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Abstract. Large language models (LLMs) demonstrate their promise in
tackling complicated practical challenges by combining action-based poli-
cies with chain of thought (CoT) reasoning. Having high-quality prompts
on hand, however, is vital to the framework’s effectiveness. Currently,
these prompts are handcrafted utilising extensive human labor, resulting
in CoT policies that frequently fail to generalise. Human intervention is
also required to develop grounding functions that ensure low-level con-
trollers appropriately process CoT reasoning. In this paper, we propose
a comprehensive end-to-end training framework for complex task-solving
that utilises language prior knowledge embedded within LLMs or from
human experts. To that purpose, we offer a new leader-follower rein-
forcement learning framework that incorporates a prompt policy, a CoT
process, and an action policy. The prompt policy is employed to ask
pertinent questions based on historical observations, leading the CoT
process to consider the anticipated goals and generate state-adaptive
thoughts that lead to decisive, high-performing actions. To induce these
high-quality actions, the prompt policy has its own objective in our sys-
tem, encouraging it to adapt to the behavior of the action policy. The
action policy subsequently learns to comprehend and integrate the CoT
outputs to take precise actions. Empirical results demonstrate that our
framework outperforms leading methods in 6 popular decision-making
benchmark environments, including Overcooked and ALFWorld.

Keywords: Reinforcement learning - Bilevel optimisation - Language

priors.

1 Introduction

Large language models (LLMs) with Chain-of-thought (CoT) prompts [29, 28]
have achieved impressive performance improvements for solving complex natural
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language processing (NLP) tasks. Moreover, techniques such as reward incen-
tives and tree search [32,12] have enhanced the quality of CoT reasoning for
addressing intricate decision-making tasks, ultimately inducing the step-by-step
problem-solving process. This involvement of CoT reasoning has given rise to
the promise of unlocking the power of LLMs to be able to assist in performing
complex reasoning and acting in real-world environments.

While LLMs such as GPT-4 possess a wealth of human knowledge, in general,
current prompt-engineering based language agents [16,32] and prior knowledge
distillation approaches [36,33] heavily depend on meticulously crafted prompts
designed by humans for each specific task. The dependence on high-quality,
task-specific crafted prompts limits the generalization of these methods, while
manually designing (high-quality) prompts is an arduous and expensive task.
Additionally, despite the obvious potential of using CoT reasoning for guiding a
low-level control policy, human-intelligible CoT reasoning can often be ambigu-
ous for a downstream control policy, such as a rule-based planning method [34,
23] and an action policy trained by a reinforcement learning (RL) algorithm [4,
27]. As such, a natural consideration is the need to generate CoT outputs that
are interpretable to the action policy, and provably reduce the uncertainty of the
action policy in making decisions. Therefore, the ambition of embedding CoT
reasoning appropriately within a generalist artificial intelligence (AI) framework
has presented a series of critical challenges that have yet to be fully resolved.

In this paper, we propose a fully unified decision-making framework that
adaptively incorporates CoT reasoning to assist in tackling complex tasks. In
order to achieve this goal, both the prompt design and the action policy to
be executed have to be sufficiently flexible and useful so as to adapt to the
current task at hand. To this end, we introduce a comprehensive end-to-end
decision-making framework that follows the question, reason, then act pipeline.
Specifically, it learns to ask pertinent questions, performs CoT reasoning, and
then learns to take the best actions in the environment. The first component
of the framework is enacted by a prompt policy that learns a suitable prompt
question given the environment observations. These prompts serve as inputs to
a CoT process, allowing the framework to perform state-related and meaningful
reasoning. The CoT outputs are then integrated into the action policy, which
learns to find solutions to tasks that may require both interaction experience
and human knowledge embedded in CoT reasoning to solve.

Learning how to generate in-demand prompts for the CoT process produces
formidable challenges. One such challenge is to ensure that the resulting CoT
outputs enhance the performance of an action policy. We resolve this chal-
lenge by designing a leader-follower Bilevel optimisation [19] structure, called
Bilevel-LLM and illustrated in Figurel, that generates mutually adaptive poli-
cies. Each policy is endowed with its own objective — the prompt policy observes
the effect of its prompt and subsequent CoT reasoning on the action policy and
learns to generate useful prompts. In particular, the prompts are chosen so as
to minimise the uncertainty of the action policy i.e. minimise the entropy of
the action policy. The action policy, on the other hand, learns to maximise the
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environmental reward while taking into account the outputs of the CoT process.
Ultimately, the generated thoughts serve to learn a more effective action policy,
providing additional information beyond the observation of the environment.
These natural language insights embody human knowledge, reducing the need
for redundant exploration compared to traditional RL algorithms, which typi-
cally require extensive exploration of specific environments to train a competent
agent.

To minimise human intervention in task-related prompt design, we implement
a prompt policy based on a set of predefined prompt candidates. This approach
also helps avoid the dilemma of the scarcity of high-quality, supervised data
for prompt generation and the instability risks associated with exploring an
unrestricted prompt space. In many task environments, expert prompt data is
available, such as well-defined sets of subtasks [23,30]. In environments where
such prompt candidates are not available, our experimental results have shown
that GPT-3.5 can generate high-quality prompts based on task descriptions,
enabling Bilevel-LLM to achieve comparable performance to that rely on human-
written prompts. Additionally, we demonstrate that Bilevel-LLM successfully
learns to select the state-adaptive prompt from a global set of candidates.

The contributions of this paper can be summarised as follows:
e A new framework for dynamically adjusting prompts for decision-making tasks.
An integral component is a prompt policy trained to select prompts that induce
low uncertainty in the action policy, which receives thoughts generated by the
CoT process triggered by the prompts. Therefore, the prompt policy (and hence
the CoT process) behaves adaptively toward the needs of the action policy.
e Embedding CoT reasoning into the resolution of complicated decision-making
tasks, where the outputs of the CoT process guide a policy that takes actions
within an environment. This leverages the benefits of natural language models
and CoT reasoning that encapsulate worldly experience and the capacity for
deductive reasoning, while efficiently tuning the thought process by adjusting
the prompt policy.
e A new bilevel optimisation framework that integrates prompt-tuning with the
learning of a CoT output-based action policy. In this framework, the prompt
and action policies mutually influence each other and are concurrently trained
to converge.

2 Problem Formulation

In this setting, an agent aims to solve some task by performing a sequence of
actions in an environment. Formally, the problem is described by a partially ob-
servable Markov decision process (POMDP), which is defined by the following
tuple (S, A, P,O,T,R,), where S is the finite set of environment states, A is
the set of actions for the agent, P : S x A — A(S) is the state transition kernel
for the environment, O is the finite set of observations. The states, observations,
and actions can be described in natural language. The function R : S x A — R
is the reward function, which returns a scalar reward conditioned on a state-
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Prompt Candidates Question: Salad
1.How to slice lettuce? How to slice lettuce? Step 1: Fetch a lettuce. ‘“&\
2.How to slice tomato? Step 2: Put the lettuce onto the cutboard. ¢ —& ~a
3.How to deliver a lettuce-tomato salad? Step 3: Slice the lettuce on the cutboard. &
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Fig.1. Top: Example of the workflow from prompt candidates to CoT reasoning on
Overcooked. The prompt policy first selects a prompt question from the candidate set.
Subsequently, the CoT process generates complex reasoning guided by the prompt and
the current state observation to assist in subsequent action performing. Bottom: The
illustration of our bilevel optimisation framework.

action pair whose realisation at time step ¢ we denote by r; ~ R. Lastly, the
observation function is T : S x A — O which is a mapping from the environment
state, action to the observation set. Since the exact form of the observation and
state spaces varies between environments, we provided a general description of
the POMDP setting for introducing the general problem setting. 6 In complex
decision-making problems, standard methods such as RL struggle to solve these
tasks in a sample efficient way. To solve these problems, an agent may required
to deductive reasoning in order to resolve the challenge of finding an optimal
policy. To tackle these challenges, we propose a bilevel decision-making frame-
work as illustrated in Figurel, which can be split into three components:
e First, a prompt policy mg : (0)?<>° — A(P). Denote the P as the prompt
space containing finite prompt questions. This policy learns to tune prompts
after observing (a window of) j < co observations.
e Second, a CoT process ¢ : O x P — T — a fixed language model that reasons
about the task at the particular state observations and prompts questions. De-
note that 7 is the space of textual sentences based on the vocabulary set V (with
finite words in it). Bilevel-LLM is a plug-and-play framework that supports var-
ious options, including universal LLMs, task-specific knowledge distillation [36],
and environment-provided expert feedback [6], for performing CoT reasoning.
In our experiments, we employ either GPT-3.5 7 or expert feedback provided
by the environment [6]. Examples of prompt questions and CoT reasoning are
illustrated in Figurel.
e Lastly, an action policy mp : O x T — A(A). The action policy takes the
observation of the environment and the CoT thought as inputs then executes
actions in the environment.

Concretely, at times ¢t = 0,1, ..., a prompt p; is selected by the prompt policy
ie.py ~my(-log, ..., 0i—jn0). The prompt is then used by the CoT process whose

5 In the MDP setting, the observation space is equivalent to the state space.
" The version of GPT-3.5 used in this work is GPT-3.5-turbo
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output is a thought v, € T . Last, the action policy samples an action given the
observation and the thought a; ~ g (:|os, v¢). Therefore, the sequence of events
proceeds as follows:

1. At time ¢, the system is at an environment state s; € S.

2. A prompt p; is chose by the prompt policy i.e. p; ~ 74 (:0¢,...,0t—jnr0), Pt €
P.

3. An action a; ~ my(-|og,v4) is taken given the output of the CoT process
Uy ~ Wre(pt, Ot)-

4. The environment state transitions according to s;41 ~ P(:|s¢,a:). Figure??
in Appendix shows a step by step inference example of Bilevel-LLM on the
Overcooked task.

To tackle the problem of learning how to tune prompts while learning the
action policy, we structure the problem as a leader-follower bilevel optimisation
[7]. This allows the prompt policy to learn how its decisions affect the action
policy while the action policy learns both how to interpret the CoT outputs
and take desirable actions. Since LLMs already contain a vast amount of world
knowledge, we here fix the CoT process 7. We update the prompt policy and
action policy concurrently. The prompt policy aims to precisely adjust prompts
minimise the uncertainty of the action policy, while the action policy aims to
maximise the environmental return, taking the CoT outputs into account. The
optimisation objective can be expressed as a bilevel optimisation problem:

*_k
(7T97 ’/Tc/)) € arg ma’X(ﬂ'(q,ﬂ'(;,)GHgXH(;)

Ergmpvimmre | — OV H™ (o) lye = (01, 01)
t>0

" t
s.t. mp € argmax, ¢y, ]ETFG’MNT%Trrc E Yrre | s
t>0

where H™ (y;) = — ZateA mo(at|yt) log mo(at]yt) is the entropy of the action
policy mg, y¢ = (0¢,v¢), and yy,v € [0,1) are the discount factors for the action
and prompt generation policies respectively and r; ~ R is the environment
reward. Here, we explain the bilevel optimisation:

In the inner loop, the action policy 7y learns to take optimal actions, i.e. to
maximisie environment reward, based on both observations and CoT reasoning,
which contains task-solving prior knowledge.

In the outer loop, the prompt policy 74 aims to minimise the entropy of the
action policy. The motivation for using the negative entropy of the action policy
as a objective can be explained as follows. It learns to find appropriate prompts
that subsequently lead to CoT reasoning, enabling the action policy to take
high-performing actions more certainly.
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Algorithm 1 Bilevel-LLM

Input: Initialise parameters of policies g, my. Prompt candidate set P. Set the data
buffer D = (.
Output: 7y, and 7.

1: while not done do

2:  #Rollout trajectories with mg, 7", 4.

3: for i =1,2,..,step do

4: Generate prompt given historical observations: p: ~ g (:|0t, ..., 0t—;r0).

5: Perform CoT reasoning given prompt and observation: vy ~ 7" (:|p, 0¢).

6: Sample action according to the CoT reasoning and observation: a; ~
7l'9('|0t,’()t).

7 Apply action a: to the environment, sample the reward r; and next step
observation 0441.

8: Calculate the entropy of the action policy: he = H (7o (+|s¢, v¢)) -

9: Add to data buffer: D = D U (o4, pe, v, at, e, he, 0t41)

10:  end for

11:  Update the action policy 7y by optimising Eq. (2).
12:  Update the prompt policy 7 by optimising Eq. (1).
13: end while

3 Methodology

In this section, we describe the training procedure of the proposed bilevel frame-
work. The action policy is optimised to maximise environmental rewards, while
the prompt policy is designed to assist the action policy in performing optimal
actions more certainly by minimising its entropy. In the bilevel framework, the
prompt and action policies are concurrently optimised until convergence. The
overall framework is illustrated in Figurel.

Prompt Policy Training. When meticulously crafted prompts are provided, CoT
reasoning has proven to be effective in aiding decision-making tasks. However,
crafting prompts that effectively trigger reasonable CoTs for various long-term
decision-making tasks is challenging, given the vast state space and the multi-
faceted skills these tasks demand. Therefore, we aim to develop a prompt policy
that can dynamically adjust the prompts for different states while minimising
reliance on extensive human labor.

Due to the limited availability of supervised data for high-quality prompts
and the potential instability of exploring an unlimited prompt space, we opt not
to train a model to autonomously generate prompts. Instead, we use predefined
prompt candidates for each specific task, crafted either by humans or generated
by powerful LLMs like GPT-3.5 with task descriptions given. Additionally, we
conducted an experiment comparing the performance of our method using LL.M-
generated prompts with those designed by humans, as shown in Figure 6(b).

Given a prompt candidate set P = {p™) p® ... pF)1 we aim to train a
prompt policy that selects state-adaptive prompts from the candidate set. To
implement the prompt policy, we use a pre-trained LLM, Flan-T5 Small [21] or
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Flan-T5 Large in this paper, as the backbone. The prompt LLM policy selects
an appropriate prompt question for the current state given historical obser-
vation information and prompt candidates as inputs. This process is formally
represented as: p; ~ mg(-|ot, ..., 0t—jn0, P). For simplicity, we denote this as
P ~ T (+|0t, ..., 0i—jn0), ignoring the P which are the same for all states. The
prompt policy is updated via PPO, with the negative entropy of the action pol-
icy serving as the reward. The detailed procedure is described as below:

e For a decision-making task, we employ GPT-3.5, along with the provided task
description, to generate appropriate prompt candidates. As a second case, we
utilise the natural subtask structure [30] and human-crafted assists to generate
valuable prompt candidates.

e With these K prompts, the prompt policy is optimised to maximise the minus
action policy entropy. The objective function is given by:

arg max B,y oo | = 37 H™ (y0)lye = (00, 00) (1)
t>0

When optimising the prompt policy 7, through Eq. (1), we update only the
parameters ¢, keeping the action policy my fixed. The entropy H™ (y;) of the
action policy is treated as a scalar, non-differentiable reward.

CoT Reasoning with Prompts. With the selected prompt p;, the CoT reason-
ing is obtained by vy ~ 7*¢(:|p, o), where the CoT process 7™ is implemented
by a powerful LLM such as GPT-3.5 or environment-integrated language feed-
back (for ALFWorld [6]). The motivation of integrating the CoT reasoning into
our bilevel framework is to use human prior knowledge to provide a high-level
guideline for solving complicated decision-making tasks. For example, as shown
in Figurel, in the Overcooked game, the CoT process can generate a sequence
of solving steps -“picking up the lettuce, placing it on the cutting board, and
then slicing it"- related to a prompt question “how to slice lettuce”.

During implementation, to reduce the inference time and costs for frequent
queries, we store the CoT outputs for each state. Additionally, in Overcooked,
which has a vast state space (up to 9.8 x 102!), we abstract states into repre-
sentative situations via a rule-based method and store CoT outputs accordingly.
Specifically, we preserve the materials situation while disregarding the items’
map positions.

Action Policy Training. Existing works [15, 4, 36] utilise LLMs as the action
policy and fine-tune these LLMs to adapt to decision-making tasks, taking ad-
vantage of the comprehensive capabilities of LLMs. In our work, we also utilise
an LLM as the action policy. In implementation, the action LLM takes the tex-
tual observations and the CoT reasoning as input and output an distribution
over the action space. To regulate the action LLM to output executable actions,
we fine-tune the action LLM, denoted as mg, using PPO [22]. The objective of
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the action policy is to maximise the environmental return:

t
argmgaantNM’ptN%’UWﬂre E YTt (2)
>0

We use the same pre-trained LLM as the backbone for both the prompt and
action policies. The PPO algorithm is employed to train both policies, with
the prompt policy aiming to minimize the entropy of the action policy. Despite
this, the exploration ability of the action policy is still preserved, thanks to the
exploration-encouraging term in PPO.

Bilevel Optimisation. In our leader-follower Bilevel LLM framework, the
prompt policy and the action policies are trained alternately, with the other
policy being kept frozen. On the one hand, the prompt policy selects an appro-
priate prompt for the CoT process, the output of which is expected to assist
the action policy in solving complex tasks. Thus, the goal of the prompt policy
is to reduce the uncertainty of the action policy when it encounters challenging
scenarios. On the other hand, the action policy is trained to effectively solve
specific decision-making tasks while benefiting from CoT reasoning and the ex-
perience gathered during exploration. The overall training process of the Bilevel
framework is detailed in Algorithm 1.

Frozen LLM

LoRA
Adaptor P

LoRA
Adaptor A
Prompt Minus entropy| Action

Policy Policy

Environment rewards

Fig. 2. The training structure of Bilevel-LLM using LoRA.

Inspired by the success of LoRA [14], which achieves comparable performance
by training only a few parameters instead of fine-tuning all parameters, and
considering that our prompt and action policies are based on the same LLM, we
train two different LoRA adaptors for the two policies to enhance computational
efficiency. The overall training structure of Bilevel-LLM is illustrated in Figure
2.
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4 Experiments

In this section, we validate that our bilevel framework, which integrates prompt
tuning, CoT reasoning, and action policy learning, is beneficial for decision-
making. Additionally, our bilevel framework supports utilising prompt candi-
dates from GPT-3.5 while also automatically interpreting CoT reasoning, thereby
avoiding the need for extensive human labor compared to prompt-engineering-
based LLM agents [20, 34]. Further details of experimental settings, such as hy-
perparameter and environment settings, and more ablation study results can be
found in Appendix.

4.1 Environments

In this work, we incorporate six language decision-making environments involv-
ing various skills, including reasoning and navigation abilities, detailed statistics
are shown in Table 7?7 in Appendix C. The six environments are the follow-
ing: Tower of Hanoi [13], a classical logic reasoning game. Frozen Lake and
ChainWorld are POMDP environments, where only the agent’s position is ac-
cessible. FourRoom is a POMDP task, where the agent should navigate through
hallways to reach the goal. ALFWorld is a widely recognized benchmark for
LLM agents [32,24], is also a POMDP task. We utilise the environment as im-
plemented by LLF-Bench, which provides off-the-shelf prompt questions and
language feedback. We compare baselines across 50 tasks. For Overcooked, we
consider three different layouts: Overcooked(Tomato): deliver a chopped tomato
with the map size of 5 x 4; Overcooked(Salad): deliver a tomato-lettuce salad
with a map size of 5 x 4; Ouercooked(Large): deliver tomato-lettuce salad with
a map size of 7 x 7. Note that the state space of Owercooked(Large) reaches
9.8 x 102!, making it challenging to explore. Standard RL environments, such as
Frozen Lake and Overcooked, are converted into text-based environments using
predefined rule-based transitions. More detailed environment descriptions can
be found in Appendix C.

4.2 Baselines

We evaluate Bilevel-LLLM against five baselines: GFlan, which utilises the Flan-
T5 model as the action policy and optimises it with PPO based on textual
state representation; Vanilla PPO, which uses an MLP network with symbolic
state embeddings; and GPT-3.5 in a zero-shot setting with task instructions,
observations, and action candidates. An enhanced version, GPT-3.5 with CoT
prompt, includes step-by-step reasoning examples from human interactions.
ReAct(GPT-4) employs GPT-4-turbo for generating actions after reasoning
with historical data. Bilevel-LLM combines a prompt policy, CoT process,
and action policy to improve decision-making in complex tasks. The Flan-T5h
Small model is used in five environments for GFlan and Bilevel-LLM, except
in ALFWorld, where a fine-tuned Flan-T5 Large, based on expert trajectories
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Fig. 3. Results of comparison with baselines. We plot the mean and standard error
of the normalized cumulative reward. For inference baselines, the normalized reward
is averaged over 20 episodes. For trainable baselines, we plot the normalized rewards
averaged over the final third of the training processes across 5 random seeds. All cu-
mulative rewards are normalized within the range of [0, 1].
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Table 1. Comparison of query costs on the Tower of Hanoi. We present the query cost
for training Bilevel-LLM and running 20 episodes for ReAct. Bilevel-LLM incurs less
cost while achieving better performance than ReAct (GPT-4).

Baselines Performance Tokens
Bilevel-LLM(GPT-3.5) 0.95 56K
ReAct(GPT-4) 0.49 334K

from 10 tasks, is employed due to the task’s complexity. Further details on the
baselines are available in Appendix C.

Comparison with baselines. The results of comparisons with baselines are
shown in Figure3. Bilevel-LLM outperforms other baselines on all environments
and exhibits a smaller standard error than the suboptimal GFlan. This indicates
that Bilevel-LLM, incorporating state-adaptive language prior knowledge, can
improve the task-solving ability and convergence rate. In addition, GFlan con-
sistently surpasses Vanilla PPO, especially on Overcooked. This suggests that
using a pre-trained LLM as an action policy is beneficial for decision-making due
to its rich prior knowledge and strong ability to reason about world rules. The
training curves can be found in Figured, where our algorithm outperforms all

Table 2. Comparison of training resource requirements of baselines necessary to reach
convergence (achieving a 95% win rate) on Frozen Lake. Our method requires fewer
episode examples and comparable computational resources to achieve convergence.

Baselines Time(min) GPU Episodes
GFlan 10.8 3598 MB 1600
Bilevel-LLM (ours) 8.7 4658 MB 800
Direct-Prompt-LLM 8.3 4378 MB 1300
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other baselines and converges smoothly in most tasks.

Furthermore, inference baselines, including GPT-3.5, GPT-3.5 (CoT Prompt),
and ReAct (GPT-4), struggle with most decision-making tasks. This may be be-
cause, although powerful models like GPT-3.5/4 can generate useful high-level
task solutions, they still face challenges in long-term decision-making due to
complex world models and rules. For example, in the Tower of Hanoi, GPT-3.5
can identify valid moves but struggles to generate the correct move sequence
from start to goal, as detailed in Appendix D. Moreover, as shown in Table 1,
Bilevel-LLM incurs a tolerable cost for querying LLMs compared to inference
baselines.

—— GFlan Bilevel-LLM(ours) —— Vanilla PPO
Tower of Hanoi Frozen Lake ChainWorld
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Fig. 4. Training curves of baselines. We plot the average and standard error of nor-
malized rewards over 5 seeds.

4.3 Ablation Studies

We conducted a series of ablation studies to confirm the usefulness of the compo-
nents of Bilevel-LLLM . In the following, we modified components of Bilevel-LLM in
order to validate the following claims:

Does the prompt policy trained through reinforcement learning im-
prove performance? To validate the claim that the prompts generated by
Bilevel-LLM lead to improved performance, we have also tried different ways
to implement the prompt policy other than RL and present the comparative
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Fig.5. Ablation studies. We include GFlan for reference purposes. (a) The effect of
different prompt generation strategies. (b) Direct-Prompt-LLM lets the LLM(GPT-
3.5) directly generate state-specific prompts and corresponding thought answers. (c)
Verification of the effectiveness of Bilevel-LLM under multimodal state representations
on ChainWorld.

results in Figure5(a). Bilevel-LLM (Random) naively selects prompt candidates
randomly, Bilevel-LLM (UCB) views the prompt selection from a candidate set
as the multi-armed bandit problem and the selection follows Upper Confidence
Bound (UCB) over action choices. As shown in Figure5(a), Bilevel-LLM out-
performs all other prompt policy versions on all environments. The poor perfor-
mance of Bilevel-LLM (UCB) might be attributed to the lack of consideration
for environmental observations.

Does action behavior-guided prompt tuning improve performance?
We compare our method to the variant Direct-Prompt-LLM, which inquires the
GPT-3.5 for the prompt question and corresponding CoT on the current state,
and learn an action interpreter to decode CoT output. This method involves
more automation but compromises performance at the same time, as shown in
Figureb(b). Direct-Prompt-LLM surpasses GFlan due to the injection of domain
prior knowledge but performs worse than our Bilevel-LLM. This is likely because
our approach adjusts the prompt question according to the action policy’s be-
havior, reflecting the experience gained from interaction with the environment.
As shown in Table 2, Our Bilevel-LLM requires less online sampled episodes
to train a proficient action policy, demonstrating greater sample efficiency than
the other two baselines. Additionally, our method maintains acceptable training
time and GPU usage requirements, thanks to the LoRA technique.

Can the Bilevel-LLM framework accommodate multimodal state rep-
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Fig. 6. Ablation studies. (a)Ablation of the entropy objective on Chainworld. Left:
Normalized reward. Right: Entropy of the action policy. (b)Automatically generated
prompt candidates on Overcooked(Salad). Left: Normalized reward. Right: Rewards
during training.

resentation? We designed a baseline, Bilevel-LLM-Symbolic, where the action
policy is replaced by that of Vanilla PPO, and it takes both the sentence em-
bedding of the CoT output and symbolic environment observation as inputs.
As shown in Figure 5(c), Bilevel-LLM outperforms GFlan, and Bilevel-LLM-
Symbolic surpasses Vanilla-PPO. This indicates that the use of CoT reasoning,
triggered by dynamically tuned prompt questions, enhances the performance of
action policies.

Does the entropy objective improve performance? To validate that the
entropy objective leads to more certainty in action policy decisions, we tested
Bilevel-LLM against the variant Bilevel-LLM (Env), which replaces the nega-
tive entropy with the environment reward. As shown in Figure6(a), Bilevel-LLM
outperforms Bilevel-LLM (Env) and exhibits lower entropy of the action policy.
Can Bilevel-LLM learn from automatically generated prompts? For
most environments, we utilise the prompt candidates set generated by GPT-
3.5 with the task description given, demonstrating that the learning framework
can operate with minimum human intervention. In the tasks of ALFWorld, we
directly adapt the candidates provided automatically by the LLF-Bench envi-
ronment. In experiments on Overcooked and FourRoom tasks, we use the en-
vironmental well-structured subtasks as prompt questions for simplicity pur-
poses. To further verify the effectiveness of automatically generated prompt
candidates, we compare Bilevel-LLM to the variant Bilevel-LLM-Auto, which
uses the prompt candidates automatically generated by GPT-3.5. As shown in
Figure6(b), Bilevel-LLM-Auto achieve similar rewards compared to those us-
ing human-crafted prompt candidates in the Overcooked task. These results
also demonstrate that our plug-and-play framework can accommodate vari-
ous sources of domain-specific prior knowledge, including that from pre-trained
LLMs and human experts. Examples of automatically generated prompts can be
found in Appendix C.

5 Related Work

LLMs for RL. A series of studies have attempted to incorporate LLMs into
planning algorithms to address decision-making tasks. ICPI [3] solves a number
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of simple interactive RL tasks through in-context learning from historical inter-
actions, thereby the need for expert demonstrations or gradient computations,
The study [5] leverages historical trajectories to prompt LLM to generate the
next step actions on the TextWorld game. LFG [23] utilises an LLM with a
polling strategy to recommend and subsequently rank subgoals. Recent studies,
Reflect-RL [36] and Retrosformer [33], learn a smaller model to distill valuable
and critical human prior knowledge using an offline CoTs dataset collected from
powerful LLMs such as GPT-4. Then use the distilled model for the subsequent
action policy to take actions. In our work, we integrate complex CoT reasoning
into RL to enhance the quality of actions while eliminating the need for metic-
ulous engineering to interpret LLM outputs.

Entropy in RL. Entropy has been used extensively in RL as a tool for reg-
ularisation [18,1]. The policy in actor-critic methods is often trained with an
additional term that aims to maximise the entropy of the learned actions, with
the goal of exploring the environment without having a policy collapse early to
suboptimal actions [18]. More formal use of entropy is explored in maximum
entropy reinforcement learning [11, 9], where the optimisation objective aims to
learn the optimal policy that has the maximum entropy. In this work, we take a
different approach, and look at finding prompts that minimise the entropy of the
action policy. Intuitively, this would push the CoT process to provide reasoning
that makes the policy sure about its action. Such minimisation of the entropy has
also been explored: HIDIO [35] formulates a hierarchical approach to intrinsic
options, where entropy is minimised to improve the option sub-trajectories, and
the work [2] considers entropy for decision making in the exploration-exploitation
trade-off.

Automated Prompt Engineering. The quality of prompts plays a crucial
role in determining the output quality of LLMs. Many works hand-craft desir-
able prompts such as the Generative Agents [20] and ProAgent [34]. Apart from
completely using human-crafted prompts, there are other studies that adopt
different degrees of automation when generating meaningful prompts. For ex-
ample, APE [37] and DLN [26] generate prompts from multiple examples and
utilise LLM to rank the prompt candidates. PromptPG [17] trained a prompt
selection network using the policy gradient to choose from a predefined set of ex-
amples. Unlike PromptPG, which selects prompts for one-step supervised data,
we introduce a method to select state-adaptive prompts for multi-step decision-
making tasks. Bilevel-LLM optimises the prompt policy by adapting it to the
action policys performance within interactive environments.

6 Conclusion

We introduce Bilevel-LLM, a bilevel framework that is capable of learning ap-
propriate questions (in the form of prompts), and then performing complex rea-
soning for guiding actions executed by an action policy. The bilevel nature of the
framework enables the accommodation of separate objectives for the two learning
components, namely the prompt policy uses an action policy entropy minimi-
sation objective which enables it to induce unambiguous and useful prompts
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to be fed to the action policy. Meanwhile, the action policy learns how to per-
form actions in the environment while making use of the CoT thoughts which
it learns to interpret. We showed that this leads to a powerful framework that
outperforms leading baselines in complex benchmark environments. We believe
our framework takes an important step towards generalist artificial intelligence
that is capable of introspection and complex decision-making.

Limitations and Future Work In this work, we only explore our framework
for solving single-agent decision-making tasks, but neglect the prevalent multi-
agent setting. Further work will extend our framework to encompass decision-
making in multi-agent scenarios, possibly exploring the potential of leveraging
the reasoning abilities of LLMs to uncover cooperation patterns or to model the
behaviors of opponents.

Acknowledgments. Haifeng Zhang thanks IPT Project 2024002.
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