
Variance-Based Defense Against Blended
Backdoor Attacks

Sujeevan Aseervatham1,3 (�), Achraf Kerzazi1,2,3 , and Younès Bennani2,3

1 Orange Research, Châtillon, France
{sujeevan.aseervatham, achraf.kerzazi}@orange.com

2 Université Sorbonne Paris Nord, LIPN, UMR 7030 CNRS
younes.bennani@sorbonne-paris-nord.fr

3 LaMSN - La Maison des Sciences Numériques, F-93210, Plaine Saint-Denis - France

Abstract. Backdoor attacks represent a subtle yet effective class of cy-
berattacks targeting AI models, primarily due to their stealthy nature.
The model behaves normally on clean data but exhibits malicious be-
havior only when the attacker embeds a specific trigger into the input.
This attack is performed during the training phase, where the adversary
corrupts a small subset of the training data by embedding a pattern
and modifying the labels to a chosen target. The objective is to make
the model associate the pattern with the target label while maintaining
normal performance on unaltered data.
Several defense mechanisms have been proposed to sanitize training
datasets. However, these methods often rely on the availability of a clean
dataset to detect statistical anomalies, which may not always be feasible
in real-world scenarios where datasets can be unavailable or compro-
mised. To address this limitation, we propose a novel defense method
that trains a model on the given dataset, detects poisoned classes, and
extracts the critical part of the attack trigger before identifying the poi-
soned instances. This approach enhances explainability by explicitly re-
vealing the harmful part of the trigger. The effectiveness of our method
is demonstrated through experimental evaluations on well-known image
datasets and a comparative analysis against three state-of-the-art algo-
rithms: SCAn, ABL, and AGPD.

Keywords: Machine Learning · Data Poisoning · Backdoor Mitigation

1 Introduction

The rise of Artificial Intelligence (AI), and more specifically Deep Learning-based
systems, has been dazzling and unparalleled. Its use is now widespread and,
thanks to the availability of free software, a large public, even without specific
knowledge, can build an AI model. They can also download training datasets and
pre-trained models. Like any software, AI systems are vulnerable to malicious
attacks. They can traditionally be attacked at the software layer, e.g., through
vulnerabilities in the software libraries, but they can also be attacked through
data and model-parameter manipulation. A corrupted AI can exhibit malicious

https://orcid.org/0000-0001-8406-7795
https://orcid.org/0009-0001-1852-5927
https://orcid.org/0000-0003-3667-3357

2 S. Aseervatham et al.

behavior, which can have critical consequences. For example, self-driving cars
may intentionally collide depending on the attacker’s aim and a Large Language
Model (LLM) may give fake news. This security risk has become a real-life
threat and a major issue when researchers have shown that the AI models can
be attacked in various ways depending on the aim, knowledge, and model access
privilege of the attacker [16,21]. The attacker can lead an evasion attack by
slightly modifying the model’s input in order to change the decision/prediction.
For example, for a spam recognition system, the attacker may change some words
to bypass the filter. She can also lead inference attacks where the attacker wants
to extract some information about the training dataset on which the model was
trained. This attack is also known as privacy attack or model inversion attack.
Indeed, in a personalized drug system, she may want to know if a particular
patient information was in the training set. During the training stage, an attacker
can also poison the training data to either degrade the model’s performance (non-
targeted attacks), e.g., by flipping the labels, or introduce a backdoor than can
be exploited, during inference, to trigger a malicious behavior of the model.

In this paper, we focus on a defense method against the backdoor attacks
where the attacker wants a model to associate her data pattern to her target
label. Thus, in the inference stage, any input containing the pattern will trigger
the misclassification of the input as the target label. This is a vicious attack
as the model seems to be pristine w.r.t. to its performance on clean data but
in fact contains a backdoor which changes the prediction only in the presence
of the trigger in the input data. For example, in a self-driving car, an attacker
may have corrupted the model to recognize a green-square sticker pasted on a
stop sign as a 70mph speed limit board. Such attacks can easily be performed
when the attacker has a write access to the training data, as illustrated by the
BadNets algorithm [7]. More advanced attacks based on BadNets have been pro-
posed, but they often require more resources or access rights. By its simplicity,
BadNets remains a threat that can be exploited by a large population, includ-
ing opportunistic criminals and script-kiddies (open source script users without
particular knowledge). Many defenses have been proposed in the literature, but
most of them require an additional dataset of clean data on which statistics are
computed to detect a distribution anomaly induced by a poisoned sample. In
real-life, such dataset may hardly be available and even be subject to a corrup-
tion.

We propose a multi-stage defense algorithm that estimates the poisoned sub-
set of the training data, detects the poisoned classes, extracts the attack trigger
for each class, and identifies the poisoned instances based on the extracted pat-
tern. Our contributions can be summarized in three points: 1) we introduce a
novel defense algorithm against BadNets [7] and Blended [2] attacks which does
not rely on additional prerequisites such as the availability of a clean dataset;
2) the defense is explainable, as it extracts the most important part of the trig-
ger responsible for the malicious behavior; and 3) our method is effective in
All-to-All attacks where many classes are poisoned.

Variance-Based Defense Against Blended Backdoor Attacks 3

The remainder of this paper is organized as follows: in Section 2, we present
the state-of-the-art of backdoor attacks and defenses. Our defense algorithm is
detailed in Section 3. Section 4 describes the experimental results and, finally,
Section 5 concludes this article.

2 Related Work

2.1 Backdoor Attacks

The Backdoor attack was introduced in [7] where the proposed BadNets method-
ology involves patching a small pattern onto the input data of a small percentage
of the training set and labeling them with the desired target label. By training
on this poisoned set, the model learns to associate the attack pattern with the
target label. Thus, the presence of the pattern in an input instance triggers the
malicious behavior of the model by classifying the input as the attacker’s tar-
get label instead of the correct one. To make the pattern more stealthy, linear
blending is used in [2], while in [29] the pattern is generated in the low-frequency
domain by considering both the training set and a pre-trained model. These
works paved the way for more advanced attacks, where the pattern is not fixed
but specific to the input [19,18]. However, compared to fixed pattern attacks,
input-based pattern attacks require more prerequisites, such as access to and
modification of the training algorithm, making them more suitable when target-
ing users who download pretrained models. Fixed-pattern attacks remain more
realistic in real-world scenarios, especially when the attacker is an insider with
access to the training data.

2.2 Backdoor Defenses

In the last few years, many backdoor defense methods have been proposed by
researchers, each designed to be used at a specific stage of the AI model lifecy-
cle. As noted in [28] and [30], these defenses can be grouped in four categories
based on the lifecycle stage: 1) pre-training stage methods, mainly used to detect
the poisoned instances and sanitize the dataset [1,6,4,25,17,22,28], 2) in-training
stage defenses, which aim to reduce the effect of the poisoned data on the model
[14,10,30], 3) post-training stage methods, used to correct backdoored models
[27,15], and 4) inference stage defenses, which are used to detect malicious inputs
by analyzing both both the input and the output of the model, typically resid-
ing between the user and the model [8]. These methods can also be categorized
based on the information they use to mitigate the attacks. The main approaches
are input-based, loss-based, and activation-based. Defenses in the pre-training
and inference stages are mainly input-based or activation-based methods, while
algorithms in the in-training and post-training stages are mostly loss-based or
activation-based. Input-based approaches operate on the input data by altering
it and computing statistical measures on the predictions, such as the entropy
[6,4,8]. In [6], the STRIP algorithm linearly blends the input image with a set

4 S. Aseervatham et al.

of clean images before computing the entropy of the prediction on each per-
turbed images. A poisoned image is detected when the entropy is low. In [4],
the SentiNet method uses Grad-CAM [24] to extract the decision region from
an input image and superimposes it on a set of clean images to check whether it
triggers a misclassification of the model. Activation-based methods rely on the
assumption that the poisoned and clean samples can be separated, e.g., through
clustering, in the feature space induced by the activations of a specific layer of
the model [1,25,17,22]. In [1], K-Means clustering is used on the activations and
in [25], the proposed SCAn algorithm uses a two-component Gaussian Mixture
Models (GMM) for clustering. In the loss-based approach, the methods rely on
the property that poisoned instances are classified with a very low value of the
loss. In [14], the Anti-Backdoor Learning (ABL) defense uses the loss to isolate
the poisoned instances during the training and then unlearns the poisoned data
through gradient ascent.

3 Variance-based Defense

3.1 Threat Model

In this paper, we assume that the attacker has full access to the training
database. The attacker aims to modify the model’s behavior so that any input
patched with her attack pattern is classified as her target class, while maintain-
ing good categorization performance on pristine inputs to remain undetected. To
implement this attack, she employs a combination of BadNets [7] and Blended [3]
attacks. Given an attack pattern/trigger p, its corresponding binary mask m,
the target label yt ∈ Y, and a blending factor α ∈ [0, 1], she selects a subset
of the training dataset with a ratio r and generates malicious data according
to Equation 1, before adding it to the training set with her target label. The
poisoned dataset is then distributed or made available to download. Training a
model on this poisoned dataset will cause the model to capture a relationship
between the attack trigger p and the target label yt.

x̃ = Γ (x,p,m, α) = x⊙ (1−m) + (1− α) · (x⊙m) + α · (m⊙ p) (1)

where x ∈ X , with X ⊆ RH×W×C , is an input image of height H, width W
and color dimension C, ⊙ the element-wise tensor product operator and 1 the
all-ones tensor of the same dimension as m.

3.2 Motivation

Before using a dataset to train a model, it is important to sanitize it and ensure
that no malicious data leading to a blended or a BadNets backdoor are present.
To achieve this, we propose an algorithm to detect and extract the trigger pattern
from the training dataset. Using the extracted patterns, the dataset can be
sanitized by removing the data containing these patterns.

Variance-Based Defense Against Blended Backdoor Attacks 5

We want to extract the pattern pt and its binary mask mt for a target label yt
based on the following hypotheses:

1. when a pristine input is patched with the pattern pt, the model must predict
yt, which means that pt and mt should minimize the training loss for the
set of clean data (DC) patched with pt and associated with the target label
yt,

2. the pattern should also be as small as possible, i.e., only a few elements of
the binary mask should be set to 1 (this is equivalent to using a L0 norm
penalization on pt) in order to keep the malicious data unnoticeable among
the training instances,

3. the pixels of the pattern should be located at low-variance positions in a
variance image computed from a set of malicious data with the label yt
(DPt

), since we are defending against a static-trigger data poisoning.

Given these three hypotheses, we can formulate the following minimization
problem to compute (pt,mt):

min
p,m

1

|DC |
∑

(x(k),y(k))∈DC

ℓ(f(Γ (x(k),p,m, α)), yt)+λ ·∥m∥1+γ ·∥m⊙VDPt
∥1 (2)

where f is the poisoned model learned from the malicious dataset, DC the clean
part of the training set, DPt

the poisoned part with label yt, ℓ the loss function,
usually the Cross-Entropy loss, λ and γ the loss terms weighting factors and
VDPt

the mean, over the color channel, of the min-max-scaled variance of the
data in DPt such that:

[VDPt
]i,j =

1

nr

∑
c∈{1,...,nr}

var(Xi,j,c;DPt
)−mink,l(var(Xk,l,c;DPt

))

maxk,l(var(Xk,l,c;DPt
))−mink,l(var(Xk,l,c;DPt

))
(3)

with Xi,j,c the random variable associated with the pixel/variable xi,j,c where c
is the color channel index, nr the channel dimension and the variance given by:

var(Xk,l,c;DPt) =
1

|DPt |
∑

(x(n),y(n))∈DPt

(x
(n)
k,l,c −Xk,l,c)

2 (4)

Solving the problem 2 may be time-consuming and difficult since DC and
DPt

are not known, and it may even lead to adversarial noises, especially if the
model is not robust.
Instead of solving directly this minimization problem, we propose in the next
section a heuristic to approximate the patterns.

3.3 Method

The proposed data sanitization method is described in Algorithm 1 and illus-
trated step by step in Figure 1. It consists of seven main steps, listed as follows:

6 S. Aseervatham et al.

{C1, C2,...}

{P1, P2,...}

{P1, P2,...}

1) Estimate a set of
malicious data for each
class Ci

For a class Ci: consider the data
from all other classes Cj ≠ Ci as
clean negatives

2) Detect poisoned classes

3) Compute candidate triggers

4) Check and filter the patterns

5) Train a pattern detector

6) Detect the malicious data

7) Train a clean model

Fig. 1: Workflow of the proposed sanitization method.

1. Estimate a set of malicious instances D̃P

2. Detect the potentially poisoned classes
3. Compute a candidate pattern for each poisoned class
4. Check the patterns on an estimated D̃C

5. Train a pattern detector for each detected pattern
6. Detect the malicious instances
7. Train a clean model

In the following paragraphs, we provide a detailed description of each step.

Stage 1: Malicious instance set estimation We assume that the patterns
used to poison the training set are small and simple, such that a simple classifier
with a single convolution layer can memorize the relation between the pattern
and the target label. The idea is to train a simple convolution model with a
few layers as the one shown in Figure 2 on the training set to overfit the attack
pattern. The model is thus expected to perform well on the poisoned instances
and have a high generalization error on the clean data. We refer to this model
as the simple poisoned model, denoted fs. A subset of the poisoned data, for a
class ci, can then be estimated by selecting the top N instances with the label ci
and correctly predicted with the highest probability score (N being a parameter,
knowing that for our experiments we set N = 20).

Variance-Based Defense Against Blended Backdoor Attacks 7

Algorithm 1: Variance-based defense
Data: D: the training set to sanitize
Result: DP : the set of malicious instances and fc: the sanitized model
foreach class ci ∈ Y do
D̃Pi ← Estimate a set of malicious instances with label ci ;
if ci is detected as poisoned then

(pi,mi)← Compute a candidate pattern and its mask based on D̃Pi ;
end

end
P ← Check and filter the candidate pattern set {(pi,mi)}i ;
foreach (pi,mi) ∈ P do

hi ← Train a model to detect the instances patched with pi ;
DPi ← Use hi to identify the malicious instances in D ;

end
DP ←

⋃
iDPi ;

fc ← Train a clean model using D and DP ;

In
p
u
t

C
on

vo
lu

ti
on

 3
x3

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 p
oo

lin
g
 2

x2

Fu
lly

 C
on

n
ec

te
d

S
of

tm
ax

R
eL

u

Repeating Block

Fig. 2: Architecture of the classifier used to overfit the attack patterns.

Stage 2: Poisoned classes detection At this stage, we aim to filter out the
classes considered as non-poisoned, retaining only the suspicious ones for further
analysis. To achieve this, for each class ci we identify the most important (pixel)
variable that is commonly used by the poisoned model fs to correctly classify the
instances of the estimated malicious set D̃Pi

. If the empirical distributions of the
importance of this variable in D̃Pi

and in a subset of potential clean-instances
from ci are the same then we can assume that the class ci is not poisoned. To find
the most important variable, given the simple poisoned model fs, we compute
the gradient of the first loss term of Equation 2 w.r.t. the malicious input, as
given by Equation 5.

∇L(fs, D̃Pi
) =

1

|D̃Pi
|

∑
(x(k),ci)∈D̃Pi

∂ℓ

∂x
(fs(x

(k)), ci) (5)

8 S. Aseervatham et al.

As we want the most important pixels explaining the decision, we choose the
following loss function ℓ(x, c):

ℓ(x, c) = P (c|x; fs)− max
y∈Y−{c}

P (y|x; fs) (6)

P (c|x; fs) is given by the cth component of the softmax layer of fs and in order
to avoid numerical instabilities, we use the logit layer instead of the softmax
layer.

For poisoned instances, some components of the gradient (Eq. 5) will
have a large absolute value compared to the clean-instances. Indeed, the partial
derivative at given coordinates indicates the sensitivity of the loss function to
changes in that pixel’s value. In the case of poisoned instances, the backdoor
pattern is designed to strongly influence the model’s prediction. As a result, only
a few pixels, those containing the trigger, tend to dominate the gradient signal.
We thus assume that, for poisoned instances, a small number of pixels will have
a large impact on the prediction. The most influential pixel can therefore be
identified by locating the index (i∗, j∗) corresponding to the maximum absolute
value of the mean gradient across the color channels:

i∗, j∗ = argmax
i,j

|meanc

[
∇L(fs, D̃Pi

)
]
i,j,c

| (7)

We now define the importance of this pixel in the decision of an input x by fs,
as follows:

I(x, ci; fs, i
∗, j∗) = max

c
[|∇L(fs, {(x, ci)})|]i∗,j∗,c (8)

The two-sided Kolmogorov–Smirnov test [5] is used with a confidence level of
99% to compare the distributions of I(x, ci; fs, i

∗, j∗) between D̃Pi and a set
of potential clean-instances from ci. We use the instances of ci with the lowest
prediction scores as clean-instances. When the p-value is below 0.01, we consider
ci as potentially poisoned.

Stage 3: Candidate pattern computation With the simple poisoned model
fs and the estimated subset of malicious instances of the class ci, we can compute
an approximate pattern by using the gradient defined in Equation 5 which gives
the importance of the pixels w.r.t. the loss function. To obtain a binary mask
from the gradient, the following processing is performed:

1. Flattening the gradient of Eq. 5 by taking the L2 norm of the gradient over
the color channel

2. Min-Max-scaling the result to have the values within [0, 1]
3. Binarizing the values using a threshold

The binarization step may be tricky as it involves defining a threshold which
may depends on the input data. To avoid manually defining this threshold, we

Variance-Based Defense Against Blended Backdoor Attacks 9

used the Otsu method, which finds the best threshold that minimizes the intra-
variance [20]. In order to capture also the neighboring points of an important
point, we apply a Gaussian blur before applying the Otsu method.
Once we have the binary gradient mask, we need to select only the points with
the lowest variance, which requires a variance threshold. The variance matrix
on D̃Pi

can be computed with the Equation 3. The final candidate mask is
obtained by performing an element-wise product between the gradient mask
and the variance matrix before binarizing with the Otsu method (note that to
keep the points with low variances, we use 1 minus the variance matrix).
To have the candidate pattern, we apply the candidate mask on the mean image
of D̃Pi

. Algorithm 2 describes the whole process of generating the candidate
pattern and mask.

Algorithm 2: Pattern Computation
Data: D̃Pi : a set of malicious instances for the class ci, fs: the poisoned model
Result: (pi,mi)): the candidate pattern and mask for the class ci
g← compute the gradient with Equation 5 using the logit layer ;
foreach pixel at coordinate i, j do

g̃i,j ←
√∑

r g
2
i,j,r ;

end
gscaled ← min_max_scale(g̃) ;
gblured ← gaussian_blur(gscaled) ;
gm ← otsu_binarization(gblured) ;
V ˜DPi

← Use Equation 3 to compute the variance on D̃Pi ;
mi ← otsu_binarization(gm ⊙ (1− V ˜DPi

)) ;

pi ←mi ⊙ 1

| ˜DPi
|

∑
(x(k),y(k))∈ ˜DPi

x(k) ;

Stage 4: Check and filter the patterns At this stage, a candidate pattern
and its mask have been calculated for each potentially poisoned class. We need
to check that it triggers a malicious behavior of the simple poisoned model. To
this end, we patch the pattern to instances from other classes (estimated D̃C)
before feeding them to the model, and we check whether the model assigns them
to the class associated with the pattern. We compute the Attack Success Rate
(ASR), i.e., the proportion of patched instances predicted as the attack label. If
this rate falls below a user-defined threshold, we remove the pattern from the
candidate set. The remaining patterns are then considered harmful.

Stage 5: Train a pattern detector To detect the presence of a pattern in
the training set, we propose to train a binary classifier for each pattern. We use
a one-layer-convolution network as shown in Figure 2 except that 1) we remove

10 S. Aseervatham et al.

(a) input (b) malicious (c) gradient

(d) mean gradient (e) blurred (f) binarized

(g) Variance (h) grad⊙(1-var) (i) re-binarized (j) Extracted pattern

Fig. 3: Illustration of the candidate pattern computation process. The first row
shows (a) an example of input image from the cat class, (b) its malicious version
labeled with the attacker’s label and (c) its gradient (Eq. 5). In the last two rows,
the pattern computation process, described in the Algorithm 2, is illustrated step
by step. The gray background in (j) represents transparency.

the batch normalization, 2) we add a dropout layer before the fully connected
layer in order to reduce the overfitting and 3) we replace the softmax layer by
a sigmoid layer. For a given pattern pi for the class ci, we build the training
data as follows, we use the instances of the other classes and label them as
"0" (clean), and we patch these instances using the Equation 1 with random
blending factors, before labeling them as "1" (poisoned). Instead of training
directly on the images, we can achieve better performance by training the model
on the image gradient using Equation 5 on a single image. Moreover, we use
Semi-Supervised Learning (SSL) with Pseudo-labels [13]. After a few epochs of
supervised learning, we use the classifier to label the data of the class ci and we
add these data to the training set. We continue the SSL by relabeling the data
after each epoch for a predefined number of epochs to make the pseudo-labels
stable. The Algorithm 3 describes the training procedure.

Stage 6: Detect the malicious instances We compute the gradient for each
instance of the training set, and we feed it to each trained pattern detector. We
label the instance as malicious if at least one pattern detector labeled it as "1".

Variance-Based Defense Against Blended Backdoor Attacks 11

Algorithm 3: Training a Pattern Detector
Data: D: the (poisoned) training set, fs the poisoned model learned in the

first stage, (pi,mi, ci) the attack pattern pi with its mask mi for the
target class ci and hi the binary classifier to fit

Result: hi: the trained pattern detector for (pi,mi, ci)
DT ← D − {(x, y) ∈ D : y ̸= ci} ;
Dssl ← {} ;
(Dt,Dv,De)← split DT into training, validation, and test sets;
for epoch ← 0 to max_epoch do

foreach batch B of Dt do
U ← {} ;
foreach (x, y) ∈ B do

α← random(0.1, 1);
z← Γ (x,pi,mi, α) (Eq. 1);
U ← U ∪ {(∇L(fs, {(x, ci)}), 0), (∇L(fs, {(z, ci)}), 1)} (Eq. 5) ;

end
Optimize hi with U ∪ Dssl ;

end
if start_ssl_epoch < epoch < stop_relabeling_epoch then

Use hi to label {(x, y) ∈ D : y = ci} ;
Dssl ← the pseudo-labeled data ;

end
end

Stage 7: Train a clean model Once we have identified the malicious instances,
we can train a clean model from scratch or fine-tune a poisoned model by using
both the clean instance set and the poisoned one.

Robustness The proposed method relies on a simple poisoned model, which is
assumed to separate poisoned data from clean data based on the prediction score.
This implies that the model must be complex enough to capture the trigger (high
attack success rate) and simple enough to underperform on clean data (low ac-
curacy rate). Relying on a single model to achieve this task might not be robust.
To address this issue, we propose to use an ensemble of simple models based
on the architecture shown in Figure 2 with, e.g., different number of filters and
layers. We use each model of the ensemble, simultaneously and independently,
to perform Stage 1 to Stage 4. At the end of Stage 4, for each model, we have
extracted a set of triggers, one for each detected poisoned class. For robustness,
a class is considered poisoned only if the number of extracted patterns for that
class exceeds a certain threshold, e.g., half the number of models in the ensemble
(majority vote). However, in this work, we adopt a more defensive approach to
reduce the false negative rate. Therefore, we consider a class as poisoned if at
least one trigger has been extracted for this class. To perform the Stages 5 and
6, only one model and pattern must be retained for a given poisoned class. To
select the most appropriate model-and-pattern pair for a class, we choose the

12 S. Aseervatham et al.

one with the lowest accuracy on the training set (computed in Stage 1 during the
training) and the highest ASR (computed in stage 4), i.e., the pair that achieves
the highest score according to the following metric: α · (1−acc)+(1−α) ·asr. In
our work, we set α = 0.6 to slightly favor the model with the lowest accuracy.

4 Experiments

4.1 Experimental Setup

For the evaluation, we used the BackdoorBench framework [26], and our code is
available online4. We compared our method, VBD, against three high-performing
state-of-the-art methods [28]: Anti-Backdoor Learning (ABL) [14], AGPD [28],
and SCAn [25]. For VBD, we used an ensemble of 3 models: a 1-layer model
with 64 filters, a 2-layers model with 10 filters each, and a 2-layers model with
16 filters each, following the architecture shown in Figure 2. We used 80% of the
training set only to train the models and the remaining 20% for the validation,
detection, pattern extraction, and detector training. For training the poisoned
and detector models, we used a learning rate of 0.01, a batch size of 256 for
CIFAR-10 and 64 for Tiny ImageNet, and 20 training epochs. For the competi-
tors, we used the default settings, which include the use of the Pre-Act ResNet18
model [9], knowing that AGPD and SCAn require also an additional dataset of
clean images, which, by default, consists of 10 images per class taken from the
test set. Full implementation details and additional parameters are available in
the released code repository.
The experiments consist of poisoning 10% of the training dataset using the Bad-
Nets and Blended attacks and evaluating the performance of the four methods
in detecting the poisons in the training set. For the Blended attacks, we eval-
uated 3 blending factors: 10%, 20% and 50%. A blending factor of 10% means
that the trigger is 90% transparent. A BadNets attack is equivalent to a Blended
attack with a blending factor of 100% (full opacity). We used both an All-to-
One attack, where only one class is poisoned with 10% of the images from each
class (including the target class) and an All-to-All attack, where all classes are
poisoned such that class (k + 1 mod Nc), with Nc being the number of classes
in the dataset, is poisoned with 10% of the images from class k.

For the database, we used both CIFAR-10 [11] and Tiny ImageNet [12].
CIFAR-10 is composed of 10 classes with 5000 training images of size 32 × 32
per class. Tiny ImageNet contains 200 classes with 500 training images of size
64×64 per class. For AGPD and SCAn, which require 10 auxiliary clean images
per class in their default settings, we used a total of 100 and 2000 clean images
from the test set for CIFAR-10 and Tiny ImageNet, respectively.

We used six attack triggers to evaluate the methods, as shown in Figure 4.
When more than one class is poisoned (All-to-All), we used only the grid and
square triggers, positioning them at different locations based on the class index.
The placement starts at the bottom right of the image and moves from right to
4 https://github.com/Orange-OpenSource/BackdoorBench/tree/vbd-v1

https://github.com/Orange-OpenSource/BackdoorBench/tree/vbd-v1

Variance-Based Defense Against Blended Backdoor Attacks 13

(a) Big Kitty (b) Small Kitty (c) Colored grid

(d) Green square (e) White grid (f) White square

Fig. 4: Attack patterns used in the evaluation. All the triggers, except for the
two "kitty" patterns, are of size 3 × 3. The "Big Kitty" spans the entire image
and the "Small Kitty" has a size of 10×14. The gray background is transparent.

left and bottom to top to avoid overlapping. We ran a total of 80 experiments:
for both CIFAR-10 and Tiny ImageNet, there were 24 experiments (6 triggers ×
4 blending factors) for the All-to-One setting and 16 experiments (4 triggers ×
4 blending factors) for the All-to-All case. Each experiment is repeated 5 times.
In each repetition i ∈ {0, . . . , 4}, the random seed is set to i, and for the All-
to-One attacks, the target class is also set to i. The F1-scores and the averaged
F1-scores are reported as the mean over the five repetitions, along with their
standard deviation.

4.2 Evaluation Metrics

To evaluate the performance of poisoned instance detection, we use the F1 score,
defined as follows:

F1 = 2× Precision × Recall
Precision + Recall

, Precision =
TP

TP + FP
, Recall =

TP
TP + FN

where TP, TN, FP, and FN denote the number of true positives, true negatives,
false positives, and false negatives, respectively.
Precision measures the proportion of correctly identified poisoned instances
among all instances classified as poisoned. Recall measures the proportion of
actual poisoned instances that were correctly identified by the classifier. Since
it is important for a method to perform well on both metrics, the F1 score, de-
fined as the harmonic mean of precision and recall, is used to provide a balanced
evaluation.

4.3 Experimental Results

Table 1 provides the F1-score of the defense methods for the All-to-One BadNets
attack. SCAn and VBD achieve the best results. On average, SCAn outperforms
VBD by 0.34% on CIFAR-10, while VBD performs better on Tiny ImageNet,
with an improvement of 1.59%. The average F1-score across the 12 experiments
indicates that VBD surpasses SCAn by 0.62%. Notably, AGPD exhibits low

14 S. Aseervatham et al.

detection performance on the "Big Kitty" pattern, as this pattern covers the
entire image, making it difficult for AGPD to distinguish between poisoned and
clean instances.

Table 1: All-to-One BadNets poisoned-instance detection F1-score (%).
Set Pattern VBD ABL AGPD SCAn

big kitty 99.87 ±00.20 55.39 ±23.40 79.35 ±44.37 100.00 ±00.00
small kitty 99.90 ±00.14 82.12 ±10.54 99.62 ±00.28 100.00 ±00.00
color grid 99.58 ±00.15 90.21 ±03.01 91.36 ±12.88 100.00 ±00.00
green square 99.34 ±00.25 84.04 ±12.19 90.93 ±11.69 99.99 ±00.01
white grid 99.65 ±00.09 89.66 ±02.50 94.60 ±02.64 100.00 ±00.00
white square 97.46 ±00.31 84.30 ±02.13 93.66 ±02.96 97.86 ±00.12C

IF
A

R
-1

0

Average 99.30 ±00.10 80.95 ±04.01 91.59 ±11.65 99.64 ±00.02

T
in

y
Im

ag
eN

et

big kitty 99.98 ±00.02 81.69 ±08.87 00.00 ±00.00 94.41 ±12.51
small kitty 99.98 ±00.02 94.58 ±07.34 88.90 ±24.04 100.00 ±00.00
color grid 99.86 ±00.12 96.40 ±02.82 98.69 ±00.19 99.95 ±00.04
green square 99.72 ±00.39 96.77 ±01.67 98.21 ±00.66 95.34 ±10.35
white grid 98.70 ±02.64 95.93 ±00.84 98.34 ±00.73 97.39 ±05.63
white square 95.89 ±02.35 88.66 ±06.24 59.19 ±54.03 97.50 ±01.26
Average 99.02 ±00.68 92.34 ±02.61 73.89 ±08.12 97.43 ±03.16

Average 99.16 ±00.32 86.65 ±00.85 82.74 ±08.96 98.54 ±01.58

For the All-to-All BadNets attacks, SCAn fails on both CIFAR-10 and Tiny
ImageNet as shown in Table 2. It appears that when at least half of the classes
are poisoned SCAn is unable to detect the attack. On the contrary, VBD achieves
the best F1-performance, outperforming AGPD by 8.69% on CIFAR-10 and ABL
by 23% on Tiny-ImageNet.

Table 2: All-to-All BadNets poisoned-instance detection F1-score (%).
Set Pattern VBD ABL AGPD SCAn

color grid 94.37 ±01.03 56.76 ±12.58 68.28 ±14.05 00.00 ±00.00
green square 91.00 ±02.00 55.36 ±12.30 86.66 ±15.02 00.00 ±00.00
white grid 95.64 ±03.54 58.06 ±07.48 93.07 ±09.05 00.00 ±00.00
white square 93.51 ±00.82 53.14 ±12.94 91.73 ±08.45 00.00 ±00.00

C
IF

A
R

-1
0

Average 93.63 ±00.66 55.83 ±07.63 84.94 ±07.88 00.00 ±00.00
color grid 83.91 ±02.75 50.57 ±03.50 33.30 ±00.63 00.00 ±00.00
green square 85.00 ±01.24 38.47 ±08.08 34.14 ±01.30 00.00 ±00.00
white grid 52.27 ±02.68 43.45 ±06.51 34.34 ±00.97 00.00 ±00.00
white square 44.82 ±02.46 41.36 ±08.17 33.84 ±00.67 00.00 ±00.00T

in
y

Im
ag

eN
et

Average 66.50 ±01.91 43.46 ±02.41 33.90 ±00.54 00.00 ±00.00
Average 80.06 ±01.14 49.65 ±04.32 59.42 ±04.14 00.00 ±00.00

Variance-Based Defense Against Blended Backdoor Attacks 15

The performance results for the Blended attacks in both All-to-One and All-
to-All settings are provided in Table 3 and Table 4, respectively. As we can see,
in the All-to-One setting, the results are comparable to those in the All-to-One
BadNets case, with SCAn and VBD leading. Nevertheless, in this case, VBD
outperforms SCAn by 0.24% on CIFAR-10 and by 7.37% on Tiny ImageNet.
The averaged F1 score across the experiments on both datasets shows that VBD
outperforms SCAn by 3.8%. For the All-to-All Blended attack case, as previously
mentioned, SCAn fails, and AGPD outperforms the other defenses, with VBD
finishing second. It is noteworthy that VBD struggles to detect the attack and
extract the triggers when the blending factor is below 50%. However, when the
blending factor is 50%, VBD performs better than AGPD.

Table 3: All-to-One Blended poisoned-instance detection mean F1-score (%) over
the 6 triggers shown in Figure 4.

Set Blended VBD ABL AGPD SCAn

10% 93.34 ±01.08 68.60 ±04.12 90.38 ±07.27 92.80 ±06.14
20% 96.85 ±00.75 76.58 ±01.18 90.22 ±08.70 96.19 ±01.10
50% 98.68 ±00.54 84.40 ±01.90 90.68 ±09.68 99.14 ±00.10

C
IF

A
R

-1
0

Average 96.29 ±00.72 76.53 ±01.99 90.43 ±05.73 96.05 ±02.01
10% 83.12 ±06.42 78.03 ±03.02 65.02 ±09.46 75.80 ±03.19
20% 93.62 ±05.91 87.03 ±02.73 72.76 ±19.37 84.58 ±02.84
50% 98.05 ±00.99 92.01 ±01.67 79.50 ±13.01 92.31 ±03.99T

in
y

Im
ag

eN
et

Average 91.60 ±03.80 85.69 ±01.33 72.43 ±11.90 84.23 ±02.28
Average 93.94 ±01.83 81.11 ±01.31 81.43 ±07.04 90.14 ±02.07

Table 4: All-to-All Blended poisoned-instance detection mean F1-score (%) over
the 4 grid and square triggers shown in Figure 4.

Set Blended VBD ABL AGPD SCAn

10% 56.16 ±03.38 14.08 ±06.64 70.70 ±16.82 00.00 ±00.00
20% 72.08 ±01.54 43.97 ±05.78 75.29 ±12.39 00.00 ±00.00
50% 91.68 ±01.27 53.31 ±06.28 84.47 ±04.86 01.40 ±03.13

C
IF

A
R

-1
0

Average 73.31 ±00.80 37.12 ±05.43 76.82 ±05.14 00.47 ±01.04
10% 00.00 ±00.00 02.84 ±00.12 20.81 ±08.53 00.00 ±00.00
20% 09.15 ±04.93 08.80 ±03.78 29.04 ±07.64 00.00 ±00.00
50% 42.55 ±01.09 37.17 ±03.07 35.05 ±00.18 00.00 ±00.00T

in
y

Im
ag

eN
et

Average 17.23 ±01.69 16.27 ±01.94 28.30 ±05.07 00.00 ±00.00
Average 45.27 ±00.76 26.69 ±02.38 52.56 ±02.43 00.23 ±00.52

Table 5 provides a summary of the performance of the tested defense meth-
ods, with the F1-score averaged over all the 80 experiments we conducted. VBD

16 S. Aseervatham et al.

ranks first on CIFAR-10 and, notably, on Tiny ImageNet. It outperforms AGPD
by 3.61% on CIFAR-10, and ABL by 6.25% on Tiny ImageNet. SCAn is penal-
ized by its failure in the All-to-All settings. It is worth noting that, unlike AGPD
and SCAn, VBD and ABL do not rely on an auxiliary dataset. The standard
deviation also shows that VBD is a stable method.

Table 5: Summary of the poisoned-instance detection F1-score (%) averaged over
all the 80 experiments.

Set VBD ABL AGPD SCAn

CIFAR-10 89.58 ±00.54 63.30 ±03.02 85.97 ±03.60 58.31 ±00.60
Tiny ImageNet 67.89 ±01.64 61.64 ±00.94 55.56 ±06.94 52.52 ±01.36
All 78.74 ±00.77 62.47 ±01.28 70.76 ±04.75 55.41 ±00.96

4.4 Discussion on Explainability

The proposed method extracts the salient part of the attack trigger along with
its binary mask. The extracted trigger provides a quick and general visual expla-
nation of the attack. Moreover, the binary mask can be used to isolate the pixels
responsible for the malicious behavior of an instance detected as poisoned. Fig-
ure 5 illustrates the explainability of the method on a blended attack on Tiny
ImageNet, using a 3 × 3 white square trigger (shown in subfigure 5a) with a
blending factor of 50%. The VBD method computes both the trigger and its
corresponding mask, shown in subfigures 5d and 5e, respectively. The extracted
pattern approximates the malicious trigger. Although the method cannot fully
recover the original colors of the trigger due to the blending, the result remains
sufficiently expressive to identify and explain the attack. The generated mask
can then be applied to any instance detected as poisoned to isolate the malicious
pixels and explain the VBD decision. The instance in subfigure 5c is detected by
VBD as poisoned. The extracted mask in subfigure 5e is then used to localize
the malicious pixels, as shown in subfigure 5f, where these pixels are outlined in
red.

5 Conclusion

In this article, we proposed an efficient defense algorithm against BadNets and
Blended attacks. Our method does not require additional information, such as
a clean dataset, and can be directly applied to a training set to detect poisoned
instances. A key advantage of our approach is its explainability: it extracts the
harmful part of the attack trigger, enabling experts to better understand the
nature of the attack. Moreover, our defense is effective in both the All-to-One
setting, where only one class is poisoned, and the more challenging All-to-All

Variance-Based Defense Against Blended Backdoor Attacks 17

(a) trigger (b) clean (c) malicious

(d) extracted trigger (e) extracted mask (f) malicious pixels

Fig. 5: Illustration of the method’s explainability on a blended attack using a
white square trigger (a) with a blending factor of 0.5. The pixels responsible
for the malicious misclassification are outlined in red in (f). In (a) and (d),
transparency is represented by the gray background.

setting, where all classes are affected. Experimental evaluations on two well-
known image datasets, compared against three state-of-the-art defense methods,
demonstrate the strong performance of our approach.

Our current method focuses on static-trigger attacks, which represent the
simplest and most realistic backdoor attack scenarios, as they require minimal
prerequisites and are thus more likely to be deployed by attackers in real-world
settings. However, our approach can be extended to dynamic triggers, where the
trigger is not fixed but can appear in predefined locations [23]. This could be
achieved, for instance, by clustering the estimated poisoned set based on variance
before extracting the trigger pattern.

In future work, we plan to further evaluate this extension and explore defenses
against a broader range of backdoor attack strategies.

References

1. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Mol-
loy, I.M., Srivastava, B.: Detecting backdoor attacks on deep neural networks by
activation clustering. In: SafeAI@AAAI. CEUR Workshop Proceedings (2019)

2. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

3. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted Backdoor Attacks on Deep
Learning Systems Using Data Poisoning. arXiv preprint arxiv:1712.05526 (2017)

4. Chou, E., Tramer, F., Pellegrino, G.: Sentinet: Detecting localized universal attacks
against deep learning systems. In: IEEE SPW (2020)

5. Dodge, Y.: Kolmogorov–smirnov test. In: The Concise Encyclopedia of Statistics.
Springer New York (2008)

6. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence
against trojan attacks on deep neural networks. In: ACSAC (2019)

7. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: Identifying Vulnerabilities in the
Machine Learning Model Supply Chain. arXiv preprint arxiv:1708.06733 (2017)

18 S. Aseervatham et al.

8. Guo, J., Li, Y., Chen, X., Guo, H., Sun, L., Liu, C.: SCALE-UP: An efficient black-
box input-level backdoor detection via analyzing scaled prediction consistency. In:
ICLR (2023)

9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: ECCV (2016)

10. Huang, K., Li, Y., Wu, B., Qin, Z., Ren, K.: Backdoor defense via decoupling the
training process. In: ICLR (2022)

11. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

12. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N (2015)
13. Lee, D.H.: Pseudo-label : The simple and efficient semi-supervised learning method

for deep neural networks. In: WREPL@ICML (2013)
14. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Anti-backdoor learning: Training

clean models on poisoned data. NeurIPS 34, 14900–14912 (2021)
15. Li, Y., Lyu, X., Ma, X., Koren, N., Lyu, L., Li, B., Jiang, Y.G.: Reconstructive

neuron pruning for backdoor defense. In: ICML (2023)
16. Liu, Q., Li, P., Zhao, W., Cai, W., Yu, S., Leung, V.C.M.: A survey on security

threats and defensive techniques of machine learning: A data driven view. IEEE
Access (2018)

17. Ma, W., Wang, D., Sun, R., Xue, M., Wen, S., Xiang, Y.: The "beatrix" resurrec-
tions: Robust backdoor detection via gram matrices. In: NDSS (2023)

18. Nguyen, A., Tran, A.: Wanet–imperceptible warping-based backdoor attack. arXiv
preprint arXiv:2102.10369 (2021)

19. Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. NeurIPS (2020)
20. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans-

actions on Systems, Man, and Cybernetics (1979)
21. Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., Loukas, G.: A tax-

onomy and survey of attacks against machine learning. Computer Science Review
34 (2019)

22. Qi, X., Xie, T., Li, Y., Mahloujifar, S., Mittal, P.: Revisiting the assumption of
latent separability for backdoor defenses. In: ICLR (2023)

23. Salem, A., Wen, R., Backes, M., Ma, S., Zhang, Y.: Dynamic backdoor attacks
against machine learning models. In: EuroS&P (2022)

24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. IJCV
(2020)

25. Tang, D., Wang, X., Tang, H., Zhang, K.: Demon in the variant: Statistical analysis
of {DNNs} for robust backdoor contamination detection. In: USENIX Security
Symposium (2021)

26. Wu, B., Chen, H., Zhang, M., Zhu, Z., Wei, S., Yuan, D., Shen, C.: Backdoorbench:
A comprehensive benchmark of backdoor learning. In: NeurIPS (2022)

27. Wu, D., Wang, Y.: Adversarial neuron pruning purifies backdoored deep models.
In: NeurIPS (2021)

28. Yuan, D., Wei, S., Zhang, M., Liu, L., Wu, B.: Activation gradient based poisoned
sample detection against backdoor attacks. arXiv preprint arxiv:2312.06230 (2024)

29. Zeng, Y., Park, W., Mao, Z.M., Jia, R.: Rethinking the backdoor attacks’ triggers:
A frequency perspective. In: IEEE ICCV (2021)

30. Zhang, M., Zhu, M., Zhu, Z., Wu, B.: Reliable poisoned sample detection against
backdoor attacks enhanced by sharpness aware minimization. arXiv preprint
arXiv:2411.11525 (2024)

	Variance-Based Defense Against Blended Backdoor Attacks

