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Abstract. Multi-modal Emotion Recognition in Conversation (MERC) has re-
ceived considerable attention in various fields, e.g., human-computer interac-
tion and recommendation systems. Most existing works perform feature disen-
tanglement and fusion to extract emotional contextual information from multi-
modal features. After revisiting the characteristic of MERC, we argue that long-
range contextual semantic information should be extracted in the feature disen-
tanglement stage and the inter-modal semantic information consistency should
be maximized in the feature fusion stage. Inspired by recent State Space Models
(SSMs), Mamba can efficiently model long-distance dependencies. Therefore, in
this work, we fully consider the above insights to further improve the perfor-
mance of MERC. Specifically, on the one hand, in the feature disentanglement
stage, we propose a Broad Mamba, which does not rely on a self-attention mech-
anism for sequence modeling, but uses state space models to compress emotional
representation, and utilizes broad learning systems to explore the potential data
distribution in broad space. Different from previous SSMs, we design a bidirec-
tional SSM convolution to extract global context information. On the other hand,
we design a multi-modal fusion strategy based on probability guidance to max-
imize the consistency of information between modalities. Experimental results
show that the proposed method can overcome the computational and memory
limitations of Transformer when modeling long-distance contexts, and has great
potential to become a next-generation general architecture.

Keywords: Multi-modal Emotion Recognition · State Space Models · Multi-
modal Fusion.

1 Introduction

Emotion recognition in conversation [43,36,38,37] has received considerable research
attention and has been widely used in various fields, e.g., emotion analysis [14] and pub-
lic opinion warning [44], etc. Recently, research on Multi-modal Emotion Recognition
in Conversation (MERC) has mainly focused on multimodality, i.e., text, video and au-
dio [25,3]. As shown in Fig. 1, MERC aims to identify emotion labels in sentences with
text, video, and audio information. Unlike previous work [17] that only uses text infor-
mation for emotion recognition, MERC improves the model’s emotion understanding
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capabilities by introducing audio and video information. The introduction of audio and
video alleviates the limitation of insufficient semantic information caused by relying
solely on text features.

Hey honey! I missed you today! (Joy)

Oh, yeah?(Surprise)

Oh, well... Maybe we could... (Neutral)

Ok, trying to turn me on by making a mess?Know your 

audience!(Joy)

Yeah.  What d'you wanna do tonight? (Neutral)

We really need to take those tests? (Sadness)

Besides, tomorrow we're doing those fertility tests and until 

then you need to keep your tadpoles in the tank.(Neutral)

Fig. 1: An illustrative example of multi-modal
emotion recognition in conversation. For each
given sentence, it contains three modal infor-
mation about the speaker, i.e., text, video and
audio. The task of MERC is to identify the emo-
tional labels contained in the three modal infor-
mation.

Many existing works [24,40,35] im-
prove the performance of MERC by effec-
tively extracting contextual semantic in-
formation of different modalities and fus-
ing inter-modal complementary semantic
information. By revisiting the characteris-
tics of MERC, we argue that the core idea
of MERC includes a feature disentangle-
ment step and a feature fusion step.

Specifically, the goal of feature disen-
tanglement is to extract the contextual se-
mantic information most relevant to emo-
tional features in multi-modal features
[42]. Recent work on Transformers [21]
has achieved great success in modeling
long-range contextual semantic informa-
tion. Compared with traditional Recurrent
Neural Networks (RNNs) [27,20], the ad-
vantage of Transformer is that it can effec-
tively provide global contextual semantic
information through the attention mecha-
nism in parallel. However, the quadratic
complexity of the self-attention mecha-
nism in Transformers poses challenges in
terms of speed and memory when dealing
with long-range context dependencies. Inspired by the state space models, Mamba with
linear complexity is proposed to achieve efficient training and inference. Mamba’s ex-
cellent scaling performance shows that it is a promising Transformer alternative for
context modeling. Therefore, to efficiently extract long-distance contextual semantic
information, we designed the broad Mamba, which incorporates the SSMs for data-
dependent global emotional context modeling, and a broad learning system to explore
the potential data distribution in the broad space. Different from previous SSMs, we
design a bidirectional SSM convolution to extract global context information. In ad-
dition, we also introduce position encoding information to improve SSMs’ ability to
understand sequences at different positions.

After completing feature disentanglement, the model needs to perform feature fu-
sion to maximize the consistency of information between different modalities. The core
idea of feature fusion is to assign different weights by determining the importance of
different modal features to downstream tasks. Many cross-modal feature fusions have
been proposed in existing MERC research, e.g., tensor fusion network [45], graph fu-
sion network [46,34], attention fusion [32]. However, the feature fusion process in pre-
vious works is relatively coarse-grained and cannot actually determine the contribution
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of each modal feature to downstream tasks. We argue that label information plays an
important role in guiding multi-modal information fusion. Therefore, how to properly
fuse multi-modality and determine the contribution of multi-modal features to down-
stream tasks in a fine-grained manner remains a challenge.

To tackle the above problems, we propose an effective probability-guided fusion
mechanism to achieve multi-modal contextual feature fusion, which utilizes the pre-
dicted label probability of each modal feature as the weight vectors of the modal fea-
tures. Compared with other feature fusion models for emotion recognition tasks, the
proposed fusion method can utilize the predicted label probability information in a fine-
grained manner to actually determine the contribution of different modal features to the
emotion prediction task.

To evaluate the effectiveness and efficiency of our proposed method, we conduct ex-
tensive experiments on two widely used benchmark datasets, IEMOCAP and MELD. In
fact, the proposed method achieves state-of-the-art performance with low computational
consumption, and experimental results demonstrate its effectiveness and efficiency.

Overall, our main contributions can be summarized as follows:

– We propose a Broad Mamba, which combines a broad learning system for search-
ing abstract emotional features in a broad space and a SSM for data-dependent
global emotional context information extraction. Different from previous SSMs,
we design a bidirectional SSM convolution to extract global context information.

– We propose an effective probability-guided fusion mechanism to achieve multi-
modal contextual feature fusion, which utilizes the predicted label probability of
each modal feature as the weight vectors of the modal features.

– We conduct extensive experiments on the IEMOCAP and MELD datasets. Experi-
mental results show that our proposed method achieves superior performance com-
pared with the well-established Transformer or GNN architectures.

2 Related work

2.1 Multi-modal Emotion Recognition in Conversation

In the early eras, GRU [5] and LSTM [13] are the de-facto standard network designs
for Natural Language Processing (NLP). Many recurrent neural network architectures
[10], [27], [20], [11] have been proposed for various Multi-modal Emotion Recognition
in Conversation (MERC). The pioneering work, Transformer changed the landscape
by enabling efficient parallel computing under the premise of long sequence modeling.
Transformer treats text as a series of 1D sequence data and applies an attention architec-
ture to achieve sequence modeling. Transformer’s surprising results on long sequence
modeling and its scalability have encouraged considerable follow-up work for MERC
[4], [33], [22]. One line of works focus on achieving intra-modal and inter-modal in-
formation fusion. For example, CTNet [23] proposes a single Transformer and cross
Transformer. CKETF [7] constructs a Context and Knowledge Enriched Transformer.
TL-ERC applies the Transformer with the transfer learning. Another pioneering work,
Graph Neural Network (GNN) further improved the performance of ERC. The core idea
of GNN is to learn the representation of nodes or graphs through the feature information
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of nodes and the connection relationships in the graph structure [46]. For instance, Dia-
logueGCN [6] proposes to use context information to build dialogue graphs. DER-GCN
[1] fuses event relationships into speaker relationship graphs.

2.2 State Space Models

The State Space Models (SSMS) is used to describe the dynamic change process con-
sisting of observed values and unknown internal state variables. Gu et al. [9] proposes
a Structured State Space Sequence (S4) model, an alternative to the Transformer archi-
tecture that models long-range dependencies without using attention. The property of
linear complexity of state space sequence lengths has received considerable research
attention. Smith et al. [39] improves S4 by introducing MIMO SSM and efficient par-
allel scanning into the S4 layer to achieve parallel initialization and state reset of the
hidden layer. He et al. [12] proposes introducing dense connection layers into SSM to
improve the feature representation ability of shallow hidden layer states. Mehta et al.
[28] improves the memory ability of the hidden layer by introducing gated units on S4.
Recently, Gu et al. [8] proposes the general language model Mamba, which has better
sequence modeling capabilities than Transformers and is linearly complex. Zhu et al.
[47] introduces bidirectional SSM based on Mamba to improve the context information
representation of the hidden layer.

3 Preliminary Information

3.1 Multi-modal Feature Extraction

Following previous work [26], we use RoBerta in this paper to obtain context-embedded
representations of text. For video and audio features, following previous work [19], we
utilize DenseNet and openSMILE for feature extraction and obtain video embedding
features ξv and audio embedding features ξa, respectively.

3.2 State Space Model

The State Space Model (SSMs) is an efficient sequence modeling model that can cap-
ture the dynamic changes of data over time. A typical SSM consists of a state equation
and an observation equation, where the state equation describes the dynamic changes
within the system, and the observation equation describes the connection between the
system state and observations. Given an input x(t) ∈ R and a hidden state h(t) ∈ R,
y(t) is obtained mathematically through a linear ordinary differential equations (ODE)
as follows:

h′(t) = Ah(t) + Bx(t), y(t) = Ch(t) (1)

where A ∈ RN×N is the evolution parameter and B ∈ RN×1,C ∈ R1×N are the
projection parameters, and N is the latent state size.

Inspired by SSM, Mamba discretizes ODEs to achieve computational efficiency.
Mamba discretizes the evolution parameter A and the projection parameter B by intro-
ducing a timescale parameter∆ to obtain A and B. The formula is defined as follows:
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A = exp (∆A),B = (∆A)−1(exp (∆A)− I) ·∆B (2)

In practice, we use a first-order Taylor series to obtain an approximation of B as
follows:

B = (e∆A − I)A−1B ≈ (∆A)(∆A)−1∆B =∆B (3)

After obtaining the discretized A and B, we rewrite Eq. 1 as follows:

ht = Aht−1 + Bxt, yt = Cht + Dxt (4)

and then the output is computed via global convolutiona as follows:

K = (CB,CAB, . . . ,CA
M

B),y = x ∗K + x ∗D (5)

We adopted Mamba as a sequence modeling method in this work since Mamba can
efficiently process sequence data without significant performance degradation.
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Fig. 2: The overall architecture of Broad Learning System (BLS). Zi represents the feature nodes,
Hi represents the enhancement nodes, and Y represents the predicted labels.

3.3 Broad Learning System

Broad Learning System (BLS) is different from traditional deep learning methods that
it mainly focuses on discovering the relationship between features in the input data,
rather than extracting features through multi-level nonlinear transformations. The core
idea of BLS is to jointly solve the optimization problem by integrating the semantic
information of feature nodes and enhancement nodes. The overall process of the BLS
algorithm is shown in the Fig. 2.

Specifically, for a given input data X ∈ RN×M , where N represents the number
of samples and M represents the dimension of the feature. The generated feature nodes
are defined as follows:

Zi , φ(XWzi + βzi), i = 1, 2, . . . , n (6)
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Fig. 3: The overall framework of the proposed model. Specifically, we first input the extracted
multi-modal features into a 1-D convolutional layer for multi-scale feature extraction and intro-
duce position encoding information to consider the position information of the series in the con-
text. Then we input the obtained multi-modal features with multi-scale information into Broad
Mamba to extract contextual semantic information and explore the potential data distribution in
the broad space. Finally, we use a probability-guidance fusion model to complete the fusion of
multi-modal features and achieve emotion prediction.

where Wzi ∈ RM×dz and βz ∈ R1×dz are the learnable parameters. dz is the em-
bedding dimensions of generated features and φ is the activation function. The set of
generated feature nodes is represented as Zn , [Z1, . . . ,Zn], n is the size of the set of
generated feature nodes. Similarly, enhancement node features are defined as follows:

Hj , φ(ZWhj
+ βhj

), j = 1, 2, . . . ,m (7)

where Whi ∈ Rdz×dh and βz ∈ R1×dh are the learnable parameters. dh is the em-
bedding dimensions of enhancement features. The set of enhancement feature nodes is
represented as Hm , [H1, . . . ,Hm].

The final model output by concatenating feature nodes and enhancement nodes is
as follows:

Y = [Z1, . . . ,Zn|H1, . . . ,Hm]W = [Zn|Hm]W (8)

where W are the learnable parameters.

4 The proposed method

4.1 Feature Disentanglement

1D-Conv. To capture features of different scales and abstraction levels in multi-modal
features (e.g., information such as the relationship between words and the importance
of utterence), we input text features ξt, video features ξv and audio features ξa into a
1D convolutional network (Conv1D) as follows:
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ξ̂t/ξ̂a/ξ̂v = Conv1Dt/a/v (ξt, ξa, ξv) (9)

where ξ̂t ∈ RTt×dm , ξ̂a ∈ RTa×dm , and ξ̂v ∈ RTv×dm , Tt, Ta, Tv represent the fea-
ture dimensions of text, audio, and video respectively, dm represents the output feature
dimensions.

Furthermore, to facilitate the model to capture the dependencies between long-
distance positions in the sequence, we introduce sine and cosine position encoding
embedding as follows:

PE(pos,2i) = sin
( pos

100002i/d

)
, PE(pos,2i+1) = cos

( pos

100002i/d

)
(10)

where pos represents the position in the sequence. i represents the dimension index of
position encoding, i = 0, 1, ..., D−1. D represents the embedded dimension. We input
ξ̂t, ξ̂a, andξ̂v (ξ̂t, ξ̂a, ξ̂v = Conv1Dt/a/v (ξt, ξa, ξv) + PE) that encodes position
information at each time step into Broad Mamba.

Broad Mamba. The overall architecture of the proposed Broad Mamba is shown in
Fig. 4. In order to aggregate the contextual semantic information from the forward and
backward directions, we build a bidirectional SSM convolution module. Specifically,
the first kernel←−κ performs a 1D convolution operator to obtain forward context infor-
mation. The second kernel −→κ performs a 1D convolution operator to obtain the mutual
information associated with emotional information, and we add the two convolved re-
sults. The overall operating process is formally defined as follows:

ξ̄
t/a/v
j =

∑
l≤j

←−κ t/a/v
j−l � ξ̂

t/a/v

l +
∑
l≥j

−→κ t/a/v
l−j � ξ̂

t/a/v

l + dt/a/v � ξ̂
t/a/v

j = BiSSM(ξ̂
t/a/v

j )

(11)
where←−κ , and −→κ are obtained via Eq. 5.

To explore the potential data distribution of multi-modal data in the broad space and
improve the performance of Mamba, we use Broad Learning Sytems (BLS) to enhance
the emotional representation ability of features. Specifically, we map the features output
by BiSSM to a random broad space and obtain feature nodes and enhancement nodes,
and concatenate the feature nodes and enhancement nodes as the input of the feature
fusion layer. Specifically, feature nodes can be formally defined as follows:

Z
t/a/v
i , BiSSM(ξ̂

t/a/v

j )Wt/a/v
zi + βt/a/v

zi , i = 1, 2, . . . , n (12)

and the enhancement nodes can be computed as:

H
t/a/v
j , ReLU(Zn

t/a/vW
t/a/v
hj

+ β
t/a/v
hj

), j = 1, 2, . . . ,m (13)

Furthermore, we introduce l2 regularization into the loss function to avoid the over-
fitting phenomenon of BLS, which is formally defined as follows:

Lnorm = ‖[Zn
t/a/v|H

m
t/a/v]W

t/a/v
b −Yt/a/v‖22 + λ‖Wt/a/v

b ‖22 (14)
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Fig. 4: The overall architecture of Broad Mamba. We use a bidirectional SSM to encode forward
and reverse contextual semantic information.

where λ is the weight decay coefficient, W
t/a/v
b is the learnable parameters, Yt/a/v =

[Z
t/a/v
1 , . . . ,Z

t/a/v
n , . . . ,H

t/a/v
1 , . . . ,H

t/a/v
n ].

By deriving and solving the Eq. 14, the solution to W
t/a/v
b can be calculated as

follows:

W
t/a/v
b =

(
[Zn

t/a/v|H
m
t/a/v]

>[Zn
t/a/v|H

m
t/a/v] + λI

)−1
[Zn

t/a/v|H
m
t/a/v]

>Yt/a/v

(15)
Computation-Efficiency. SSM and the self-attention mechanism in Transformer

both plays an important role in modeling global contextual semantic information. How-
ever, the self-attention mechanism is quadratic in complexity and is very time-consuming
in training and inference. On the contrary, the computational complexity of SSM is
O(LlogL), so it can accelerate model inference in modeling long sequences.

4.2 Feature Fusion

Probability-guided Fusion Model. Many studies have proven that different modalities
have different contributions to the prediction of emotional labels, so modal features
with higher contributions need to be given greater weight in the multi-modal feature
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fusion process. Different from previous works that fuse modal features at a coarse-
grained level without using label information for guidance, we design a probability-
guided fusion model (PFM) that dynamically assigns weights to each modality by using
the predicted emotion label probabilities of the modalities. Specifically, we build an
emotion classifier for the feature representation of each modality to obtain the predicted
probability of the label as the weight of the modal features in the fusion process. The
fusion process is formally defined as follows:

ωt/a/v = Sigmoid
(
MLPt/a/v

(
Yt/a/v

))
(16)

and then we can obtain the fused multi-modal feature representations as follows:

hf = ωtYt + ωaYa + ωvYv (17)

4.3 Training Loss

During the optimization phase of the model, the overall training loss function is defined
as follows:

L = Lnorm + Lemo (18)

5 EXPERIMENTS

In comparative experiments, our experimental results are the average of 10 runs with
different weight initializations. The results of our experiments are statistically signifi-
cant (all p < 0.05) under paired t-tests.

5.1 Implementation Details

In the experiments, the number of feature nodes n and the number of enhancement node
features m are set to 10 and 30 respectively. Following previous work, we use the same
split ratio of training, test, and validation sets for model training and inference.

5.2 Datasets and Evaluation Metrics

We conduct experiments using two popular MERC datasets, IEMOCAP [2] and MELD
[30], which include three modal data: text, audio, and video. IEMOCAP contains 12
hours of conversations, each containing six emotion labels. The MELD dataset contains
conversation clips from the TV show Friends and contains seven different emotion la-
bels. In addition, in the experiments we report the F1 of the proposed method and other
baseline methods on each emotion category and weighted average F1 (W-F1).
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5.3 Overall Results

Tables 1 show the experimental results on the IEMOCAP and MELD data sets. Experi-
mental results show that our method significantly improves the performance of emotion
recognition. The performance improvement may be attributed to the effective extraction
of contextual semantic information and efficient integration of underlying data distribu-
tion.

Furthermore, our method is optimal compared with other multi-modal fusion meth-
ods in experimental results. The results demonstrate the effectiveness of our model in
achieving multi-modal semantic information fusion. We also give W-F1 for each emo-
tion. Specifically, on the IEMOCAP data set, our model’s W-F1 is optimal on happy,
neutral, and frustrated. On the MELD data set, our model’s W-F1 is optimal on happy,
neutral, and frustrated.

Table 1: Comparison with other baselines on the IEMOCAP and MELD dataset. The best result
in each column is in bold.

Methods
IEMOCAP MELD

Params. Happy Sad Neutral Angry Excited Frustrated W-F1 Neutral Surprise Fear Sadness Joy Disgust Anger W-F1

bc-LSTM [29] 1.28M 34.4 60.8 51.8 56.7 57.9 58.9 54.9 73.8 47.7 5.4 25.1 51.3 5.2 38.4 55.8
A-DMN [43] - 50.6 76.8 62.9 56.5 77.9 55.7 64.3 78.9 55.3 8.6 24.9 57.4 3.4 40.9 60.4
DialogueGCN [6] 12.92M 42.7 84.5 63.5 64.1 63.1 66.9 65.6 72.1 41.7 2.8 21.8 44.2 6.7 36.5 52.8
RGAT [15], 15.28M 51.6 77.3 65.4 63.0 68.0 61.2 65.2 78.1 41.5 2.4 30.7 58.6 2.2 44.6 59.5
CoMPM [18] - 60.7 82.2 63.0 59.9 78.2 59.5 67.3 82.0 49.2 2.9 32.3 61.5 2.8 45.8 63.0
EmoBERTa [16] 499M 56.4 83.0 61.5 69.6 78.0 68.7 69.9 82.5 50.2 1.9 31.2 61.7 2.5 46.4 63.3
CTNet [23] 8.49M 51.3 79.9 65.8 67.2 78.7 58.8 67.5 77.4 50.3 10.0 32.5 56.0 11.2 44.6 60.2
LR-GCN [31] 15.77M 55.5 79.1 63.8 69.0 74.0 68.9 69.0 80.8 57.1 0 36.9 65.8 11.0 54.7 65.6
AdaGIN [41] 6.3M 53.0 81.5 71.3 65.9 76.3 67.8 70.7 79.8 60.5 15.2 43.7 64.5 29.3 56.2 66.8
DER-GCN [1] 78.59M 58.8 79.8 61.5 72.1 73.3 67.8 68.8 80.6 51.0 10.4 41.5 64.3 10.3 57.4 65.5
Our Model 1.73M 65.5 81.6 73.5 70.1 76.3 69.8 73.3 79.7 65.6 16.9 48.9 63.0 27.0 57.1 67.6

We also report the model parameter quantities of the proposed method and the base-
line method. The results show that the parameter amount of our model is 1.73M, which
is far lower than other methods. The model complexity of other baseline methods is rel-
atively high, but the emotion recognition effect is relatively poor. Experimental results
demonstrate that the proposed method is an effective and efficient MERC model.

5.4 Running Time

In this section, we report the inference time of different baselines and our proposed
method on the IEMOCAP and MELD datasets. As shown in Table 2, the inference time
of our method is below 10s, which is much lower than some GCN-based methods and
RNN-based methods. Experimental results demonstrate the high efficiency of SSMs. In
addition, we also counted the Flops of each method, and the results showed that our
method was only slightly higher than bc-LSTM.

5.5 Ablation Studies

Ablation studies for PE, BLS, PFM. As shown in Table 3, we found that the per-
formance of the model will decrease after removing PE, which indicates that positional
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Table 2: We tested the running time of the proposed method and other comparative methods.

Methods FLOPs(G)
Running time (s)

IEMOCAP MELD

bc-LSTM 0.46 8.3 10.4
DialogueRNN 5.03 61.7 138.2
RGAT 6.87 68.5 146.3
DialogueGCN 4.81 58.1 127.5
LR-GCN 6.98 87.7 142.3
DER-GCN 20.83 125.5 189.7
Ours 0.71 3.5 6.6

encoding information is quite important for understanding contextual semantic informa-
tion. Furthermore, without BLS, the performance of the model also degrades. The per-
formance degradation is attributed to the underlying contextual data distribution which
is also crucial for emotion prediction. Finally, when the PFM module is removed, the
performance of the model drops sharply. Experimental results demonstrate the necessity
of each proposed module.

Table 3: Ablation studies for PE, BLS, PFM.

Methods
IEMOCAP MELD

W-Acc. W-F1 W-Acc. W-F1

Ours 73.1 73.3 68.0 67.6
w/o PE 72.4(↓0.7) 72.0(↓1.3) 66.7(↓1.3) 66.3(↓1.3)
w/o BLS 71.5(↓1.6) 72.1(↓1.2) 65.5(↓2.5) 64.9(↓2.7)
w/o PFM 70.3(↓2.8) 70.7(↓2.6) 65.8(↓2.2) 65.3(↓2.3)

Ablation studies for multi-modal features. To show the impact of different modal
features on experimental results, we conducted ablation experiments to verify the com-
bination of different modal features. From the experimental results in Table IV, it is
found that: (1) In the single-modal experimental results of the model, the accuracy of
emotion recognition in text mode is far better than the other two modes, indicating that
text features play a dominant role in emotion recognition effect. (2) The emotion recog-
nition effect using bimodal features is better than its own single-modality result. (3) The
emotion recognition effect using three modal features is optimal. Experimental results
prove the necessity of fusion of multi-modal features for emotion recognition.

Effect of Different Fusion Strategies. To study the effectiveness of the probability-
guided fusion method proposed in this paper, we compare it with some previous multi-
modal fusion strategies.

As shown in Fig. 5, compared with other fusion methods, the probability-guided
fusion strategy we proposed has better emotion recognition effects on the two data sets.
The results show that the emotion recognition effect of directly adding or concatenat-
ing multi-modal features to achieve multi-modal information fusion is relatively poor.
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Table 4: The effect of our method using unimodal features, bimodal and multi-modal features,
respectively.

Modality
IEMOCAP MELD

W-Acc. W-F1 W-Acc W-F1

T+A+V 73.1 73.3 68.0 67.6
T 65.5(↓7.6) 65.7(↓7.6) 64.6(↓3.4) 63.9(↓3.7)
A 58.6(↓14.5) 58.8(↓14.5) 52.7(↓15.3) 52.0(↓15.6)
V 49.4(↓23.7) 49.7(↓23.6) 40.1(↓27.9) 41.4(↓26.2)

T+A 71.3(↓1.8) 70.2(↓3.1) 65.2(↓2.8) 65.6(↓2.0)
T+V 68.7(↓4.4) 67.4(↓5.9) 65.0(↓3.0) 63.7(↓3.9)
V+A 62.1(↓11.0) 62.2(↓11.1) 51.3(↓16.7) 51.9(↓15.7)
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Fig. 5: Emotion recognition effects of different fusion methods. The experimental results are sta-
tistically significant (t-test with p < 0.05).

Fig. 6: Loss trends on IEMOCAP and MELD datasets.
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The multi-modal information fusion effect of LMF is better than the adding method
and the concatenating method. The probabilistic fusion strategy we propose introduces
label information to guide the fusion of multi-modal information and further achieves
parameter optimization of the model.

Effect of Lnorm. To illustrate the impact of Lnorm on the experimental results, we
conducted experiments on the IEMOCAP and MELD datasets to prove that Lnorm can
alleviate the problem of model overfitting. The experimental results are shown in Fig. 6.
The loss curves on two datasets show that when Lnorm is not introduced as a constraint,
the model will overfit.

Excited

Neutral

Happy

Sad

Frustrated

Angry

(a) IEMOCAP

Neutral

Surprise

Joy

Disgust

Sadness

Fear

Anger

(b) MELD

Fig. 7: Visualizing feature embeddings for the multi-modal emotion on the IEMOCAP (Left) and
MELD (Right) datasets. Each dot represents an utterance, and its color represents an emotion.

5.6 Multi-modal Representation Visualization

To intuitively demonstrate the classification results of our proposed method on the two
data sets, we use t-SNE to project the high-dimensional multi-modal feature represen-
tation into a two-dimensional space, as shown in Fig. 7. The results show that the pro-
posed method is able to effectively separate different emotion categories from each
other.

5.7 Error Analysis

As shown in Fig. 8, we test the emotion classification results of DialogueRNN, Di-
alogueGCN and the proposed method on the MELD dataset. In the disgust emotion
category, the classification results of DialogueRNN and DialogueGCN are very poor,
and they are all misclassified as neutral emotions. When the proposed method only uses
text features, the emotion classification effect on the disgust category is unstable, but
when multi-modal features are used, it can better classify disgust category emotions.
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Dialogue Ours
Ours

Dialogue Ours
Ours

neutral neutral

neutral neutral

Fig. 8: An illustrative example of multi-modal emotion recognition in the MELD dataset.

6 Conclusions

In this work, we introduce a novel MERC method that comprehensively considers both
feature disentanglement and multi-modal feature fusion. Specifically, during the fea-
ture disentanglement, we designed the broad Mamba, which incorporates the SSMs for
data-dependent global emotional context modeling, and a broad learning system to ex-
plore the potential data distribution in the broad space. During the multi-modal feature
fusion, we propose an effective probability-guided fusion mechanism to achieve multi-
modal contextual feature fusion, which utilizes the predicted label probability of each
modal feature as the weight vectors of the modal features. Extensive experiments con-
ducted on two widely used benchmark datasets, IEMOCAP and MELD demonstrate
the effectiveness and efficiency of our proposed method.
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