7 89.1 64.5 65.5 68.9
ChordPrompt 9.5M - 88.9 68.6 45.6 54.0 71.1 88.5 59.9 89.0 64.8 64.8 69.5
Avg.
Continual-FT 211M 25.5 81.5 59.1 53.2 64.7 51.8 63.2 64.3 69.7 31.8 49.7 55.9
LwF [16] 211M 36.3 86.9 72.0 59.0 73.7 60.0 73.6 74.8 80.0 37.3 58.1 64.7
iCaRL [23] 211M 35.5 89.2 72.2 60.6 68.8 70.0 78.2 62.3 81.8 41.2 62.5 65.7
LwF-VR [3] 211M 29.6 87.7 74.4 59.5 72.4 63.6 77.0 66.7 81.2 43.7 60.7 65.1
WiSE-FT [32] 211M 26.7 86.5 64.3 57.1 65.7 58.7 71.1 70.5 75.8 36.9 54.6 60.7
Dist. only 211M 48.1 90.6 79.8 63.2 75.6 72.5 84.7 70.2 79.8 46.9 63.7 70.5
ZSCL [36] 211M 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 75.4
DDAS[35] 59.8M 50.2 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7
ChordPrompt 9.5M 54.5 96.9 82.0 70.3 82.1 84.5 90.1 74.1 90.5 68.1 66.1 78.1
Last
Continual-FT 211M 31.0 89.3 65.8 67.3 88.9 71.1 85.6 99.6 92.9 77.3 81.1 77.3
LwF [16] 211M 26.3 87.5 71.9 66.6 79.9 66.9 83.8 99.6 92.1 66.1 80.4 74.6
iCaRL [23] 211M 35.8 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9 80.1
LwF-VR [3] 211M 20.5 89.8 72.3 67.6 85.5 73.8 85.7 99.6 93.1 73.3 80.9 76.6
WiSE-FT [32] 211M 27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3 77.7
Dist. only 211M 43.3 91.9 81.3 72.4 95.1 90.5 90.4 99.7 92.5 85.1 81.8 84.0
ZSCL [36] 211M 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
DDAS[35] 59.8M 49.8 92.2 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0
ChordPrompt 9.5M 54.5 97.1 85.0 79.5 98.2 95.8 92.0 99.1 94.4 83.0 79.0 87.0
Table 1: Transfer, Average, and Last accuracy (%) of various continue learning
approaches on MTIL benchmark.

4 Experiments

4.1 Datasets and Models

MTIL Benchmark. Given that different classes from a single dataset usually
have a common image source and a similar style [8, 28], we suggest a cross-
domain version of task incremental learning called Multi-domain Task Incre-
mental Learning (MTIL). This benchmark presents a significant challenge for
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continual learning methods, as it requires the model to adapt to multiple do-
mains while preserving its performance on previous tasks. In this framework,
various tasks are gathered from distinct domains, each necessitating unique do-
main knowledge for humans to obtain high precision. Our MTIL benchmark
comprises 11 tasks, including several tasks depicted in Table 1.

The MTIL benchmark presents a significant challenge, with 1,201 classes. We
employ a fixed sequence for evaluation. The datasets in Order I are organized in
alphabetical sequence. Conversely, the Table 3 uses a random order (Order-II):
StanfordCars, Food, MNIST, OxfordPet, Flowers, SUN397, Aircraft, Caltech101,
DTD, EuroSAT, CIFAR100. Experiments are done in Order I by default. Order
II simulates real-world scenarios with unpredictable task arrivals, testing the
robustness of domain-adaptive prompts to task order variations.

Models. We implement the CLIP model with a ViT-B/16 image encoder [4]
and optimize it using the AdamW optimizer [18]. We used a learning rate of 2e-3
for each task and a batch size of 64. We allocated 2000 iterations per task for
multi-domain task incremental learning and followed the evaluation framework
outlined in [36].

Metrics. The measures for MTIL are displayed in Table 1, where the rows
indicate training steps, and each column represents the performance for a specific
dataset. For traditional continual learning, only the scores below the diagonal of
the accuracy matrix carry significance since they do not allow for zero-shot pre-
dictions on unknown tasks. However, the zero-shot transfer capability of vision-
language models allows them to generate predictions across all datasets. The
"Avg" metric represents the mean accuracy across all datasets evaluated at
every training step, providing an overall measure of the model’s performance
throughout the continual learning process. The "Last" metric represents the
performance of every task after the continual learning process, indicating the
model’s flexibility in adapting to downstream tasks. The "Transfer" metric is
computed as the average task performance in the upper-right triangle of the
accuracy matrix, assessing the model’s ability to maintain its zero-shot trans-
fer capability before learning task i, disregarding tasks learned after task i. A
model that excels in both the "Last" and "Transfer" metrics exemplifies the
ideal continual learner, adapting to new tasks while retaining past knowledge
and generalization abilities.

4.2 Ablation Study

Layer Depth. As shown in Figure 4a, we examine the effect of different layer
depths on the ChordPrompt methodology. As the model’s feature space is more
mature and stable, inserting prompts into deeper layers of the frozen model leads
to a less significant impact. Therefore, we add the prompts in a front-to-back
manner. In this context, ChordPrompt generally attains optimal performance
with a layer depth of 12 across most datasets. A shallower depth of 10 leads
to slightly inferior accuracy compared to a depth of 12. It is observed that
when increasing the layer depth from front to back, the performance improves
consistently until saturation.
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Average

Transfer
Continual-FT 211M - 72.8 53.0 36.4 35.4 43.3 68.4 47.4 72.6 30.0 52.7 51.2
LwF [16] 211M - 72.1 49.2 35.9 44.5 41.1 66.6 50.5 69.0 19.0 51.7 50.0
LwF-VR[3] 211M - 82.2 62.5 40.1 40.1 56.3 80.0 60.9 77.6 40.5 60.8 60.1
WiSE-FT[32] 211M - 77.6 60.0 41.3 39.4 53.0 76.6 58.1 75.5 37.3 58.2 57.7
ZSCL[36] 211M - 84.0 68.1 44.8 46.8 63.6 84.9 61.4 81.4 55.5 62.2 65.3
DDAS[35] 59.8M - 87.9 68.2 44.1 48.1 64.7 88.8 69.0 89.1 64.5 65.1 68.9
ChordPrompt 9.5M - 88.5 68.6 45.6 54.0 71.1 88.5 59.9 89.0 64.8 64.9 69.5
Avg.
Continual-FT 211M 28.1 86.4 59.1 52.8 55.8 62.0 70.2 64.7 75.5 35.0 54.0 58.5
LwF [16] 211M 23.5 77.4 43.5 41.7 43.5 52.2 54.6 63.4 68.0 21.3 52.6 49.2
LwF-VR [3] 211M 24.9 89.1 64.2 53.4 54.3 70.8 79.2 66.5 79.2 44.1 61.6 62.5
WiSE-FT [32] 211M 32.0 87.7 61.0 55.8 68.1 69.3 76.8 71.5 77.6 42.0 59.3 63.7
ZSCL[36] 211M 28.2 88.6 66.5 53.5 56.3 73.4 83.1 56.4 82.4 57.5 62.9 64.4
DDAS[35] 59.8M 30.0 89.6 73.9 58.7 69.3 79.3 88.1 76.5 89.1 65.3 65.8 71.4
ChordPrompt 9.5M 39.3 93.8 74.5 59.2 75.0 83.0 87.8 71.4 89.8 66.7 65.6 73.3
Last
Continual-FT 211M 27.8 86.9 60.1 58.4 56.6 75.7 73.8 93.1 82.5 57.0 66.8 67.1
LwF [16] 211M 22.1 58.2 17.9 32.1 28.1 66.7 46.0 84.3 64.1 31.5 60.1 46.5
LwF-VR [3] 211M 22.9 89.8 59.3 57.1 57.6 79.2 78.3 77.7 83.6 60.1 69.8 66.9
WiSE-FT[32] 211M 30.8 88.9 59.6 60.3 80.9 81.7 77.1 94.9 83.2 62.8 70.0 71.9
ZSCL[36] 211M 26.8 88.5 63.7 55.7 60.2 82.1 82.6 58.6 85.9 66.7 70.4 67.4
DDAS[35] 59.8M 30.0 89.6 73.9 58.7 69.3 79.3 88.1 76.5 89.1 65.3 65.8 71.4
ChordPrompt 9.5M 39.3 94.1 75.8 64.3 87.0 92.9 87.0 91.6 91.8 75.3 72.8 79.3
Table 2: Comparison with state-of-the-art methods on few-shot MTIL bench-
mark in terms of "Transfer", "Average", and "Last" scores (%). Ours converges
in 500 iterations on few-shot. We label the best and second methods with bold
and underline styles. The top block indicates the upper-bound solutions to adapt
the CLIP on each task.

Prompt Length. As illustrated in Figure 4b, we present the influence
of prompt length within the ChordPrompt framework. An interesting pattern
emerges where the performance on the test set relative to the original classes de-
clines as the prompt length increases. This trend indicates that longer prompts
may lead to overfitting, which harms the model’s ability to generalize to unseen
test samples. Therefore, we use relatively shorter prompts that may provide an
ideal balance between learnability and generalizability. These findings highlight
the importance of carefully tuning layer depth and length to balance model
adaptability and generalization capability in continual learning scenarios.

Effectiveness of Domain-Adaptive Text Prompt. The effectiveness of
our domain-adaptive text prompt is demonstrated in Table 4, where Chord-
Prompt significantly outperforms other prompt-based methods such as L2P (-
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(a) The relationship between accuracy
and the layer depth. (Prompt length=2.
For better readability, we only display
four tasks with close accuracy.)

(b) The relationship between accuracy
and the prompt length. (layer depth=12.
For better readability, we only display
four tasks with close accuracy.)

Fig. 4: Comparisons of Performance

13.2% in Transfer accuracy), DualPrompt (-13.0%), and S-Prompts (-13.2%).
These competing prompt methods lack domain-adaptive capabilities, resulting
in their inability to select appropriate prompts for different domains, which
explains their substantial performance degradation in multi-domain scenarios.
MaPLe, despite using multi-modal prompts, still falls short in the Last accu-
racy metric (83.9% vs. our 86.0%) due to its unidirectional information flow
and absence of domain-adaptive mechanisms for prompt selection across varied
domains.

Method Transfer ∆ Avg. ∆ Last ∆

Zero-shot 65.4 0.0 65.3 0.0 65.3 0.0
CL. 46.6 -18.8 56.2 -9.1 67.4 2.1
LwF 53.2 -12.2 62.2 -3.1 71.9 6.6
iCaRL 50.9 -14.5 56.9 -8.4 71.6 6.3
LwF-VR 53.1 -12.3 60.6 -4.7 68.3 3.0
WiSE-FT 51.0 -14.4 61.5 -3.8 72.2 6.9
ZSCL 64.2 -1.2 74.5 9.2 83.4 18.1
ChordPrompt 65.4 0.0 75.6 10.3 85.1 19.8

Table 3: Compare methods on MTIL in Order II.
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Parameter Analysis. Parameter Analysis in Table 1 showcases the com-
putational complexity comparison among different methods. ChordPrompt intro-
duces 9.48M trainable parameters, ChordPrompt’s trainable parameter count is
substantially lower than methods like iCaRL, LWF, and ZSCL, which require
fine-tuning the entire CLIP model (211M parameters). ChordPrompt substan-
tially improves in continual learning scenarios while only requiring updates to
a small portion of the overall model parameters, making it more efficient than
full model fine-tuning approaches. This lightweight design ensures compatibility
with resource-constrained environments while maintaining superior performance
in continual learning scenarios.

Few-shot Multi-Domain Task Incremental Learning. We further as-
sess our method in a few-shot multi-domain task incremental learning scenario,
where the CLIP model is restricted to only a handful of samples per task. Under
the 5-shot setting, Table 2 presents the results based on the same evaluation
metrics as Table 1. Our approach consistently achieves better performance than
leading existing methods across most datasets. These findings indicate that the
proposed methods are highly effective at mitigating the forgetting problem in
continual learning. Moreover, the domain-adaptive prompt in our framework
is able to efficiently distinguish between data distributions of different tasks,
demonstrating robust distribution discrimination capabilities even with limited
training examples.

Other Prompt Methods and Ablation Study. Our experimental results
demonstrate that the cross-modal prompt approach consistently outperforms
other continual learning methods across various tasks.

Method Transfer ∆ Avg. ∆ Last ∆

Zero-shot 69.5 0.0 65.3 0.0 65.3 0.0
L2P 53.2 -16.3 67.9 2.6 82.0 16.7
Dualp. 52.4 -17.1 68.0 2.7 82.3 17.0
S-Prompts 52.2 -17.3 68.3 3.0 82.4 17.1
ChordPrompt 69.4 -0.1 77.2 11.9 86.0 20.7

Table 4: Ablation Study on MTIL in Order I.

In Table 4, L2P [31], DualPrompt [30], and S-Prompts [29] all use single-
modal prompts without domain-adaption. This neglects the benefits of cross-
modal synergy and domain feature. As a result, these methods perform poorly
in multi-domain task incremental learning (MTIL) scenarios, as they were pri-
marily designed for class-incremental learning and fail to adapt effectively across
different domains.

ChordPrompt’s superior performance stems from its unique cross-modal infor-
mation sharing mechanism. Unlike traditional methods that allow multi-modal
interaction at the final stage, ChordPrompt shares prompt information across all
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CLIP model layers. This cross-layer sharing of prompts enables a more com-
prehensive exchange of information between the visual and textual modalities,
allowing the model to capture fine-grained correspondences and interactions at
various levels of abstraction. By facilitating this deep integration of cross-modal
information, ChordPrompt can better align the visual and textual representa-
tions, leading to more robust and adaptable continual learning. The performance
gain is particularly notable in complex, multi-domain tasks like the MTIL bench-
mark, demonstrating ChordPrompt’s effectiveness in integrating diverse knowl-
edge types. This underscores its potential for real-world applications with blurred
task boundaries and crucial multi-modal processing.

5 Conclusion

ChordPrompt enhances the deployment of vision-language models by addressing
continual learning challenges and eliminating the need for costly retraining. Its
strong performance in zero-shot transfer and downstream tasks highlights its
practicality and versatility. Our experiments validate the effectiveness of domain-
adaptive text and cross-modal visual prompts in preserving task-specific and
general knowledge.

While achieving significant improvements in classification tasks, future work
will explore extending ChordPrompt to generative vision-language models, such
as visual question answering and image captioning, to handle more open-ended
and complex multi-modal interactions.

References

1. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Men-
sch, A., Millican, K., Reynolds, M., et al.: Flamingo: a visual language model for
few-shot learning. Advances in neural information processing systems 35, 23716–
23736 (2022)

2. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without mem-
orizing. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. pp. 5138–5146 (2019)

3. Ding, Y., Liu, L., Tian, C., Yang, J., Ding, H.: Don’t stop learning: Towards con-
tinual learning for the clip model. arXiv preprint arXiv:2207.09248 (2022)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: International Con-
ference on Learning Representations (2020)

5. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs
distillation for small-tasks incremental learning. In: ECCV 2020-16th European
Conference on Computer Vision. vol. 12365, pp. 86–102. Springer (2020)

6. Douillard, A., Ramé, A., Couairon, G., Cord, M.: Dytox: Transformers for con-
tinual learning with dynamic token expansion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 9285–9295 (2022)

7. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cogni-
tive sciences 3(4), 128–135 (1999)



ChordPrompt: Orchestrating Cross-Modal Prompt Synergy 17

8. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai,
R., Zhu, T., Parajuli, S., Guo, M., et al.: The many faces of robustness: A critical
analysis of out-of-distribution generalization. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 8340–8349 (2021)

9. Jeeveswaran, K., Bhat, P.S., Zonooz, B., Arani, E.: Birt: Bio-inspired re-
play in vision transformers for continual learning. In: International Confer-
ence on Machine Learning, ICML 2023. pp. 14817–14835. PMLR (2023),
https://proceedings.mlr.press/v202/jeeveswaran23a.html

10. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H.,
Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning
with noisy text supervision. In: International conference on machine learning. pp.
4904–4916. PMLR (2021)

11. Jung, D., Han, D., Bang, J., Song, H.: Generating instance-level prompts for
rehearsal-free continual learning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 11847–11857 (2023)

12. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: Multi-modal
prompt learning. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 19113–19122 (2023)

13. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. pp. 3045–3059 (2021)

14. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In: International
conference on machine learning. pp. 19730–19742. PMLR (2023)

15. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics. pp. 4582–4597 (2021)

16. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

17. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. Advances in neural
information processing systems 36 (2024)

18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2018)

19. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. Advances in neural information
processing systems 32 (2019)

20. Ni, Z., Wei, L., Tang, S., Zhuang, Y., Tian, Q.: Continual vision-language
representation learning with off-diagonal information. In: International Con-
ference on Machine Learning, ICML 2023. pp. 26129–26149. PMLR (2023),
https://proceedings.mlr.press/v202/ni23c.html

21. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

22. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

23. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. pp. 2001–2010 (2017)



18 Zhiyuan Wang and Bokui Chen

24. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

25. Shams, L., Seitz, A.R.: Benefits of multisensory learning. Trends in cognitive sci-
ences 12(11), 411–417 (2008)

26. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. Advances in neural information processing systems 30 (2017)

27. Thengane, V., Khan, S., Hayat, M., Khan, F.: Clip model is an efficient continual
learner. arXiv preprint arXiv:2210.03114 (2022)

28. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734 (2019)

29. Wang, Y., Huang, Z., Hong, X.: S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information
Processing Systems 35, 5682–5695 (2022)

30. Wang, Z., Zhang, Z., Ebrahimi, S., Sun, R., Zhang, H., Lee, C.Y., Ren, X., Su, G.,
Perot, V., Dy, J., et al.: Dualprompt: Complementary prompting for rehearsal-free
continual learning. In: European Conference on Computer Vision. pp. 631–648.
Springer (2022)

31. Wang, Z., Zhang, Z., Lee, C.Y., Zhang, H., Sun, R., Ren, X., Su, G., Perot, V., Dy,
J., Pfister, T.: Learning to prompt for continual learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 139–149
(2022)

32. Wortsman, M., Ilharco, G., Kim, J.W., Li, M., Kornblith, S., Roelofs, R., Lopes,
R.G., Hajishirzi, H., Farhadi, A., Namkoong, H., et al.: Robust fine-tuning of zero-
shot models. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 7959–7971 (2022)

33. Xing, Y., Wu, Q., Cheng, D., Zhang, S., Liang, G., Wang, P., Zhang, Y.: Dual
modality prompt tuning for vision-language pre-trained model. IEEE Transactions
on Multimedia (2023)

34. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically ex-
pandable networks. In: 6th International Conference on Learning Representations,
ICLR (2018)

35. Yu, J., Zhuge, Y., Zhang, L., Hu, P., Wang, D., Lu, H., He, Y.: Boosting continual
learning of vision-language models via mixture-of-experts adapters. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
23219–23230 (2024)

36. Zheng, Z., Ma, M., Wang, K., Qin, Z., Yue, X., You, Y.: Preventing zero-shot
transfer degradation in continual learning of vision-language models. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp.
19125–19136 (October 2023)

37. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-
language models. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 16816–16825 (2022)

38. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language
models. International Journal of Computer Vision 130(9), 2337–2348 (2022)

39. Zhu, J., Lai, S., Chen, X., Wang, D., Lu, H.: Visual prompt multi-modal tracking.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 9516–9526 (2023)


